Sum-of-Squares Optimization & Sparsity Structure of Equiangular Tight Frames

Tim Kunisky

(joint work with Afonso Bandeira)

Courant Institute of Mathematical Sciences

SampTA 2019 : July 9, 2019

The Two Topics:

Sum-of-Squares Relaxations (SOS)	Equiangular Tight Frames (ETFs)
continuous optimization	discrete geometry
semidefinite programming	harmonic analysis
algebraic proofs	combinatorial designs

The Basic Connection:

ETFs are feasible points for SOS relaxations of an optimization problem.

The Basic Connection:

ETFs are feasible points for SOS relaxations of an optimization problem.

Therefore, ETFs have to satisfy some (new!) inequalities.

Part 1: Motivation

A Gramian description of the degree 4 generalized elliptope (2018)

Initial Motivation: Relaxing MaxCut

Are relaxations good for problems like this?

 $\mathsf{M}(\boldsymbol{A}) \mathrel{\mathop:}= \max_{\boldsymbol{x} \in \{\pm 1\}^N} \boldsymbol{x}^\top \boldsymbol{A} \boldsymbol{x}$

Initial Motivation: Relaxing MaxCut

Are relaxations good for problems like this?

 $\mathsf{M}(\boldsymbol{A}) \mathrel{\mathop:}= \max_{\boldsymbol{x} \in \{\pm 1\}^N} \boldsymbol{x}^\top \boldsymbol{A} \boldsymbol{x}$

This is the usual one:

$$\mathsf{M}(\boldsymbol{A}) = \max_{\boldsymbol{x} \in \{\pm 1\}^N} \langle \boldsymbol{A}, \boldsymbol{x} \boldsymbol{x}^\top \rangle \leq \max_{\substack{\boldsymbol{X} \succeq \mathbf{0} \\ X_{ij} = 1}} \langle \boldsymbol{A}, \boldsymbol{X} \rangle.$$

We call this a relaxation because it is based on an inclusion between the *cut polytope* and the *elliptope*,

$$\mathscr{C}^{N} := \operatorname{conv}(\{\boldsymbol{x}\boldsymbol{x}^{\top} : \boldsymbol{x} \in \{\pm 1\}^{N}\})$$
$$\bigcap_{\{\boldsymbol{X} \in \mathbb{R}_{\operatorname{sym}}^{N \times N} : \boldsymbol{X} \succeq \boldsymbol{0}, X_{ii} = 1\} =: \mathscr{E}_{2}^{N}}$$

Sum-of-Squares: A Recipe for Improvement

To get a better algorithm, find a tighter inclusion!

Look at $\mathbf{Y} = (\mathbf{x} \otimes \mathbf{x})(\mathbf{x} \otimes \mathbf{x})^{\top} \in \mathbb{R}_{sym}^{N^2 \times N^2}$, and write down linear and psd inequalities it must satisfy for $\mathbf{x} \in \{\pm 1\}^N$:

- Positivity: $Y \geq 0$.
- Normalization: $Y_{(ii)(jj)} = 1$.
- " $x_i^2 x_j x_k = x_j x_k$ ": $Y_{(ii)(jk)} = Y_{(i'i')(jk)}$.
- Symmetry: $Y_{(ij)(k\ell)} = Y_{(\pi(i)\pi(j))(\pi(k)\pi(\ell))}$.

Sum-of-Squares: A Recipe for Improvement

To get a better algorithm, find a tighter inclusion!

Look at $\mathbf{Y} = (\mathbf{x} \otimes \mathbf{x})(\mathbf{x} \otimes \mathbf{x})^{\top} \in \mathbb{R}_{sym}^{N^2 \times N^2}$, and write down linear and psd inequalities it must satisfy for $\mathbf{x} \in \{\pm 1\}^N$:

- Positivity: $Y \succeq 0$.
- Normalization: $Y_{(ii)(jj)} = 1$.
- " $x_i^2 x_j x_k = x_j x_k$ ": $Y_{(ii)(jk)} = Y_{(i'i')(jk)}$.
- Symmetry: $Y_{(ij)(k\ell)} = Y_{(\pi(i)\pi(j))(\pi(k)\pi(\ell))}$.

Let \mathscr{E}_4^N be the $X \in \mathbb{R}_{sym}^{N \times N}$ that are *extendable* to such Y (occurring as $X_{ij} = Y_{(11)(ij)}$, corresponding to xx^{\top}).

Then, $\mathscr{C}^N \subseteq \mathscr{E}_4^N \subseteq \mathscr{E}_2^N$.

Vague Problem:

"Understand how to build" an extension of a given $X \in \mathscr{E}_2^N \setminus \mathscr{C}^N$ to degree 4.

Specific Problem:

Explicitly construct some members of $\mathscr{E}_4^N \setminus \mathscr{C}^N$ and their extensions.

