Hardness of Certification for Random Optimization Problems

Tim Kunisky

(joint work with Afonso Bandeira and Alex Wein)

Courant Institute of Mathematical Sciences

March 21, 2019

Our Question:

How tight can certifiable bounds on random optimization problems be while remaining computationally tractable?

Maximizing a gaussian quadratic form over the hypercube

Maximizing a gaussian quadratic form over the hypercube

1. Build random data:

W ∼ GOE*(n)* $(W \in \mathbb{R}^{n \times n}_{sym}, W_{ij} \stackrel{(\perp)}{\sim} \mathcal{N}(0, \frac{1+\delta_{ij}}{n})$ $\frac{P\cup i j}{n}$) for *i* $\leq j$)

Maximizing a gaussian quadratic form over the hypercube

1. Build random data:

$$
W \sim GOE(n)
$$

(meaning $W \in \mathbb{R}_{sym}^{n \times n}, W_{ij} \stackrel{(\perp)}{\sim} \mathcal{N}(0, \frac{1+\delta_{ij}}{n})$ for $i \leq j$)

2. Set an optimization task:

$$
\mathsf{OPT}(\boldsymbol{W}) = \left\{ \begin{array}{ll} \text{maximize} & f_{\boldsymbol{W}}(\boldsymbol{x}) := \boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x} \\ \text{subject to} & \boldsymbol{x} \in \{\pm 1/\sqrt{n}\}^n \end{array} \right\}
$$

Maximizing a gaussian quadratic form over the hypercube

1. Build random data:

$$
W \sim GOE(n)
$$

(meaning $W \in \mathbb{R}_{sym}^{n \times n}, W_{ij} \stackrel{(\perp)}{\sim} \mathcal{N}(0, \frac{1+\delta_{ij}}{n})$ for $i \leq j$)

2. Set an optimization task:

$$
\mathsf{OPT}(\mathbf{W}) = \left\{ \begin{array}{ll} \text{maximize} & f_{\mathbf{W}}(\mathbf{x}) := \mathbf{x}^\top \mathbf{W} \mathbf{x} \\ \text{subject to} & \mathbf{x} \in \{\pm 1/\sqrt{n}\}^n \end{array} \right\}
$$

Why this problem? $-f_w$ is the Hamiltonian and $-OPT(W)$ is the ground state energy of the Sherrington-Kirkpatrick spin glass model \rightsquigarrow well-studied in statistical physics.

Random Optimization—The True Value

Random Optimization—The True Value

Physicists in the '70s and '80s developed a deep theory of the structure of the optimization landscape of *f^W* . One of the results was:

$$
\lim_{n\to\infty} \mathbb{E}_{\mathbf{W}\sim\text{GOE}(n)} \text{OPT}(\mathbf{W}) =: 2P_* \approx 1.526^{(*)}
$$

 $(*)$ General gaussian process theory → strong concentration.

Random Optimization—The True Value

Physicists in the '70s and '80s developed a deep theory of the structure of the optimization landscape of *f^W* . One of the results was:

$$
\lim_{n\to\infty} \mathbb{E}_{\mathbf{W}\sim\mathsf{GOE}(n)} \mathsf{OPT}(\mathbf{W}) =: 2\mathsf{P}_* \approx 1.526^{(*)}
$$

 P_* is determined as the limit of the optimal values of a sequence of functional optimization problems over probability distributions on *[*0*,* 1*]*.

[Parisi '79-80; Guerra, Talagrand, Panchenko, et al. '00s]

 $(*)$ General gaussian process theory → strong concentration.

Question 1 (Search): How large can you make *f^W (x* alg*(W))* for an efficiently computable x^{alg} (*W*) $\in \{\pm 1/\sqrt{n}\}^{n}$?

Question 1 (Search): How large can you make *f^W (x* alg*(W))* for an efficiently computable x^{alg} (*W*) $\in \{\pm 1/\sqrt{n}\}^{n}$?

