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Our Question:

How tight can certifiable bounds on

random optimization problems be while

remaining computationally tractable?
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Random Optimization—A Model Problem

Maximizing a gaussian quadratic form over the hypercube

1. Build random data:

W ∼ GOE(n)

(meaning W ∈ Rn×n
sym ,Wij

(⊥)∼ N (0, 1+δij

n ) for i ≤ j
)

2. Set an optimization task:

OPT(W) =
{

maximize fW(x) := x>Wx

subject to x ∈ {±1/
√

n}n

}

Why this problem? −fW is the Hamiltonian and −OPT(W)
is the ground state energy of the Sherrington-Kirkpatrick
spin glass model � well-studied in statistical physics.
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Random Optimization—The True Value

Physicists in the ’70s and ’80s developed a deep theory of
the structure of the optimization landscape of fW . One of
the results was:

lim
n→∞

EW∼GOE(n)OPT(W) =: 2P∗ ≈ 1.526.(∗)

P∗ is determined as the limit of the optimal values of a
sequence of functional optimization problems over
probability distributions on [0,1].

[Parisi ’79-80; Guerra, Talagrand, Panchenko, et al. ’00s]
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Two Fundamental Algorithmic Questions

Question 1 (Search): How large can you make fW(xalg(W))
for an efficiently computable xalg(W) ∈ {±1/

√
n}n?

Answer: For any ε > 0, there is xalg
ε (W) computable

in time polyε(n) such that

PrW∼GOE(n)

[
fW(x

alg
ε (W)) ≥ 2P∗︸ ︷︷ ︸

OPT(W)

− ε
]
→ 1.

[Montanari ’18; Subag ’18; Addario-Berry, Maillard ’18]
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Two Fundamental Algorithmic Questions

Question 2 (Certification): How small can you make the
typical value of c(W) for c that is efficiently computable and
satisfies OPT(A) ≤ c(A) for all A ∈ Rn×n

sym (a certificate)?

Example: c(A) := λmax(A) works, and for any ε > 0,

PrW∼GOE(n)
[
2− ε ≤ λmax(W) ≤ 2+ ε

]
→ 1.

Answer: Assuming a complexity theory conjecture,
for any ε > 0, there is no certificate c(A) that is
computable in time poly(n) and that satisfies

PrW∼GOE(n)
[
c(W) ≤ 2− ε

]
→ 1.

[Bandeira, K., Wein ’19]
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Example: Relaxation Algorithms

To formulate relaxations, first linearize. Recall the cut
polytope:

C n = convex hull of {xx> : x ∈ {±1/
√

n}n} ⊂ Rn×n
sym

Computing OPT(A) ↔ linear optimization over C n:

OPT(A) =
{

maximize x>Ax

subject to x ∈ {±1/
√

n}n

}

=
{

maximize 〈A,X〉
subject to X ∈ C n

}
.

(Though it is convex, the intricate discrete geometry of C n

makes this problem hard in general.)
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Example: Relaxation Algorithms

Typically, certify by choosing Rn ⊇ C n and computing

c(A) =
{

maximize 〈A,X〉
subject to X ∈Rn

}
≥ OPT(A).

Semidefinite programming examples:

c(A) Rn EW∼GOE(n)c(W)
λmax(A) {X � 0,Tr(X) = 1} 2+ o(1)

SOS Degree 2 {X � 0,Xii = 1/n} 2+ o(1)(∗)

SOS Degree d {complicated!} ?
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Our Main Result (Again):

Assuming a complexity theory conjecture,

for any ε > 0, there is no certificate c(A)
that is computable in time poly(n) and

that satisfies

PrW∼GOE(n)
[
c(W) ≤ 2− ε

]
→ 1.
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Proof Strategy

Argue by contradiction.
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Part I: Certification ⇒ Hypothesis Testing

Key Idea: Certify below λmax(W)� distinguish uniform
subspace from subspace with a hypercube vector nearby.

W ∼ GOE(n) W ′ ∼ GOE′(n)
Law of top eigenspace:

V
(d)= span(g1, . . . ,gδn︸ ︷︷ ︸

Qn

)

Replace with:

V ′ = span(y1, . . . ,yδn︸ ︷︷ ︸
Pn

)
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V ′ = span(y1, . . . ,yδn︸ ︷︷ ︸
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If (y1, . . . ,yδn) ∼ Pn ⇒ ∃x ∈ {±1/
√

n}n “close to” V ′, then

c(W) ≤ 2− ε

c(W ′) ≥
(

2− ε
2

)
‖PV ′x‖2 − 2(1− ‖PV ′x‖2) ≥ 2− 2ε

3
,

so thresholding c distinguishes Pn and Qn =N (0, In)⊗δn.
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Part I: Certification ⇒ Hypothesis Testing

Remaining: How to define (y1, . . . ,yδn) ∼ Pn with:
ñ Hard to distinguish from Qn =N (0, In)⊗δn, and
ñ with high probability there exists x ∈ {±1/

√
n}n such

that ‖Pspan(y i)x‖2 ≥ 1− κ?

(Negatively-Spiked) Wishart Model: β ∈ [−1,∞).
ñ Under Qn,

y1, . . . ,y (1−δ)n
(⊥)∼ N (0, In).

ñ Under Pn, choose x ∼ Unif({±1/
√

n}n). Then,

y1, . . . ,y (1−δ)n
(⊥)∼ N (0, In + βxx>).

Lemma: For all κ > 0, there exists β ∈ (−1,0) such that

Pr(x;(y1,...,y(1−δ)n))∼Pn

[
‖Pspan(y i)x‖2 ≤ κ

]
→ 1.
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Proof Strategy (Reminder)

Argue by contradiction.

c(W) efficient certificate:

PrW
[
c(W) ≤ 2− ε

]
→ 1.

