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Our Question:

How tight can certifiable bounds on
random optimization problems be while
remaining computationally tractable?
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—A Model Problem

Maximizing a gaussian quadratic form over the hypercube ‘

1. Build random data:
W ~ GOE(n)
(meaning W € R, Wy ‘X v (0, 122) for i < j)

2. Set an optimization task:

OPT(W) ={ maximize fw(x) = x"Wx }

subjectto x e {x1/./n}"

Why this problem? —fy is the Hamiltonian and —OPT(W)
is the ground state energy of the Sherrington-Kirkpatrick
spin glass model ~ well-studied in statistical physics.
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—The True Value

Physicists in the ’70s and ’80s developed a deep theory of
the structure of the optimization landscape of fy. One of
the results was:

lim OPT(W) =: 2P, ~ 1.526.*

n—oo

P. is determined as the limit of the optimal values of a
sequence of functional optimization problems over
probability distributions on [0, 1].

[Parisi '79-80; Guerra, Talagrand, Panchenko, et al. '00s]

(*) General gaussian process theory ~ strong concentration.
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Two Fundamental Algorithmic Questions

Question 1 (Search): How large can you make fiy (x39(W))
for an efficiently computable x39(W) € {+1/./n}"?

Answer: For any € > 0, there is x>9(W) computable
in time poly,.(n) such that

[fw(Xglg(W)) > 2P, — (—:] - 1.
H,—J
oPT(W)

[Montanari ’18; Subag ’18; Addario-Berry, Maillard ’18]
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Two Fundamental Algorithmic Questions

Question 2 (Certification): How small can you make the
typical value of c(W) for ¢ that is efficiently computable and
satisfies OPT(A) < c(A) for all A € R (a certificate)?

sym

Example: c(A) := Anax(A) works, and for any € > 0,

[2—€ < Amax(W) <2 +€] — 1.

Answer: Assuming a complexity theory conjecture,
for any € > 0, there is no certificate c(A) that is
computable in time poly(n) and that satisfies

[c(W) <2-€] - 1.

[Bandeira, K., Wein ’19]
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Example: Relaxation Algorithms

To formulate relaxations, first linearize. Recall the cut
polytope:

¢" = convex hull of {xx" : x € {=1//n}"} C R

Computing OPT(A) - linear optimization over €":

OPT(A) = {

maximize xTAx
subjectto x e {+1/./n}"

_ | maximize (A, X)
| subjectto Xe%" |’

(Though it is convex, the intricate discrete geometry of %"
makes this problem hard in general.)
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Example: Relaxation Algorithms

Typically, certify by choosing #" 2 ¢ and computing

c(A) = { maximize (A, X)

subjectto X € #" } = OPT(A).

Semidefinite programming examples:

c(A) A" c(W)

Amax (A) {(X=20,Tr(X) =1} 2+ o0(1)
SOS Degree 2 {X>0,X;=1/n} 2+ o0(1)™
SOS Degree d {complicated!} ?

<) [Montanari, Sen ’15]



Our Main Result (Again):

Assuming a complexity theory conjecture,
for any € > 0, there is no certificate c(A)
that is computable in time poly(n) and
that satisfies

PI’W\GOE(’”)[C(W) <2 - E] — 1.
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U

For hypothesis testing of
P,, Q, distributions over
X,, there does not exist
any efficient test.



Proof Strategy

Argue by contradiction.

c(W) efficient certificate: “Low-degree polynomials
conjecture” on hardness

Prvfc(W) <2 —€] = 1. of hypothesis testing

U l

For hypothesis testing of =<« For hypothesis testing of

P,, Q, distributions over P,, Q, distributions over

X,, exists an efficient X,, there does not exist

testf: X, — {p,q}: any efficient test.

Pry-p, [f(Y) =p] =1,
Pry-q, [f(Y)=q] - 1.
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Part I: Certification = Hypothesis Testing

Key Idea: Certify below Ay (W) ~ distinguish uniform
subspace from subspace with a hypercube vector nearby.

W ~ GOE(n) W’ ~ GOE'(n)
Law of top eigenspace: Replace with:
d /
v span(g, ..., ds,) V' =span(yy,...,¥sn)
—_— —_—
Qi’l |Pl’l

If (yi,...,¥Ysp) ~ P, = 3Ax e {£1//n}" “close to” V', then

c(W)<2-¢
, € 2¢€
(W) > (2 - 5) 1Py xl? =201 = [IPyx|?) = 2 - 5,

so thresholding c distinguishes P, and Q, = N (0, I,,)&°".
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Remaining: How to define (y;,...,¥q_sn) ~ P, with:
» Hard to distinguish from Q, = N (0, 1,)®"-9" and
» with high probability there exists x € {+1/./n}" such
that || Pspan(y, XII° < K?