Answer: For any $\epsilon > 0$, there is $x_{\epsilon}^{\text{alg}}(\textit{W})$ computable in time $\mathsf{poly}_\epsilon(n)$ such that

$$
\text{Pr}_{W \sim GOE(n)} \bigg[f_W(\mathbf{x}_{\epsilon}^{\text{alg}}(\mathbf{W})) \geq \underbrace{2P_*}_{OPT(\mathbf{W})} - \epsilon \bigg] \rightarrow 1.
$$

[Montanari '18; Subag '18; Addario-Berry, Maillard '18]

Question 2 (Certification): How small can you make the typical value of *c(W)* for *c* that is efficiently computable and satisfies OPT $(A) \leq c(A)$ *for all* $A \in \mathbb{R}_{sym}^{n \times n}$ (a *certificate*)?

Question 2 (Certification): How small can you make the typical value of *c(W)* for *c* that is efficiently computable and satisfies OPT $(A) \leq c(A)$ *for all* $A \in \mathbb{R}_{sym}^{n \times n}$ (a *certificate*)?

Example: $c(A) := \lambda_{max}(A)$ works, and for any $\epsilon > 0$,

$$
Pr_{W \sim GOE(n)}[2 - \epsilon \leq \lambda_{max}(\mathbf{W}) \leq 2 + \epsilon] \rightarrow 1.
$$

Question 2 (Certification): How small can you make the typical value of *c(W)* for *c* that is efficiently computable and satisfies OPT $(A) \leq c(A)$ *for all* $A \in \mathbb{R}_{sym}^{n \times n}$ (a *certificate*)?

Example: $c(A) := \lambda_{max}(A)$ works, and for any $\epsilon > 0$,

$$
Pr_{W \sim GOE(n)}[2 - \epsilon \leq \lambda_{max}(\mathbf{W}) \leq 2 + \epsilon] \rightarrow 1.
$$

Answer: Assuming a complexity theory conjecture, for any $\epsilon > 0$, there is *no* certificate $c(A)$ that is computable in time poly*(n)* and that satisfies

$$
\mathsf{Pr}_{\mathsf{W}\sim\mathsf{GOE}(n)}[c(\mathsf{W})\leq 2-\epsilon]\rightarrow 1.
$$

[Bandeira, K., Wein '19]

To formulate relaxations, first *linearize*. Recall the *cut polytope*:

 $\mathscr{C}^n =$ convex hull of $\{xx^\top : x \in \{\pm 1/\}$ √ \overline{n} }^{*n*}} ⊂ $\mathbb{R}^{n \times n}_{sym}$

To formulate relaxations, first *linearize*. Recall the *cut polytope*:

 $\mathscr{C}^n =$ convex hull of $\{xx^\top : x \in \{\pm 1/\}$ √ \overline{n} }^{*n*}} ⊂ $\mathbb{R}^{n \times n}_{sym}$

Computing OPT $(A) \leftrightarrow$ linear optimization over \mathscr{C}^n :

$$
OPT(\mathbf{A}) = \left\{ \begin{array}{ll} \text{maximize} & \mathbf{x}^\top \mathbf{A} \mathbf{x} \\ \text{subject to} & \mathbf{x} \in \{\pm 1/\sqrt{n}\}^n \end{array} \right\}
$$

$$
= \left\{ \begin{array}{ll} \text{maximize} & \langle \mathbf{A}, \mathbf{X} \rangle \\ \text{subject to} & \mathbf{X} \in \mathcal{C}^n \end{array} \right\}.
$$

(Though it is convex, the intricate discrete geometry of \mathscr{C}^n makes this problem hard in general.)

