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This specifies the empirical spectral distributions:

es.d.of A= (1 - )b+ 61 = Ber(x),
e.s.d. of B~ (1 — B)(S() + 561 = Ber(B)

How does compressing B by A change the eigenvalues?

e.s.d. of ABA = ?
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Geometric Interpretation

Say A projects to U ¢ CN and B projects to V c CN. The
principal angles between U and V are:

cos(0y) := max max (ag, by).
ayelU brev
llagll=1 by ll=1

(aj,ar)=0 for 1<i<k (bj,by)=0 for 1<j<k

Populate columns of U, V with orthonormal bases of U, V,
sOA=UU* B=VV* Then:
cos(0y) = kth singular value of U*V
= (kth eigenvalue of U*VV*U)/?
= (kth eigenvalue of UU*VV*UU*)'/?
= (kth eigenvalue of f‘lié)l/ 2,

“angle operator”
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Special case: A is diagonal, a coordinate projection:

Then, ABA extracts a submatrix:

S O O O O
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Submatrices ~ Induced Subgraphs

A strongly d-regular graph has only three eigenvalues: the
“trivial” d eigenvalue, and two with large multiplicity:

d
G = Nll* + A1B; + A2B»

a 1
=—11* + \\B A (I—B ——11*)
N +A1b1 + A2 AN
= (A1 — A2)B; + simple adjustment.
If (Ag);; = 1{i € S} for S < [N], then
AgGAg = adjacency matrix of induced subgraph on S,

and we can understand the spectrum via AgB; Ag.
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Submatrices ~ Restricted Isometry Property

In compressed sensing, want vq,..., vy € C¥ with N > M
so that any small subset is close to orthonormal.

| |
V= (2 s UN ,

k-RIP constant =  max H((vla,vlb))ab 1 Ik”
i1, ik E[N

= max ||[AsV*VAs-T,®0].
SC[N] [S|=k

The v; are a tight frame if 211.\’:1 viv =VV* =cly.

If so, V*V = cB is a rescaled projection, so this is a
question about the eigenvalues (over all S) of A¢BAg.
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MANOVA Universality Class

Summary: If U and V are in “sufficiently general position,”
then the eigenvalues of ABA follow the universal Wachter
MANOVA distribution with density:

Vi, —x)(x —70)
21tx(1 — x)
+max{l — B,1 — «} Sp(x)

+max{f — (1 - 0),0}01(x),
ro= o+ B - 2B + 2yl - @) B(1 - B)

_ <\/¢x(1 —B) =B(1 - o<)>2 € (0,1).

At (x) = Ly (0)dx

Interpretation: Eigenvalues (1 — )¢ + S0, of B are
smoothed, 0 atom increases, 1 atom decreases.
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Free Probability Perspective

Consider sequences of random orthogonal projections
AN BN ¢ CN with

o1 ~N) _ . ~N) _
]\|]|Ln°oN[ETrA =, A|,|£nooN[ETrB = B.

Equivalent to convergence of e.s.d.’s to Ber(«x), Ber(B).

Free probability ~ if (AN, B™) asymptotically free, have
convergence (in moments) of e.s.d. of ANVBN AN o

Ber(x) = Ber(B) = tu,g-

To establish weak convergence, suffices to establish
asymptotic freeness.
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Asymptotic Freeness for Projections

Usual definition: for all sy, tq,..., sk, tx = 1, let

| (N)Si -1 (N)ti
;= lim i = lim B .
a; J\IJLOON[E rA , b; AILOON[E Ir

Then, asymptotic freeness < for any such choice,
1 k
— N N _ o7y —
lim N[ETrE(A a:Iy)(B bily) = 0.
But for projections, by idempotence, enough to analyze

one-parameter family of traces s; =t; =--- = s =t = 1:

lim %[E Tr (AN — ) (BN — BIy))* = 0.
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Main Theorem 1

AN BN e CNXN random orthogonal projections with

.1 N) _ 1 N) _
lim N[ETrA =, A|,|£nooN[ETrB =B,

— 00

lim %[E Tr (AN — oIy) (BN — BIN))* = 0 for all k > 1.

Then, we have convergence in moments: for all k > 1,

lim l[ETr(A“\"’B“‘“A“\“”)k = [ Ak
N-co N A~pgp
Remarks:
e Straightforward application of free probability tools.
e Extended to weak convergence in probability or a.s.
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Application: Random Subsets of Frames

Main Theorem 1 applies with:
o A™ diagonal, A;  Ber(«x),

e BN — %V(N)*V(N) for VN = [v,---vN] € CMxN
(deterministic!) tight frames having % - B €(0,1) and

g | (vi,vj) — L{i = j}| < N~1/2ro),
i,jE[N

Answers signal processing and combinatorics questions:
e Proves conjecture of
e Simplifies (Paley frames)
o Simplifies (Fourier frames)

...with easy proof!



Proof Sketch

Just expand and bound naively:
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Proof Sketch

Just expand and bound naively:
1 k
NIEETr((A —oI)(B - BI))"|
1 N
SNZH ..... i = 1||E[(Allll_ )( ixik O()]|

111 Bl{ll - l’}| ) 1/11 ﬂl{lk - llH

Sk N—l . Nk/2 ) N*k/2+(1(1)
——

# non-zero terms

- 0.

Previous work finds a “main term” and “error term” in
%[E Tr(ABA)k directly, redoing free probability by hand.
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Aside: Free Probability with “Less Randomness”

Classical results (Voiculescu et al.) treat “very random”
models: A, B unitarily invariant projections, i.e., to
uniformly random subspaces of CV.

