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Question:

How to predict when statistical inference
will be computationally hard?
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What is statistical inference?

For this talk, statistical inference = hypothesis testing.

e Two distributions, P, and Q,,, over RN,
e | draw Y from one of them secretly.
e You see Y, and try to infer which one using a test:

f :[RN( ) — {p’q}

This lets us define asymptotic success (“strong detection”):

J]Ln;]o Pulfa(Y) =pl =1,
J]Lr?c Qnlfa(Y) =ql =1.
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What kinds of distributions?
Think of P, as structured (“planted”) and Q, as null.

e Principal component analysis

Ql’l: (g]!---ngn) ~ N(O’ IH)

Pn: (G1yeesGin) ~ N0, I+ AxxT)
¢ Community detection

Qp: G ~ Erd6s-Rényi

P,: G ~ Erd6és-Rényi + clique

G ~ different edge prob. within/between blocks

e Spiked transport model [Rigollet, Weed 2019]'

Qn: X153 Xm)s (Y1, o245 Vi) lind.
Pn: xi = a,m +z,(-”, yi= afz) + z,(-Z)
aY) different laws on low-dimensional subspace V, and

zU) same law on V-*.

'Just for optimal transport fans.
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Testing without computational budget

If we could use any test f, which would we use?

Heuristic: to build a function large on P but small on Q,

maximize Eph(Y)
subjectto Eqh(Y)? <1

!

maximize <h,§%>

subjectto ||h|? <1

Optimizer: the (normalized) likelihood ratio

() = j(gw) / w

objective value



Justification 1: optimal error tradeoff

[Neyman, Pearson 1933] Of tests with Q[f(Y) = p] < «,
the test that minimizes P[f(Y) = q] is

p If"””(Y)>§}

g otherwise

fe(Y) :{

for suitable &.

Best tradeoff between “Type I” and “Type II” errors.

(And non-asymptotically!)



Justification 2: control of success

[Le Cam, 1960’s] Suppose || Z&II < Kas n— o. Then, P, is
contiguous to Q:

QulA,] = 0 = P,[A,] — 0.



Justification 2: control of success

[Le Cam, 1960’s] Suppose || Z&II < Kas n— o. Then, P, is
contiguous to Q:

QulA,] = 0 = P,[A,] — 0.

Corollary: Set A, = {f,(Y) = p}. Then:
Qn[fn(y) = p] - OJ = L[P)n[fn(y) = p] - Q

Y Y
success under Qp failure under P,




Justification 2: control of success

[Le Cam, 1960’s] Suppose || il || < Kas n— o. Then, P, is
contiguous to Q:

QulA,] = 0 = P,[A,] — 0.

Corollary: Set A, = {f,(Y) = p}. Then:
Qn[fn(y) = p] - OJ = L[P)n[fn(y) = p] - Q

Y Y
success under Qp failure under P,

“Information-theoretic” (no efficiency worries) limitations:

dp
oy

|| bounded = no test succeeds
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Testing with computational budget

What if we want to restrict to efficiently computable f,(Y),
e.d., in time poly(N)?

Heuristic: suppose the relevant tests are polynomials:
p € Riyi,...,yn] with deg(p) < D computable in O(NP).

maximize <h,;%>
subjectto ||hll? <1

h € V=P a subspace

Optimizer: the (normalized) low-degree likelihood ratio
-p 4P ‘
dQ

objective value

n ) = P2 (yy

dQ P
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The low-degree conjecture

One wrinkle: rather than D = w (1), to include calculation of
spectral norms of matrices ~ D = w(logN).

Main conjecture:

|| p=(log ’V)”e%ll bounded = no efficient test succeeds

Originally from sum-of-squares optimization (fancy
semidefinite programming) literature: controls whether a
lower bound construction succeeds or not.

e [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin 2016]

e [Hopkins, Steurer 2017]

e [Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer 2017]
e [Hopkins 2018] (PhD thesis)
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dQy

B { +00 -~ maybe easy

li =
|msup' K -~ hard

n— oo

Question 1:
How to project to low-degree polynomials?

Question 2:
How to evaluate asymptotics?
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Let’s restrict to a special case to show how this works:
e P, a “prior” over RN.
e Qu Y ~N(O,Iy).
e P,: draw X ~ P,, then Y ~ N (X, Iy).

A very special case: N(n) = n?, P, distribution over rank 1
matrices X = \gAxxT, e.g., X ~ Unif(S"1). Symmetrizing,

GOE(n) vs. GOE(n) + /n-Axx"
T \ ﬂ;r J

[Féral, Péché 2007] Top eigenvalue test succeeds iff A > 1.