Typically, certify by choosing $\mathcal{R}^n \supseteq \mathcal{C}^n$ and computing

$$
c(\mathbf{A}) = \left\{\begin{array}{ll}\text{maximize} & \langle \mathbf{A}, \mathbf{X} \rangle \\ \text{subject to} & \mathbf{X} \in \mathcal{R}^n\end{array}\right\} \ge \text{OPT}(\mathbf{A}).
$$

Typically, certify by choosing $\mathcal{R}^n \supseteq \mathcal{C}^n$ and computing

$$
c(\mathbf{A}) = \left\{\begin{array}{ll}\text{maximize} & \langle \mathbf{A}, \mathbf{X} \rangle \\ \text{subject to} & \mathbf{X} \in \mathcal{R}^n\end{array}\right\} \ge \text{OPT}(\mathbf{A}).
$$

Semidefinite programming examples:

Typically, certify by choosing $\mathcal{R}^n \supseteq \mathcal{C}^n$ and computing

$$
c(\mathbf{A}) = \left\{\begin{array}{ll}\text{maximize} & \langle \mathbf{A}, \mathbf{X} \rangle \\ \text{subject to} & \mathbf{X} \in \mathcal{R}^n\end{array}\right\} \ge \text{OPT}(\mathbf{A}).
$$

Semidefinite programming examples:

(∗*) [Montanari, Sen '15]*

Typically, certify by choosing $\mathcal{R}^n \supseteq \mathcal{C}^n$ and computing

$$
c(\mathbf{A}) = \left\{\begin{array}{ll}\text{maximize} & \langle \mathbf{A}, \mathbf{X} \rangle \\ \text{subject to} & \mathbf{X} \in \mathcal{R}^n\end{array}\right\} \ge \text{OPT}(\mathbf{A}).
$$

Semidefinite programming examples:

(∗*) [Montanari, Sen '15]*

Our Main Result (Again):

Assuming a complexity theory conjecture, for any $\epsilon > 0$, there is *no* certificate $c(A)$ that is computable in time poly*(n)* and that satisfies

 $Pr_{W \sim GOE(n)}[c(W) \leq 2 - \epsilon] \rightarrow 1.$

Argue by contradiction.

Argue by contradiction.

c(W) efficient certificate:

 $Pr_W[c(W) \leq 2 - \epsilon] \rightarrow 1.$

Argue by contradiction.

```
c(W) efficient certificate:
\Pr_{\mathbf{W}}[c(\mathbf{W}) \leq 2 - \epsilon] \rightarrow 1.\mathop{\text{ll}}
```
For hypothesis testing of P*n*, Q*ⁿ* distributions over X_n , exists an efficient test $f: X_n \to \{p,q\}$:

$$
Pr_{Y \sim P_n} [f(Y) = p] \to 1,
$$

$$
Pr_{Y \sim Q_n} [f(Y) = q] \to 1.
$$

Argue by contradiction.

c(W) efficient certificate:

$$
Pr_W[c(W) \leq 2 - \epsilon] \rightarrow 1.
$$

w

For hypothesis testing of P*n*, Q*ⁿ* distributions over X_n , exists an efficient test $f: X_n \to \{p, q\}$:

$$
Pr_{Y \sim P_n} [f(Y) = p] \to 1,
$$

$$
Pr_{Y \sim Q_n} [f(Y) = q] \to 1.
$$

"Low-degree polynomials conjecture" on hardness of hypothesis testing

Argue by contradiction.

c(W) efficient certificate:

$$
Pr_W[c(W) \leq 2 - \epsilon] \rightarrow 1.
$$

w

For hypothesis testing of P*n*, Q*ⁿ* distributions over X_n , exists an efficient test $f: X_n \to \{p, q\}$:

$$
Pr_{Y \sim P_n} [f(Y) = p] \rightarrow 1,
$$

$$
Pr_{Y \sim Q_n} [f(Y) = q] \rightarrow 1.
$$

"Low-degree polynomials conjecture" on hardness of hypothesis testing

 \downarrow

For hypothesis testing of P*n*, Q*ⁿ* distributions over X_n , there **does** not exist any efficient test.