This line of work: the same freeness and spectral limits
hold for much less random models (e.g., B deterministic
and A diagonal).

Companion work : some cases where the same limits
hold for completely deterministic models, e.g., built on the
Paley frames and Paley graph of number theory.
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Asymptotic Freeness in Paley Graphs

Gp a graph on vertices Z/pZ (with p = 1 mod 4) with i ~ j
iff j — i is a square mod p (for some x # 0, j — i = x2).

Gy is strongly regular; fits in previous framework.

Theorem: The associated projection B is
asymptotically free of coordinate projections Ag for any

S=1{j:j~1inG,} = “neighborhood of i”.

So, e.s.d. — py2,1/2 = arcsine law. (Partial generalization to
other “low-degree” sets S.)

Moral: Freeness does not require probability!
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Conjecture and Difficulties

Natural extension of previous results:

Edge Conjecture: For many AN, BN with e.s.d. of
AN BN AN converging weakly to py g,

Ao (AN BN ANy P oo (@, B) 1= right edge of Ue -

As in models from classical random matrix theory (e.g.,
Wigner and Wishart), the difficulty is in controlling
moments of diverging order:

ETr(AN BN ANYK £ (edge(w, B) + 0 (1)

for k > log(N).
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Main Theorem 2

For AN B™ as in Main Theorem 1, suppose additionally
that one of o or B is ; and that for k = k(N) > log(N),

max
l<a<k

A(N) —aly B(N) _ BIN)a

ETr ( Va(l — o) «/B(1—P)

< exp(o(k)).

Then,
Amax (AN BN AN P edoe(, B).

Similar idea to Main Theorem 1: isolate an error term,
which should be easier to control than Tr(ANB™N ANk,

Conjecture: Extra condition on «, § not necessary.

Seems just a technical challenge—stay tuned for details.
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Main Theorem 2: Intuition

Why do these normalizations appear?

A= (AN —xIy) /(1 — @), B:= (BN —BIy)/\B(1 - B)

Normalizatiq_n whitens the spectrum: if A (AN iid Ber(x)
and A;(B™) ™ Ber(B), then

EA;(A) = EA;(B) = 0,
FA;(A)2 = EA;(B)? = 1.

-~ A, B are orthogonal in expectation. Actually orthogonal
matrices would indeed satisfy

| Tr(AB)X| < N = exp(0(k)).
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Proof Ideas for Main Theorem 2

Exact relation between centered and uncentered moments
by “trace rewriting” using idempotence:

Tr (A — «Iy) (B - BIy))"
k
=w Tr(Iy) + x Tr(A) + ¥ Tr(B) + > z; Tr(ABA)".
{=1

Inverting this, the “main term” is the limiting MANOVA
moment:

Tr(ABA)X = N . E A*+x'(Tr(A) — aN) + ¥'(Tr(B) — BN)
A~He,B

k
+> 2, Tr (A — ady) (B — BIy))~.
0=1



Proof Ideas for Main Theorem 2

First result: an explicit recursion for the moment errors

Ax = Tr(ABAX =N [E Ak

)\Nﬂa,ﬁ
k-1 v
~ > Ao+ e Tr ((A— ody) (B = BIN))".
=1

Still not easy to analyze for large k...



Proof Ideas for Main Theorem 2

First result: an explicit recursion for the moment errors

Ax = Tr(ABAX =N [E Ak

)\Nﬂa,ﬁ
k-1 v
~ > Ao+ e Tr ((A— ody) (B = BIN))".
=1

Still not easy to analyze for large k...

Saving grace: if o or fis %, can solve this recursion in
closed form!

Identify Riordan arrays in recursion: triangular matrices
with special generating functions allowing formal inversion.
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“Application:” New Proof for Invariant Model

New, arguably more robust, proof of edge limit theorem for
AN BN ynitarily invariant projections.

Model equivalent to:

A diagonal with A;; id Ber(x),

D diagonal with D; iid Ber(B),
U ~ Haar(‘U(N)),
B=UDU*.

Proof: expand; use non-asymptotic bounds for Weingarten
function [Collins, Matsumoto '17] to control moments

ELUiji - - - Ui Uiy - - Uy, g7, 1
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Obstacles to General Models
Consider same A but B deterministic (like in frame
application) and real symmetric.

No expectation over B; expanding traces leads to trying to
analyze “graphical moments” of B:

From a graph G = ([k],E) and B € RY*N compute

sym

Z l_[ Bigiy-

i1,...,ix€[N] distinct {a,b}eE

Scalar version of graph matrices appearing in literature on
sum-of-squares optimization.

Techniques to analyze for general G and deterministic B?
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Paley Graphs Revisited

Numerical experiments ~ Edge Conjecture should hold for
Paley graph construction.

Proof would probably require intricate analysis of character
sums (= graphical moments in +1 adjacency matrix).

But, by enhanced spectral bound on clique number, would
yield progress on long-standing open problem:

Conjecture: Largest clique in G, is O (polylog(p)).
Best known upper bound: Largest clique in G, is < \/p/2.

Theorem: If Edge Conjecture holds for Paley graph
construction, then largest clique in G, is
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Open Questions

e Prove Anax limit theorem for any non-invariant model.

o Invariant model with discrete Fourier matrix
instead of U: unsolved since

o Deterministic subsets of Paley frames = improved
bounds for clique number of Paley graph.

¢ Other universal features:
o Local laws and spacing?

o Rate of convergence of e.s.d.?

¢ Adapt to analyze RIP (all small submatrices)?



Thank you!