Question: Is this optimal?
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Step 1: computing the likelihood ratio

The model:
e Qu: Y ~N(O,Iyn).
e P,:draw X ~ P,, then Y ~ N (X, Iy).

For likelihood ratio, just need gaussian densities:

daP, _ [ dPnle|X]
a2, = x5, | dq, (Y)}
[ (277)30mething exp(—||Y — X||2/2)
X~Py | (277)50mething exp(—[|Y[|2/2)

[exp (5 1XI7 + 1)) |

Il
=

Il
=
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Step 2: computing the low-degree projections

Use the orthogonal basis of Hermite polynomials,

h(y) € Rlyl

N
He(Y) =[] (YD) € R[ Y3, ..., YA
i=1

Projections by generalized gaussian integration by parts:

dP, o2 ki dP,
<d H"> =5 ki kn
QI’I Y Q” aY] . aYN Qn

[ )

Wn

E [ITx°]
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Step 3: computing the norm

Use (part of) the replica trick to handle squared E[- - - ]:

o dPa|]* 1 dapP, 2
'P_de _z%so k|<dQ,, Hk>
- 5 e (o5, M)
(X,X)’
:xx P”Zkzénm
= d X/ ) ki
N?"(;/zo sz< ""<N>U(X’X')

D

- E Z%(x,x’)d

XX ~Pn 1=p




Step 4: evaluating the asymptotic

The special case: X = /n/2 - Axx", x ~ Unif(S"1).

|

D

1
= [ —(X, X'\
x,x’~7>nd§0 d! ( )

_pdP, |2

P
dQp,
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Step 4: evaluating the asymptotic

The special case: X = /n/2 - Axx", x ~ Unif(S"1).

|

2 D

= [ — (X, X")?
xx~:l>ndzod|< )
D

1 (A2 /
Zd!(z -n- (xx))

x,x" ~Unif(sn-1) prars

len

PSD
dQp

By CLT, /n- (x,x’) = N (0,1), so...
D

1 (a2 ,\°
~ [ Zdl(z) (if D < n)

g~N 1) 1=

g

A2

- E o
g~N(0,1) ( 2 )



Step 4: evaluating the asymptotic

The special case: X = /n/2 - Axx", x ~ Unif(S"1).

|

2 D 1
= E > —(XX)?

XX ~Py =0 d!
D

1 (A2 S)
Zd!(z-n-(x,x))

x,x" ~Unif(sn-1) prars

P
dQp,

By CLT, /n- (x,x’) = N (0,1), so...
D

1 /a2 .\
~ 2 2 .
g~3\[fE<o,1)dz:0 d! ( 59 ) (if D < n)

A2 >
- E — .
g~N(0,])exp< 2 g )

Key: D(n) < n, so CLT “kicks in” in time for moments.
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Summary of spiked matrix model

GOE(n) vs. GOE(n) ++/n-Axx"

l

dP
PsD(rl) n
dQy

2
limsup

n—oo

Dy (A2 /
lim supx[E, > a7 (2 ‘n- (x,x’)z)
X =l

n—oo

!

A2 )
[E _
g~a\r(o,1>EXp ( 2 g )

~
natural, scalar expectation!
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Review

1. The low-degree conjecture connects hardness of

statistical testing with the norm of the low-degree
likelihood ratio.

2. To analyze a problem, we proceed as follows:
Compute the likelihood ratio
Find the orthogonal polynomials of the null model (Q)
Project (using special distributional properties)
Compute the norm (using “baby replica trick”)
Reduce to scalar expectation (limit theorem heuristic)



Other frameworks for hardness predictions

p—

. Conjecturally optimal algorithms

BP / AMP ~ cavity and replica methods of stat. physics
Sum-of-squares hierarchy (semidefinite programming)
Monte Carlo sampling from posterior

Local algorithms

Problem-specific algorithms (e.g. PCA)

N

. Structure of solution space (“shattering” & co.)

w

. Geometric analysis of optimization landscapes

N

. Average-case reductions



The bright side

The low degree method is...

e Easy

Uniform across problems

Broadly applicable (to nice “toy-ish” setups)

Intuitively plausible

Always correct (so far)



The other hand

The low degree method is...

e Coarse-grained in runtimes

Hard to handle correlated models with

Dependent on orthogonal polynomial magic

Dependent on good control of signal priors

Not a great way to design actual algorithms



So...give it a try when you are wearing
your theorist hat, and want to make a
quick, painless prediction of thresholds
for a nice model.



Thank you!