Argue by contradiction.

c(W) efficient certificate:

$$
Pr_W[c(W) \leq 2 - \epsilon] \rightarrow 1.
$$

w

For hypothesis testing of P*n*, Q*ⁿ* distributions over X_n , exists an efficient test $f: X_n \to \{p, q\}$:

$$
Pr_{Y \sim P_n} [f(Y) = p] \rightarrow 1,
$$

$$
Pr_{Y \sim Q_n} [f(Y) = q] \rightarrow 1.
$$

"Low-degree polynomials conjecture" on hardness of hypothesis testing

w

⇒⇐ For hypothesis testing of P*n*, Q*ⁿ* distributions over X_n , there **does not exist** any efficient test.

Key Idea: Certify below $\lambda_{\text{max}}(\mathbf{W}) \rightsquigarrow$ distinguish uniform subspace from subspace with a hypercube vector nearby.

Key Idea: Certify below $\lambda_{\text{max}}(\mathbf{W}) \rightsquigarrow$ distinguish uniform subspace from subspace with a hypercube vector nearby.

Key Idea: Certify below $\lambda_{\text{max}}(\mathbf{W}) \rightsquigarrow$ distinguish uniform subspace from subspace with a hypercube vector nearby.

$W \sim GOE(n)$	$W' \sim GOE'(n)$
Law of top eigenspace: Replace with:	
$V \stackrel{(d)}{=} span(\underbrace{g_1, ..., g_{\delta n}}_{\mathbb{Q}_n})$	$V' = span(\underbrace{y_1, ..., y_{\delta n}}_{\mathbb{P}_n})$

If
$$
(y_1, ..., y_{\delta n}) \sim \mathbb{P}_n \Rightarrow \exists x \in \{\pm 1/\sqrt{n}\}^n
$$
 "close to" V', then
\n $c(W) \le 2 - \epsilon$
\n $c(W') \ge \left(2 - \frac{\epsilon}{2}\right) ||P_{V'}x||^2 - 2(1 - ||P_{V'}x||^2) \ge 2 - \frac{2\epsilon}{3}$,
\nso thresholding c distinguishes \mathbb{P}_n and $\mathbb{Q}_n = \mathcal{N}(\mathbf{0}, \mathbf{I}_n)^{\otimes \delta n}$.

Remaining: How to define $(\boldsymbol{y}_1, \ldots, \boldsymbol{y}_{\delta n}) \sim \mathbb{P}_n$ with:

- ► Hard to distinguish from $\mathbb{Q}_n = \mathcal{N}(\mathbf{0}, I_n)^{\otimes \delta n}$, and
- *i* with high probability there exists $\mathbf{x} \in \{\pm 1/\sqrt{n}\}^n$ such $\|P_{\text{span}(\boldsymbol{\gamma}_i)}\boldsymbol{x}\|^2 \geq 1 - \kappa$?

Remaining: How to define $(\boldsymbol{y}_1, \ldots, \boldsymbol{y}_{(1-\delta)n}) \sim \mathbb{P}_n$ with:

- \blacktriangleright Hard to distinguish from $\mathbb{Q}_n = \mathcal{N}(\mathbf{0}, \mathbf{I}_n)^{\otimes (1-\delta)n}$, and
- *i* with high probability there exists $\mathbf{x} \in \{\pm 1/\sqrt{n}\}^n$ such $\|P_{\text{span}(\boldsymbol{\gamma}_i)}\boldsymbol{x}\|^2 \leq \kappa$?

Remaining: How to define $(\boldsymbol{y}_1, \ldots, \boldsymbol{y}_{(1-\delta)n}) \sim \mathbb{P}_n$ with:

- \blacktriangleright Hard to distinguish from $\mathbb{Q}_n = \mathcal{N}(\mathbf{0}, \mathbf{I}_n)^{\otimes (1-\delta)n}$, and
- *i* with high probability there exists $\mathbf{x} \in \{\pm 1/\sqrt{n}\}^n$ such $\|P_{\text{span}(\boldsymbol{\gamma}_i)}\boldsymbol{x}\|^2 \leq \kappa$?

(Negatively-Spiked) Wishart Model: *β* ∈ *[*−1*,* ∞*)*.

