Sum-of-Squares Optimization & Sparsity Structure of Equiangular Tight Frames

Tim Kunisky

(joint work with Afonso Bandeira)

Courant Institute of Mathematical Sciences

SampTA 2019 : July 9, 2019

The Two Topics:

The Basic Connection:

ETFs are feasible points for SOS relaxations of an optimization problem.

The Basic Connection:

ETFs are feasible points for SOS relaxations of an optimization problem.

Therefore, ETFs have to satisfy some (new!) inequalities.

Part 1: Motivation

A Gramian description of the degree 4 generalized elliptope (2018)

Initial Motivation: Relaxing MaxCut

Are relaxations good for problems like this?

 $M(A) := \max_{\mathbf{x} \in \{\pm 1\}^N} \mathbf{x}^\top A \mathbf{x}$

Initial Motivation: Relaxing MaxCut

Are relaxations good for problems like this?

$$
M(\boldsymbol{A}) := \max_{\boldsymbol{x} \in \{\pm 1\}^N} \boldsymbol{x}^\top \boldsymbol{A} \boldsymbol{x}
$$

This is the usual one:

$$
M(\boldsymbol{A}) = \max_{\boldsymbol{x} \in \{\pm 1\}^N} \langle \boldsymbol{A}, \boldsymbol{x} \boldsymbol{x}^\top \rangle \leq \max_{\substack{\boldsymbol{X} \succeq \boldsymbol{0} \\ X_{ii} = 1}} \langle \boldsymbol{A}, \boldsymbol{X} \rangle.
$$

We call this a relaxation because it is based on an inclusion between the *cut polytope* and the *elliptope*,

$$
\mathscr{C}^N := \text{conv}(\{\mathbf{x}\mathbf{x}^\top : \mathbf{x} \in \{\pm 1\}^N\})
$$

$$
\bigcap_{\{\mathbf{X} \in \mathbb{R}_{\text{sym}}^{N \times N} : \mathbf{X} \succeq \mathbf{0}, \mathbf{X}_{ii} = 1\} =: \mathscr{E}_2^N
$$

.

Sum-of-Squares: A Recipe for Improvement

To get a better algorithm, find a tighter inclusion!

Look at $Y = (x \otimes x)(x \otimes x)^{\top} \in \mathbb{R}_{sym}^{N^2 \times N^2}$, and write down linear and psd inequalities it must satisfy for $\pmb{x} \in \{\pm 1\}^{\textsf{N}}$:

- **Positivity:** $Y \geq 0$.
- \blacktriangleright Normalization: $Y_{(ii)(ii)} = 1$.
- \blacktriangleright " $x_i^2 x_j x_k = x_j x_k$ ": $Y_{(ii)(jk)} = Y_{(i'i')(jk)}$.
- \blacktriangleright Symmetry: *Y(ij)(kℓ)* = *Y(π(i)π(j))(π(k)π(ℓ))*.

Sum-of-Squares: A Recipe for Improvement

To get a better algorithm, find a tighter inclusion!

Look at $Y = (x \otimes x)(x \otimes x)^{\top} \in \mathbb{R}_{sym}^{N^2 \times N^2}$, and write down linear and psd inequalities it must satisfy for $\pmb{x} \in \{\pm 1\}^{\textsf{N}}$:

- \blacktriangleright Positivity: $Y \geq 0$.
- \blacktriangleright Normalization: $Y_{(ii)(ii)} = 1$.
- \blacktriangleright " $x_i^2 x_j x_k = x_j x_k$ ": $Y_{(ii)(jk)} = Y_{(i'i')(jk)}$.
- \blacktriangleright Symmetry: *Y(ij)(kℓ)* = *Y(π(i)π(j))(π(k)π(ℓ))*.

Let \mathscr{E}_4^N be the $\mathsf{X}\in\mathbb{R}^{N\times N}_{\mathsf{sym}}$ that are *extendable* to such Y (occurring as $X_{ii} = Y_{(11)(ii)}$, corresponding to xx^{\top}).

Then, $\mathscr{C}^N \subseteq \mathscr{E}_4^N \subseteq \mathscr{E}_2^N$.

Vague Problem:

"Understand how to build" an extension of a given $\pmb{X}\in \mathscr{E}_2^\mathsf{N}$ $\mathbb{Z}_2^{\triangleright N}\setminus\mathscr{C}^N$ to degree 4.

