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Eigenvalues Under Compression

A,B ∈ CN×N orthogonal projections of linear rank:

1
N

Tr(A) ≈ α ∈ (0,1),
1
N

Tr(B) ≈ β ∈ (0,1).

This specifies the empirical spectral distributions:

e.s.d. of A ≈ (1−α)δ0 +αδ1 = Ber(α),
e.s.d. of B ≈ (1− β)δ0 + βδ1 = Ber(β).

How does compressing B by A change the eigenvalues?

e.s.d. of ABA ≈ ?
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Geometric Interpretation

Say A projects to U ⊂ CN and B projects to V ⊂ CN .

The
principal angles between U and V are:

cos(θk) := max
ak∈U
‖ak‖=1

〈ai,ak〉=0 for 1≤i<k

max
bk∈V
‖bk‖=1

〈bj ,bk〉=0 for 1≤j<k

〈ak,bk〉.

Populate columns of U ,V with orthonormal bases of U,V ,
so A = UU∗, B = VV∗. Then:

cos(θk) = kth singular value of U∗V
= (kth eigenvalue of U∗VV∗U)1/2

= (kth eigenvalue of UU∗VV∗UU∗)1/2

= (kth eigenvalue of ABA︸ ︷︷ ︸
“angle operator”

)1/2.
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Application: Submatrices

Special case: A is diagonal, a coordinate projection:

A =


0

1

1

0

1



Then, ABA extracts a submatrix:

A


· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·

A =


0 0 0 0 0

0 · · 0 ·
0 · · 0 ·
0 0 0 0 0

0 · · 0 ·


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Submatrices � Induced Subgraphs

A strongly d-regular graph has only three eigenvalues: the
“trivial” d eigenvalue, and two with large multiplicity:

G = d
N

11∗ + λ1B1 + λ2B2

= d
N

11∗ + λ1B1 + λ2

(
I − B1 −

1
N

11∗
)

= (λ1 − λ2)B1 + simple adjustment.

If (AS)ii = 1{i ∈ S} for S ⊆ [N], then

ASGAS = adjacency matrix of induced subgraph on S,

and we can understand the spectrum via ASB1AS .
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Submatrices � Restricted Isometry Property

In compressed sensing, want v1, . . . ,vN ∈ CM with N � M
so that any small subset is close to orthonormal.

V =

 | |
v1 · · · vN
| |

 ,
k-RIP constant = max

i1,...,ik∈[N]

∥∥∥(〈via ,vib〉)ka,b=1 − Ik
∥∥∥

= max
S⊂[N],|S|=k

∥∥ASV∗VAS − Ik ⊕ 0
∥∥ .

The vi are a tight frame if
∑N
i=1 viv

∗
i = VV∗ = cIM .

If so, V∗V = cB is a rescaled projection, so this is a
question about the eigenvalues (over all S) of ASBAS .
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MANOVA Universality Class

Summary: If U and V are in “sufficiently general position,”
then the eigenvalues of ABA follow the universal Wachter
MANOVA distribution with density:

dµα,β(x) =
√
(r+ − x)(x − r−)

2πx(1− x) 1[r−,r+](x)dx

+max{1− β,1−α}δ0(x)
+max{β− (1−α),0}δ1(x),

r± = α+ β− 2αβ± 2
√
α(1−α)β(1− β)

=
(√
α(1− β)±

√
β(1−α)

)2

∈ (0,1).

Interpretation: Eigenvalues (1− β)δ0 + βδ1 of B are
smoothed, 0 atom increases, 1 atom decreases.
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II. Empirical Spectral Distribution
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Free Probability Perspective [Voiculescu ’90s]

Consider sequences of random orthogonal projections
A(N),B(N) ∈ CN with

lim
N→∞

1
N
ETrA(N) = α, lim

N→∞

1
N
ETrB(N) = β.

Equivalent to convergence of e.s.d.’s to Ber(α),Ber(β).

Free probability � if (A(N),B(N)) asymptotically free, have
convergence (in moments) of e.s.d. of A(N)B(N)A(N) to

Ber(α) ì Ber(β) = µα,β.

To establish weak convergence, suffices to establish
asymptotic freeness.
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Asymptotic Freeness for Projections

Usual definition: for all s1, t1, . . . , sk, tk ≥ 1, let

ai := lim
N→∞

1
N
ETrA(N)

si , bi := lim
N→∞

1
N
ETrB(N)

ti .

Then, asymptotic freeness a for any such choice,

lim
N→∞

1
N
ETr

k∏
i=1

(A(N)
si − aiIN)(B(N)

ti − biIN) = 0.