“Low-degree polynomials
conjecture” on hardness
of hypothesis testingw� w�

For hypothesis testing of
Pn, Qn distributions over
Rn×(1−δ)n, exists efficient
test f : Rn×(1−δ)n → {p,q}:

PrY∼Pn [f (Y) = p]→ 1,
PrY∼Qn [f (Y) = q]→ 1.

⇒⇐ For hypothesis testing of
Pn, Qn distributions over
Rn×(1−δ)n, there does not
exist any efficient test.
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Part II: Hardness of Hypothesis Testing

Negatively-Spiked Wishart Model: β ∈ (−1,0), δ ∈ (0,1).
ñ Under Qn,

y1, . . . ,y (1−δ)n
(⊥)∼ N (0, In).

ñ Under Pn, choose x ∼ Unif({±1/
√

n}n). Then,

y1, . . . ,y (1−δ)n
(⊥)∼ N (0, In + βxx>).

We will be finished if we can show...

Lemma: Assuming the “low-degree polynomials conjecture”
on hardness of hypothesis testing, if β2(1− δ) < 1, then
there is no test f : Rn×(1−δ)n → {p,q} distinguishing Pn and
Qn and computable in time poly(n).
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The Low-Degree Polynomials Conjecture

Technique developed by [Hopkins, Steurer ’17; Hopkins ’18]
for predicting hardness of hypothesis testing, when Pn is a
structured distribution and Qn is highly symmetric.

Key Idea: Restrict testing algorithms to those that evaluate
low-degree (≤ D) polynomials on a sample.

Important Adjustment: To include spectral algorithms,
need to allow evaluation of λmax(M) for M having
constant-degree polynomials in the sample � via power
method enough to take D(n) =ω(log n).

15
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The Low-Degree Polynomials Conjecture

Define likelihood ratio

Ln(Y) :=
dPn

dQn
(Y).

Heuristic for best low-degree polynomial:
maximize EY∼Pnf (Y)
subject to f ∈ R[Y]≤D

EY∼Qnf (Y)2 = 1

 = ‖L≤D
n ‖L2(Qn),

where L≤D
n is projection of Ln in L2(Qn) to R[Y]≤D.

Conjecture: For “nice” Pn, Qn, and some D(n) =ω(log n), if
‖L≤D(n)

n ‖L2(Qn) = On→∞(1), then there is no test that
distinguishes Pn and Qn and runs in time poly(n).
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Part II: Hardness of Hypothesis Testing

Negatively-Spiked Wishart Model: β ∈ (−1,0), δ ∈ (0,1).
ñ Under Qn,

y1, . . . ,y (1−δ)n
(⊥)∼ N (0, In).

ñ Under Pn, choose x ∼ Unif({±1/
√

n}n). Then,

y1, . . . ,y (1−δ)n
(⊥)∼ N (0, In + βxx>).

Since Qn is i.i.d. gaussian, use Hermite polynomials, getting
expression in x i ∼ Unif({±1/

√
n}n) independent copies:

‖L≤D
n ‖2 = Ex1,x2

[
φ≤D/2

n (β2〈x1, x2〉2)
]
,

φ≤k
n = order k Taylor poly. of φn(t) = (1− t)−(1−δ)n/2
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Part II: Hardness of Hypothesis Testing

Want: When β2(1− δ) < 1 and D(n) ∼ (log n)1+α for some
small α > 0, then

‖L≤D
n ‖2 = Ex1,x2

[
φ≤D/2

n (β2〈x1, x2〉2)
]
= On→∞(1).

Heuristic Argument: (1) 〈x1, x2〉�N (0, 1
n) fast by CLT,

(2) φ≤k
n ≤ φn, (3) n→∞. Then,

lim
n→∞

‖L≤D(n)
n ‖2 Ü lim

n→∞
Eg∼N (0,1)

[(
1− β

2g2

n

)−(1−δ)n/2
︸ ︷︷ ︸

φn(β2g2/n)

]

= Eg∼N (0,1)
[
exp

(
β2(1− δ)g2/2

)]
,

the moment-generating function of a χ2 random variable;
finite exactly when β2(1− δ) < 1.
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Proof Strategy (One Last Reminder)

Argue by contradiction.

c(W) efficient certificate:

PrW
[
c(W) ≤ 2− ε

]
→ 1.

“Low-degree polynomials
conjecture” on hardness
of hypothesis testingw� w�

For hypothesis testing of
Pn, Qn distributions over
Rn×(1−δ)n, exists efficient
test f : Rn×(1−δ)n → {p,q}:

PrY∼Pn [f (Y) = p]→ 1,
PrY∼Qn [f (Y) = q]→ 1.

⇒⇐ For hypothesis testing of
Pn, Qn distributions over
Rn×(1−δ)n, there does not
exist any efficient test.
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Takeaways

On this problem:

ñ There is a gap between search and certification! As in
k-SAT, cuts in hypergraphs, cliques in random graphs,
and others. Q: What is responsible?

On general methodology:

ñ We can prove hardness of certification in random
problems using “planted” distributions. (We knew this.)

ñ But sometimes, the correct planted distribution is not
obvious. (We knew this, too—but the “quietness”
concept is hard to pin down.)

ñ The low-degree method can help us predict thresholds
for certification. Q: How to do it more systematically?
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Thank you!

(This talk is based on the paper “Computational Hardness
of Certifying Bounds on Constrained PCA Problems”

[arXiv:1902.07324].)
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