Specific Problem:

Explicitly construct some members of $\mathscr{E}_4^{\mathsf{N}}\setminus \mathscr{C}^{\mathsf{N}}$ and their extensions.

The Only Previous Answer

Laurent $(2003)^1$ showed (something stronger than) that, when $N \geq 4$, then

$$
\begin{bmatrix}\n1 & -\frac{1}{N-1} & \cdots & -\frac{1}{N-1} \\
-\frac{1}{N-1} & 1 & \cdots & -\frac{1}{N-1} \\
\vdots & \vdots & \ddots & \vdots \\
-\frac{1}{N-1} & -\frac{1}{N-1} & \cdots & 1\n\end{bmatrix} \in \mathscr{E}_4^N \setminus \mathscr{C}^N.
$$

¹ Slightly previous work of Grigoriev (2001) and slightly later work of Schoenebeck (2008) did very similar things.

The Only Previous Answer

Laurent $(2003)^1$ showed (something stronger than) that, when $N \geq 4$, then

$$
\left[\begin{array}{cccc} 1 & -\frac{1}{N-1} & \cdots & -\frac{1}{N-1} \\ -\frac{1}{N-1} & 1 & \cdots & -\frac{1}{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{N-1} & -\frac{1}{N-1} & \cdots & 1 \end{array}\right] \in \mathscr{E}_4^N \setminus \mathscr{C}^N.
$$

This is the Gram matrix of the simplex ETF!

So, what about other (real) ETFs?

¹ Slightly previous work of Grigoriev (2001) and slightly later work of Schoenebeck (2008) did very similar things.

ETFs: A Very Brief Review

An *equiangular tight frame (ETF)* is a set of *N* vectors v_1, \ldots, v_N in \mathbb{R}^r or \mathbb{C}^r , such that:

- \blacktriangleright They are unit norm: $||\mathbf{v}_i||_2 = 1$.
- *►* They are equiangular: $|\langle v_i, v_j \rangle| = \mu$ for all *i* ≠ *j*.
- ► They form a tight frame: $\sum_{i=1}^{N}$ $\bm{v}_i \bm{v}_i^* = \frac{N}{r}$ $\frac{r}{r}$ *I_r*.

Most important high-level intuition: broadly speaking, ETFs are rigid, combinatorial, rare objects.

Degree 4 Extensibility of ETF Gram Matrices

Theorem. (Bandeira, K. '18) The Gram matrix of an ETF of *N* vectors in \mathbb{R}^r is degree 4 extensible if and only if

$$
N<\frac{r(r+1)}{2}.
$$

If so,

$$
Y_{(ij)(k\ell)} := \frac{\frac{r(r-1)}{2}}{\frac{r(r+1)}{2} - N} (X_{ij}X_{k\ell} + X_{ik}X_{j\ell} + X_{i\ell}X_{jk}) - \frac{r^2(1 - \frac{1}{N})}{\frac{r(r+1)}{2} - N} \sum_{m=1}^{N} X_{im}X_{jm}X_{km}X_{\ell m}
$$

gives a degree 4 extension.

Part 2: Applications to ETFs

Sum-of-squares optimization and the sparsity structure of equiangular tight frames (2019)

Digging Into the Degree 4 Witness

The *Y* from our theorem has two eigenspaces:

$$
Y = \text{vec}(X)\text{vec}(X)^{\top} + \lambda P,
$$

for *P* an orthogonal projector.

The theorem's proof includes a formula for $P = P_X \geq 0$, whose quadratic form we can test to get inequalities on *X*:

$$
\langle A, P_X[A] \rangle \geq 0.
$$

Where Does *P* Project To?

Definition. For *K* ⊂ \mathbb{R}^d a closed convex set and *x* ∈ *K*,

 $\text{pert}_K(\mathbf{x}) := \{ \mathbf{y} : \mathbf{x} \pm t\mathbf{y} \in K \text{ for all } t \text{ suff. small} \}.$

(Or, the affine hull of the smallest face containing *x*.)

 T hen, \bm{P} projects to vec(pert $_{\mathscr{E}_2^N}(\bm{X})$).

Where Does *P* Project To?

Definition. For $K \subset \mathbb{R}^d$ a closed convex set and $\mathbf{x} \in K$.

 $\text{pert}_K(\mathbf{x}) := \{ \mathbf{y} : \mathbf{x} \pm t\mathbf{y} \in K \text{ for all } t \text{ suff. small} \}.$

(Or, the affine hull of the smallest face containing *x*.)