But for projections, by idempotence, enough to analyze
one-parameter family of traces s1 = t1 = · · · = sk = tk = 1:

lim
N→∞

1
N
ETr

(
(A(N) −αIN)(B(N) − βIN)

)k = 0.
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Main Theorem 1 [K ’23]

A(N),B(N) ∈ CN×N random orthogonal projections with

lim
N→∞

1
N
ETrA(N) = α, lim

N→∞

1
N
ETrB(N) = β,

lim
N→∞

1
N
ETr

(
(A(N) −αIN)(B(N) − βIN)

)k = 0 for all k ≥ 1.

Then, we have convergence in moments: for all k ≥ 1,

lim
N→∞

1
N
ETr(A(N)B(N)A(N))k = E

λ∼µα,β
λk.

Remarks:

• Straightforward application of free probability tools.

• Extended to weak convergence in probability or a.s.
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Application: Random Subsets of Frames

Main Theorem 1 applies with:

• A(N) diagonal, Aii
iid∼ Ber(α),

• B(N) = M
NV

(N)∗V (N) for V (N) = [v1 · · ·vN ] ∈ CM×N
(deterministic!) tight frames having M

N → β ∈ (0,1) and

max
i,j∈[N]

∣∣〈vi,vj〉 − 1{i = j}
∣∣ ≤ N−1/2+o(1).

Answers signal processing and combinatorics questions:

• Proves conjecture of [Haikin, Zamir, Gavish ’17]

• Simplifies [Mixon, Magsino, Parshall ’21] (Paley frames)

• Simplifies [Farrell ’11] (Fourier frames)

...with easy proof!
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Proof Sketch

Just expand and bound naively:

1
N
|ETr

(
(A−αI)(B− βI)

)k|
≤ 1
N

∑N

i1,...,ik=1
|E[(Ai1i1 −α) · · · (Aikik −α)]|

|Bi1i2 − β1{i1 = i2}| · · · |Biki1 − β1{ik = i1}|

Ük N−1 · Nk/2︸ ︷︷ ︸
# non-zero terms

· N−k/2+o(1)

→ 0.

Previous work finds a “main term” and “error term” in
1
NETr(ABA)

k directly, redoing free probability by hand.

14



Proof Sketch

Just expand and bound naively:

1
N
|ETr

(
(A−αI)(B− βI)

)k|
≤ 1
N

∑N

i1,...,ik=1
|E[(Ai1i1 −α) · · · (Aikik −α)]|

|Bi1i2 − β1{i1 = i2}| · · · |Biki1 − β1{ik = i1}|

Ük N−1 · Nk/2︸ ︷︷ ︸
# non-zero terms

· N−k/2+o(1)

→ 0.

Previous work finds a “main term” and “error term” in
1
NETr(ABA)

k directly, redoing free probability by hand.

14



Aside: Free Probability with “Less Randomness”

Classical results (Voiculescu et al.) treat “very random”
models: A,B unitarily invariant projections, i.e., to
uniformly random subspaces of CN .

This line of work: the same freeness and spectral limits
hold for much less random models (e.g., B deterministic
and A diagonal).

Companion work [K ’23]: some cases where the same limits
hold for completely deterministic models, e.g., built on the
Paley frames and Paley graph of number theory.
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Asymptotic Freeness in Paley Graphs

Gp a graph on vertices Z/pZ (with p ≡ 1 mod 4) with i ∼ j
iff j − i is a square mod p (for some x ≠ 0, j − i ≡ x2).

Gp is strongly regular; fits in previous framework.

Theorem: [K ’23] The associated projection B is
asymptotically free of coordinate projections AS for any

S = {j : j ∼ i in Gp} = “neighborhood of i”.

So, e.s.d. → µ1/2,1/2 = arcsine law. (Partial generalization to
other “low-degree” sets S.)

Moral: Freeness does not require probability!
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III. The Largest Eigenvalue
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Conjecture and Difficulties

Natural extension of previous results:

Edge Conjecture: For many A(N),B(N) with e.s.d. of
A(N)B(N)A(N) converging weakly to µα,β,

λmax(A(N)B(N)A(N))
(p)
----------------------------------------→ edge(α,β) := right edge of µα,β.

As in models from classical random matrix theory (e.g.,
Wigner and Wishart), the difficulty is in controlling
moments of diverging order:

ETr(A(N)B(N)A(N))k
?
≤ (edge(α,β)+ o(1))k

for k� log(N).
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Main Theorem 2

For A(N),B(N) as in Main Theorem 1, suppose additionally
that one of α or β is 1

2 and that for k = k(N)� log(N),

max
1≤a≤k

∣∣∣∣∣ETr
(
A(N) −αIN√
α(1−α)

B(N) − βIN√
β(1− β)

)a∣∣∣∣∣ ≤ exp(o(k)).