^ñ Under Q*n*,

$$
\mathbf{y}_1,\ldots,\mathbf{y}_{(1-\delta)n}\stackrel{(\perp)}{\sim}\mathcal{N}(\mathbf{0},\mathbf{I}_n).
$$

^ñ Under P*n*, choose *x* ∼ Unif*(*{±1*/* √ *n*} *n)*. Then,

$$
\mathbf{y}_1,\ldots,\mathbf{y}_{(1-\delta)n} \stackrel{(\perp)}{\sim} \mathcal{N}(\mathbf{0},\mathbf{I}_n+\beta \mathbf{x} \mathbf{x}^\top).
$$

Remaining: How to define $(\boldsymbol{y}_1, \ldots, \boldsymbol{y}_{(1-\delta)n}) \sim \mathbb{P}_n$ with:

- \blacktriangleright Hard to distinguish from $\mathbb{Q}_n = \mathcal{N}(\mathbf{0}, \mathbf{I}_n)^{\otimes (1-\delta)n}$, and
- *i* with high probability there exists $\mathbf{x} \in \{\pm 1/\sqrt{n}\}^n$ such $\|P_{\text{span}(\boldsymbol{\gamma}_i)}\boldsymbol{x}\|^2 \leq \kappa$?

(Negatively-Spiked) Wishart Model: *β* ∈ *[*−1*,* ∞*)*.

^ñ Under Q*n*,

$$
\mathbf{y}_1,\ldots,\mathbf{y}_{(1-\delta)n}\stackrel{(\perp)}{\sim}\mathcal{N}(\mathbf{0},\mathbf{I}_n).
$$

^ñ Under P*n*, choose *x* ∼ Unif*(*{±1*/* √ *n*} *n)*. Then,

$$
\mathbf{y}_1,\ldots,\mathbf{y}_{(1-\delta)n} \stackrel{(\perp)}{\sim} \mathcal{N}(\mathbf{0},\mathbf{I}_n+\beta \mathbf{x} \mathbf{x}^\top).
$$

Lemma: For all $\kappa > 0$, there exists $\beta \in (-1, 0)$ such that $Pr_{(x; (\textbf{y}_1, ..., \textbf{y}_{(1-\delta)n})) \sim \mathbb{P}_n} \left[|| \textbf{P}_{\text{span}(\textbf{y}_i)} \textbf{x} ||^2 \leq \kappa \right] \to 1.$

Proof Strategy (Reminder)

Argue by contradiction.

c(W) efficient certificate:

$$
Pr_W[c(W) \leq 2 - \epsilon] \rightarrow 1.
$$

w

For hypothesis testing of P*n*, Q*ⁿ* distributions over R*n*×*(*1−*δ)ⁿ* , exists efficient test $f : \mathbb{R}^{n \times (1-\delta)n} \rightarrow \{p, q\}$:

$$
Pr_{Y \sim P_n} [f(Y) = p] \rightarrow 1,
$$

$$
Pr_{Y \sim Q_n} [f(Y) = q] \rightarrow 1.
$$

"Low-degree polynomials conjecture" on hardness of hypothesis testing

w

⇒⇐ For hypothesis testing of P*n*, Q*ⁿ* distributions over R*n*×*(*1−*δ)ⁿ* , there does not exist any efficient test.

Negatively-Spiked Wishart Model: *β* ∈ *(*−1*,* 0*)*, *δ* ∈ *(*0*,* 1*)*.

 \blacktriangleright Under \mathbb{O}_n .

$$
\boldsymbol{y}_1,\ldots,\boldsymbol{y}_{(1-\delta)n} \stackrel{(\perp)}{\sim} \mathcal{N}(\boldsymbol{0},\boldsymbol{I}_n).
$$

^ñ Under P*n*, choose *x* ∼ Unif*(*{±1*/* √ *n*} *n)*. Then,

$$
\boldsymbol{y}_1,\ldots,\boldsymbol{y}_{(1-\delta)n} \stackrel{(\perp)}{\sim} \mathcal{N}(\boldsymbol{0},\boldsymbol{I}_n+\boldsymbol{\beta} \boldsymbol{x} \boldsymbol{x}^\top).
$$

Negatively-Spiked Wishart Model: *β* ∈ *(*−1*,* 0*)*, *δ* ∈ *(*0*,* 1*)*.