(Negatively-Spiked) Wishart Model: S € [—-1, x).
» Under Q,,
ViveerVa—syn = N0, 1,).
» Under P,, choose x ~ Unif({+£1/./n}"). Then,

Yisee s Y(1-6)n (L) N, I, + BxxT).

Lemma: For all k > 0, there exists § € (—1,0) such that



Proof Strategy (Reminder)
Argue by contradiction.

c(W) efficient certificate: “Low-degree polynomials
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Part Il: Hardness of Hypothesis Testing

Negatively-Spiked Wishart Model: § € (-1,0), 6 € (0,1).
» Under Q,,
Viree s Va—syn = N0, 1,).
» Under P,, choose x ~ Unif({+1/./n}"). Then,

y];---;)’(]—é)n (i_/) N(01IH+BXXT)

We will be finished if we can show...

Lemma: Assuming the “low-degree polynomials conjecture”
on hardness of hypothesis testing, if B2(1 — &) < 1, then
there is no test f : R™(1-9n . {n q1 distinguishing P, and
Q, and computable in time poly(n).
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The Low-Degree Polynomials Conjecture

Technique developed by [Hopkins, Steurer '17; Hopkins '18]
for predicting hardness of hypothesis testing, when P, is a
structured distribution and Q, is highly symmetric.

Key Idea: Restrict testing algorithms to those that evaluate
low-degree (< D) polynomials on a sample.

Important Adjustment: To include spectral algorithms,
need to allow evaluation of A (M) for M having
constant-degree polynomials in the sample ~ via power
method enough to take D(n) = w(logn).
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The Low-Degree Polynomials Conjecture

Define likelihood ratio

dap,
dQy,

Heuristic for best low-degree polynomial:

L,(Y) := (Y).

maximize Ey.p,f(Y)
subjectto f € R[Y]p = IL:P N2,
Ev-,f(Y)? =

where L;:P is projection of L, in L?(Q,) to R[Y]<p.

Conjecture: For “nice” P,, Q,, and some D(n) = w(logn), if
1L3° Nl 12(0,) = On-w (1), then there is no test that
distinguishes P, and Q, and runs in time poly(n).
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Negatively-Spiked Wishart Model: § € (-1,0), 6 € (0,1).

» Under Q,,
Yis-e s Y-6)n N0, 1,).
» Under P,, choose x ~ Unif({x1/./n}"). Then,

y]!""y(]—5)n (i) N(01IH+BXXT)

Since Q,, is i.i.d. gaussian, use Hermite polynomials, getting
expression in x' ~ Unif({+£1/,/n}") independent copies:

ILPI2 = B e [ 722 (B2 (X', x3)D) ],
=k = order k Taylor poly. of ¢,(t) = (1 —t)~(1-9)n/2
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Part Il: Hardness of Hypothesis Testing

Want: When B2(1 — ) < 1 and D(n) ~ (log n)'*« for some
small @ > 0, then

1PN = B2 [ 9522 (B2 (X', X)) | = Ono(1).

Heuristic Argument: (1) (x', x2) ~ N (O, ];) fast by CLT,
(2) =% < ¢, (3) N — . Then,

Bzgz —(1-06)n/2
lim [|L:P™ )12 < lim [EgNN(O,])[ (1 -~ ) ]
n—oo n—oo

n

¢n(B2Y92/H)
— Eg-vo) [exp (B2(1 - 9)g7/2) ],

the moment-generating function of a x2 random variable;
finite exactly when B2(1 = §) < 1. O



Proof Strategy (One Last Reminder)

Argue by contradiction.

c(W) efficient certificate: “Low-degree polynomials
conjecture” on hardness

[c(W) <2 —€]—1. of hypothesis testing

U U
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Takeaways

On this problem:
» There is a gap between search and certification! As in
k-SAT, cuts in hypergraphs, cliques in random graphs,
and others. Q: What is responsible?

On general methodology:
» We can prove hardness of certification in
using “planted” distributions. (We knew this.)
» But sometimes, the correct planted distribution is not
obvious. (We knew this, too—but the “quietness”
concept is hard to pin down.)
» The low-degree method can help us predict thresholds
for certification. Q: How to do it more systematically?



Thank you!

(This talk is based on the paper “Computational Hardness
of Certifying Bounds on Constrained PCA Problems”
[arXiv:1902.07324].)