 T hen, \bm{P} projects to vec(pert $_{\mathscr{E}_2^N}(\bm{X})$).

Remark. The same method gives a formula for *P* when *X* is the Gram matrix of a complex ETF, too, if we use

$$
\widetilde{\mathcal{E}}_2^N := \{ \boldsymbol{X} \in \mathbb{C}_{\text{herm}}^{N \times N} : \boldsymbol{X} \succeq \boldsymbol{0}, X_{ii} = 1 \}.
$$

Everything from now on applies to that version.

The Master Matrix Inequality

 $P \geq 0$ turns out to be equivalent to this.

Corollary. Let $v_1, \ldots, v_N \in \mathbb{C}^r$ for $r > 1$ form an ETF. Let $R \in \mathbb{R}_{sym}^{r \times r}$ be defined by

$$
R_{k\ell} = \sum_{i=1}^N |(\mathbf{v}_i)_k|^2 |(\mathbf{v}_i)_\ell|^2.
$$

Then,

$$
R \leq \frac{1 - \frac{1}{r}}{1 - \frac{1}{N}} I_r + \frac{\frac{N}{r} - 1}{r(1 - \frac{1}{N})} 11^\top.
$$

For *V* the ETF's "short fat matrix," the entries of *R* measure how much magnitudes of *V*'s rows correlate.

Controlling Sparsity

Test the diagonal entries of the master matrix inequality.

Corollary. Let $V \in \mathbb{C}^{r \times N}$ be the short fat matrix of an ETF for $r > 1$. Let w be in the row space of V. Then,

$$
\|\mathbf{w}\|_0 \geq \frac{N}{1 + \frac{(r-1)^2}{N-1}}.
$$

Proof. The master inequality gives $\|\boldsymbol{w}\|_4^4 \le C \|\boldsymbol{w}\|_2^4$. By Cauchy-Schwarz, $||w||_0 \ge ||w||_2^4 / ||w||_4^4 ≥ C$.

We can also control sparsity of vectors perpendicular to the row space.

Corollary. Let $V \in \mathbb{C}^{r \times N}$ be the short fat matrix of an ETF for $r > 1$. Then,

$$
\text{spark}(\boldsymbol{V}) := \min_{\substack{\boldsymbol{W} \in \mathbb{C}^N \setminus \{0\} \\ \boldsymbol{V} \boldsymbol{w} = \boldsymbol{0}}} ||\boldsymbol{w}||_0 \ge \frac{N}{1 + \frac{(N-r-1)^2}{N-1}}.
$$

Proof. Previous slide on Naimark complement of *V*.

Controlling Sparsity Pattern Overlap

Now, test the 2×2 minors of the master matrix inequality.

Corollary. Let $V \in \mathbb{C}^{r \times N}$ be the short fat matrix of an ETF for $r > 1$. Define

$$
D := \frac{N}{r^2} \left(1 + \frac{(r-1)^2}{N-1} \right), \ \ E := \frac{\frac{N}{r} - 1}{r(1 - \frac{1}{N})}.
$$

Then, for any two distinct rows w, w' of V,

$$
\bigg|\sum_{i=1}^N |w_i|^2 |w'_i|^2 - E\bigg|^2 \leq (D - ||w||_4^4) (D - ||w'||_4^4).
$$

Proof. Determinant monotonicity on 2×2 minors.

Measuring Tightness

When do we know how good these inequalities are?

Proposition. For any *Steiner ETF*² built from a *finite projective plane*, we have equality in the master matrix inequality:

$$
R = \frac{1 - \frac{1}{r}}{1 - \frac{1}{N}} I_r + \frac{\frac{N}{r} - 1}{r(1 - \frac{1}{N})} 11^\top.
$$

More generally, the dimension of the "tight subspace" for a Steiner ETF is the number of Steiner system "points," while *r* is the number of "lines."

²An ETF built from a combinatorial design generalizing the incidence structure of a finite geometry.

My Favorite ETF Open Problem (I'm Biased)

For $\pmb{X} \in \mathbb{R}^{N \times N}_{\mathsf{sym}}$ the Gram matrix of a real ETF, let

$$
d(\mathbf{X}) = \max\{d \in 2\mathbb{N} : \mathbf{X} \in \mathscr{E}_d^N\}.
$$

What does this number depend on?

Only *(N, r)*?

Can higher SOS constructions teach us more about sparsity?

Or about other structure in ETFs?

Thank you!