^ñ Under Q*n*,

$$
\boldsymbol{y}_1,\ldots,\boldsymbol{y}_{(1-\delta)n} \stackrel{(\perp)}{\sim} \mathcal{N}(\boldsymbol{0},\boldsymbol{I}_n).
$$

^ñ Under P*n*, choose *x* ∼ Unif*(*{±1*/* √ *n*} *n)*. Then,

$$
\boldsymbol{y}_1,\ldots,\boldsymbol{y}_{(1-\delta)n} \stackrel{(\perp)}{\sim} \mathcal{N}(\mathbf{0},\boldsymbol{I}_n+\boldsymbol{\beta} \boldsymbol{x} \boldsymbol{x}^\top).
$$

We will be finished if we can show...

Lemma: Assuming the "low-degree polynomials conjecture" on hardness of hypothesis testing, if *β* 2 *(*1 − *δ) <* 1, then there is no test $f : \mathbb{R}^{n \times (1-\delta)n} \to \{p,q\}$ distinguishing \mathbb{P}_n and Q*ⁿ* and computable in time poly*(n)*.

Technique developed by *[Hopkins, Steurer '17; Hopkins '18]* for predicting hardness of hypothesis testing, when P*ⁿ* is a structured distribution and Q*ⁿ* is highly symmetric.

Key Idea: Restrict testing algorithms to those that evaluate low-degree $(\leq D)$ polynomials on a sample.

Technique developed by *[Hopkins, Steurer '17; Hopkins '18]* for predicting hardness of hypothesis testing, when P*ⁿ* is a structured distribution and Q*ⁿ* is highly symmetric.

Key Idea: Restrict testing algorithms to those that evaluate low-degree *(*≤ *D)* polynomials on a sample.

Important Adjustment: To include *spectral algorithms*, need to allow evaluation of $\lambda_{\text{max}}(M)$ for M having constant-degree polynomials in the sample \rightsquigarrow via power method enough to take $D(n) = \omega(\log n)$.

Define likelihood ratio

$$
L_n(\mathbf{Y}) := \frac{d\mathbb{P}_n}{d\mathbb{Q}_n}(\mathbf{Y}).
$$

Define likelihood ratio

$$
L_n(\mathbf{Y}) := \frac{d\mathbb{P}_n}{d\mathbb{Q}_n}(\mathbf{Y}).
$$

Heuristic for best low-degree polynomial:

$$
\left\{\begin{array}{c}\text{maximize} & \mathbb{E}_{\mathbf{Y}\sim\mathbb{P}_n}f(\mathbf{Y})\\ \text{subject to} & f \in \mathbb{R}[\mathbf{Y}]_{\leq D} \\ & \mathbb{E}_{\mathbf{Y}\sim\mathbb{Q}_n}f(\mathbf{Y})^2 = 1\end{array}\right\} = \|L_n^{\leq D}\|_{L^2(\mathbb{Q}_n)},
$$

where $L_n^{\leq D}$ is projection of L_n in $L^2(\mathbb{Q}_n)$ to $\mathbb{R}[\![\boldsymbol{Y}]\!]_{\leq D}.$

Define likelihood ratio

$$
L_n(\mathbf{Y}) := \frac{d\mathbb{P}_n}{d\mathbb{Q}_n}(\mathbf{Y}).
$$

Heuristic for best low-degree polynomial:

$$
\left\{\begin{array}{c}\text{maximize} & \mathbb{E}_{\mathbf{Y}\sim\mathbb{P}_n}f(\mathbf{Y})\\ \text{subject to} & f \in \mathbb{R}[\mathbf{Y}]_{\leq D} \\ & \mathbb{E}_{\mathbf{Y}\sim\mathbb{Q}_n}f(\mathbf{Y})^2 = 1\end{array}\right\} = \|L_n^{\leq D}\|_{L^2(\mathbb{Q}_n)},
$$

where $L_n^{\leq D}$ is projection of L_n in $L^2(\mathbb{Q}_n)$ to $\mathbb{R}[\![\boldsymbol{Y}]\!]_{\leq D}.$