Then,

λmax(A(N)B(N)A(N))
(p)
----------------------------------------→ edge(α,β).

Similar idea to Main Theorem 1: isolate an error term,
which should be easier to control than Tr(A(N)B(N)A(N))k.

Conjecture: Extra condition on α,β not necessary.

Seems just a technical challenge—stay tuned for details.
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(p)
----------------------------------------→ edge(α,β).

Similar idea to Main Theorem 1: isolate an error term,
which should be easier to control than Tr(A(N)B(N)A(N))k.

Conjecture: Extra condition on α,β not necessary.

Seems just a technical challenge—stay tuned for details.
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Main Theorem 2: Intuition

Why do these normalizations appear?

Â := (A(N) −αIN)/
√
α(1−α), B̂ := (B(N) − βIN)/

√
β(1− β)

Normalization whitens the spectrum: if λi(A(N))
iid∼ Ber(α)

and λi(B(N))
iid∼ Ber(β), then

Eλi(Â) = Eλi(B̂) = 0,

Eλi(Â)2 = Eλi(B̂)2 = 1.

� Â, B̂ are orthogonal in expectation. Actually orthogonal
matrices would indeed satisfy

|Tr(ÂB̂)k| ≤ N = exp(o(k)).
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Proof Ideas for Main Theorem 2

Exact relation between centered and uncentered moments
by “trace rewriting” using idempotence:

Tr
(
(A−αIN)(B− βIN)

)k
= w Tr(IN)+ xTr(A)+y Tr(B)+

k∑
`=1

z`Tr(ABA)`.

Inverting this, the “main term” is the limiting MANOVA
moment:

Tr(ABA)k = N E
λ∼µα,β

λk+x′(Tr(A)−αN)+y ′(Tr(B)− βN)

+
k∑
`=1

z′`Tr
(
(A−αIN)(B− βIN)

)k.
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Proof Ideas for Main Theorem 2

First result: an explicit recursion for the moment errors

∆k = Tr(ABA)k −N E
λ∼µα,β

λk

≈
k−1∑
`=1

ck,`∆` + c′kTr
(
(A−αIN)(B− βIN)

)k.
Still not easy to analyze for large k...

Saving grace: if α or β is 1
2 , can solve this recursion in

closed form!

Identify Riordan arrays in recursion: triangular matrices
with special generating functions allowing formal inversion.
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“Application:” New Proof for Invariant Model

New, arguably more robust, proof of edge limit theorem for
A(N),B(N) unitarily invariant projections.

Model equivalent to:

A diagonal with Aii
iid∼ Ber(α),

D diagonal with Dii
iid∼ Ber(β),

U ∼ Haar(U(N)),
B = UDU∗.

Proof: expand; use non-asymptotic bounds for Weingarten
function [Collins, Matsumoto ’17] to control moments

E[Ui1j1 · · ·UikjkUi′1j′1 · · ·Ui′k′j′k′ ].
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Obstacles to General Models

Consider same A but B deterministic (like in frame
application) and real symmetric.

No expectation over B; expanding traces leads to trying to
analyze “graphical moments” of B:

From a graph G = ([k], E) and B ∈ RN×Nsym , compute∑
i1,...,ik∈[N] distinct

∏
{a,b}∈E

Biaib .

Scalar version of graph matrices appearing in literature on
sum-of-squares optimization.

Techniques to analyze for general G and deterministic B?
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Paley Graphs Revisited

Numerical experiments � Edge Conjecture should hold for
Paley graph construction.

Proof would probably require intricate analysis of character
sums (≈ graphical moments in ±1 adjacency matrix).

But, by enhanced spectral bound on clique number, would
yield progress on long-standing open problem:

Conjecture: Largest clique in Gp is O(polylog(p)).

Best known upper bound: Largest clique in Gp is ≤
√
p/2.

Theorem: [K ’23] If Edge Conjecture holds for Paley graph
construction, then largest clique in Gp is ≤ o(√p).
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Open Questions

• Prove λmax limit theorem for any non-invariant model.

◦ Invariant model with discrete Fourier matrix
instead of U : unsolved since [Farrell ’11].

◦ Deterministic subsets of Paley frames ⇒ improved
bounds for clique number of Paley graph.

• Other universal features:

◦ Local laws and spacing? [Farrell, Nadakuditi ’15]

◦ Rate of convergence of e.s.d.?

• Adapt to analyze RIP (all small submatrices)?
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Thank you!
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