Conjecture: For "nice" \mathbb{P}_n , \mathbb{Q}_n , and some $D(n) = \omega(\log n)$, if $||L_n^{\leq D(n)}||_{L^2(\mathbb{Q}_n)} = O_{n\to\infty}(1)$, then there is no test that distinguishes \mathbb{P}_n and \mathbb{Q}_n and runs in time poly (n) .

Negatively-Spiked Wishart Model: *β* ∈ *(*−1*,* 0*)*, *δ* ∈ *(*0*,* 1*)*.

^ñ Under Q*n*,

$$
\boldsymbol{y}_1,\ldots,\boldsymbol{y}_{(1-\delta)n} \stackrel{(\perp)}{\sim} \mathcal{N}(\boldsymbol{0},\boldsymbol{I}_n).
$$

^ñ Under P*n*, choose *x* ∼ Unif*(*{±1*/* √ *n*} *n)*. Then,

$$
\mathbf{y}_1,\ldots,\mathbf{y}_{(1-\delta)n} \stackrel{(\perp)}{\sim} \mathcal{N}(\mathbf{0},\mathbf{I}_n+\beta \mathbf{x} \mathbf{x}^\top).
$$

Negatively-Spiked Wishart Model: *β* ∈ *(*−1*,* 0*)*, *δ* ∈ *(*0*,* 1*)*.

^ñ Under Q*n*,

$$
\mathbf{y}_1,\ldots,\mathbf{y}_{(1-\delta)n}\stackrel{(\perp)}{\sim}\mathcal{N}(\mathbf{0},\mathbf{I}_n).
$$

^ñ Under P*n*, choose *x* ∼ Unif*(*{±1*/* √ *n*} *n)*. Then,

$$
\boldsymbol{y}_1,\ldots,\boldsymbol{y}_{(1-\delta)n} \stackrel{(\perp)}{\sim} \mathcal{N}(\mathbf{0},\boldsymbol{I}_n+\boldsymbol{\beta} \boldsymbol{x} \boldsymbol{x}^\top).
$$

Since Q*ⁿ* is i.i.d. gaussian, use Hermite polynomials, getting expression in *x ⁱ* ∼ Unif*(*{±1*/* √ *n*} *n)* independent copies:

$$
\begin{aligned} ||L_n^{\leq D}||^2 &= \mathbb{E}_{x^1, x^2} \left[\phi_n^{\leq D/2} (\beta^2 \langle x^1, x^2 \rangle^2) \right], \\ \phi_n^{\leq k} &= \text{order } k \text{ Taylor poly. of } \phi_n(t) = (1 - t)^{-(1 - \delta)n/2} \end{aligned}
$$

 $\mathsf{Want:} \text{ When } \beta^2(1-\delta) < 1 \text{ and } D(n) \sim (\log n)^{1+\alpha} \text{ for some } \beta^2(1-\delta) < 1 \text{ and } D(n) \sim \beta^2(1-\delta)$ small $\alpha > 0$, then

$$
||L_n^{\leq D}||^2 = \mathbb{E}_{\mathbf{x}^1, \mathbf{x}^2} \left[\phi_n^{\leq D/2} (\beta^2 \langle \mathbf{x}^1, \mathbf{x}^2 \rangle^2) \right] = O_{n \to \infty}(1).
$$

 $\mathsf{Want:} \text{ When } \beta^2(1-\delta) < 1 \text{ and } D(n) \sim (\log n)^{1+\alpha} \text{ for some } \beta^2(1-\delta) < 1 \text{ and } D(n) \sim \beta^2(1-\delta)$ small $\alpha > 0$, then

$$
||L_n^{\leq D}||^2 = \mathbb{E}_{\mathbf{x}^1,\mathbf{x}^2}\left[\phi_n^{\leq D/2}(\beta^2\langle \mathbf{x}^1,\mathbf{x}^2\rangle^2)\right] = O_{n\to\infty}(1).
$$

Heuristic Argument: (1) $\langle x^1, x^2 \rangle \rightsquigarrow \mathcal{N}(0, \frac{1}{n})$ $\frac{1}{n}$) fast by CLT, (2) $\phi_n^{\leq k} \leq \phi_n$, (3) $n \to \infty$.

 $\mathsf{Want:} \text{ When } \beta^2(1-\delta) < 1 \text{ and } D(n) \sim (\log n)^{1+\alpha} \text{ for some } \beta^2(1-\delta) < 1 \text{ and } D(n) \sim \beta^2(1-\delta)$ small $\alpha > 0$, then

$$
||L_n^{\leq D}||^2 = \mathbb{E}_{\mathbf{x}^1,\mathbf{x}^2}\left[\phi_n^{\leq D/2}(\beta^2\langle \mathbf{x}^1,\mathbf{x}^2\rangle^2)\right] = O_{n\to\infty}(1).
$$

Heuristic Argument: (1) $\langle x^1, x^2 \rangle \rightsquigarrow \mathcal{N}(0, \frac{1}{n})$ $\frac{1}{n}$) fast by CLT, (2) $\phi_n^{\leq k} \leq \phi_n$, (3) $n \to \infty$. Then,

$$
\lim_{n \to \infty} ||L_n^{\leq D(n)}||^2 \leq \lim_{n \to \infty} \mathbb{E}_{g \sim \mathcal{N}(0,1)} \left[\underbrace{\left(1 - \frac{\beta^2 g^2}{n}\right)^{-(1-\delta)n/2}}_{\phi_n(\beta^2 g^2/n)} \right]
$$
\n
$$
= \mathbb{E}_{g \sim \mathcal{N}(0,1)} \left[\exp \left(\beta^2 (1-\delta) g^2/2 \right) \right],
$$

the moment-generating function of a χ^2 random variable; finite exactly when $\beta^2(1-\delta) < 1$.

Proof Strategy (One Last Reminder)

Argue by contradiction.

c(W) efficient certificate:

$$
Pr_W[c(W) \leq 2 - \epsilon] \rightarrow 1.
$$

w

For hypothesis testing of P*n*, Q*ⁿ* distributions over R*n*×*(*1−*δ)ⁿ* , exists efficient test $f : \mathbb{R}^{n \times (1-\delta)n} \rightarrow \{p, q\}$:

$$
Pr_{Y \sim P_n} [f(Y) = p] \rightarrow 1,
$$

$$
Pr_{Y \sim Q_n} [f(Y) = q] \rightarrow 1.
$$

"Low-degree polynomials conjecture" on hardness of hypothesis testing

w

⇒⇐ For hypothesis testing of P*n*, Q*ⁿ* distributions over R*n*×*(*1−*δ)ⁿ* , there does not exist any efficient test.

Takeaways

On this problem:

► There is a gap between search and certification! As in *k*-SAT, cuts in hypergraphs, cliques in random graphs, and others. Q: What is responsible?

Takeaways

On this problem:

► There is a gap between search and certification! As in *k*-SAT, cuts in hypergraphs, cliques in random graphs, and others. Q: What is responsible?

On general methodology:

- **► We can prove hardness of certification in random** problems using "planted" distributions. (We knew this.)
- **►** But sometimes, the correct planted distribution is not obvious. (We knew this, too—but the "quietness" concept is hard to pin down.)
- **►** The low-degree method can help us predict thresholds for certification. Q: How to do it more systematically?

Thank you!

(This talk is based on the paper "Computational Hardness of Certifying Bounds on Constrained PCA Problems" *[arXiv:1902.07324]*.)