The Only Previous Answer

Laurent $(2003)^1$ showed (something stronger than) that, when $N \ge 4$, then

$$\begin{bmatrix} 1 & -\frac{1}{N-1} & \cdots & -\frac{1}{N-1} \\ -\frac{1}{N-1} & 1 & \cdots & -\frac{1}{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{N-1} & -\frac{1}{N-1} & \cdots & 1 \end{bmatrix} \in \mathscr{E}_4^N \setminus \mathscr{C}^N.$$

¹Slightly previous work of Grigoriev (2001) and slightly later work of Schoenebeck (2008) did very similar things.

The Only Previous Answer

Laurent $(2003)^1$ showed (something stronger than) that, when $N \ge 4$, then

$$\begin{bmatrix} 1 & -\frac{1}{N-1} & \cdots & -\frac{1}{N-1} \\ -\frac{1}{N-1} & 1 & \cdots & -\frac{1}{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{N-1} & -\frac{1}{N-1} & \cdots & 1 \end{bmatrix} \in \mathscr{E}_{4}^{N} \setminus \mathscr{C}^{N}.$$

This is the Gram matrix of the simplex ETF!

So, what about other (real) ETFs?

¹Slightly previous work of Grigoriev (2001) and slightly later work of Schoenebeck (2008) did very similar things.

ETFs: A Very Brief Review

An *equiangular tight frame (ETF)* is a set of *N* vectors v_1, \ldots, v_N in \mathbb{R}^r or \mathbb{C}^r , such that:

- They are unit norm: $\|\boldsymbol{v}_i\|_2 = 1$.
- They are equiangular: $|\langle \mathbf{v}_i, \mathbf{v}_j \rangle| = \mu$ for all $i \neq j$.
- They form a tight frame: $\sum_{i=1}^{N} v_i v_i^* = \frac{N}{r} I_r$.

Most important high-level intuition: broadly speaking, ETFs are **rigid**, **combinatorial**, **rare** objects.

Degree 4 Extensibility of ETF Gram Matrices

Theorem. (Bandeira, K. '18) The Gram matrix of an ETF of *N* vectors in \mathbb{R}^r is degree 4 extensible if and only if

$$N<\frac{r(r+1)}{2}.$$

lf so,

$$Y_{(ij)(k\ell)} := \frac{\frac{r(r-1)}{2}}{\frac{r(r+1)}{2} - N} (X_{ij}X_{k\ell} + X_{ik}X_{j\ell} + X_{i\ell}X_{jk}) \\ - \frac{r^2(1-\frac{1}{N})}{\frac{r(r+1)}{2} - N} \sum_{m=1}^N X_{im}X_{jm}X_{km}X_{\ell m}$$

gives a degree 4 extension.

Part 2: Applications to ETFs

Sum-of-squares optimization and the sparsity structure of equiangular tight frames (2019)

Digging Into the Degree 4 Witness

The Y from our theorem has two eigenspaces:

$$\boldsymbol{Y} = \operatorname{vec}(\boldsymbol{X})\operatorname{vec}(\boldsymbol{X})^{\top} + \lambda \boldsymbol{P},$$

for **P** an orthogonal projector.

The theorem's proof includes a formula for $P = P_X \ge 0$, whose quadratic form we can test to get inequalities on X:

$$\langle \boldsymbol{A}, \boldsymbol{P}_{\boldsymbol{X}}[\boldsymbol{A}] \rangle \geq 0.$$

Where Does **P** Project To?

Definition. For $K \subset \mathbb{R}^d$ a closed convex set and $x \in K$,

 $pert_{\mathcal{K}}(\mathbf{x}) := \{\mathbf{y} : \mathbf{x} \pm t\mathbf{y} \in \mathcal{K} \text{ for all } t \text{ suff. small} \}.$

(Or, the affine hull of the smallest face containing x.)

Then, **P** projects to vec(pert_{\mathcal{E}_2^N}(**X**)).

Where Does **P** Project To?

Definition. For $K \subset \mathbb{R}^d$ a closed convex set and $x \in K$,

 $pert_{\mathcal{K}}(\mathbf{x}) := \{\mathbf{y} : \mathbf{x} \pm t\mathbf{y} \in \mathcal{K} \text{ for all } t \text{ suff. small} \}.$

(Or, the affine hull of the smallest face containing x.)

Then, **P** projects to vec(pert_{\mathcal{E}_2^N}(**X**)).

Remark. The same method gives a formula for *P* when *X* is the Gram matrix of a **complex** ETF, too, if we use

$$\widetilde{\mathscr{E}}_2^N := \{ \boldsymbol{X} \in \mathbb{C}_{\mathrm{herm}}^{N \times N} : \boldsymbol{X} \succeq \boldsymbol{0}, X_{ii} = 1 \}.$$

Everything from now on applies to that version.

The Master Matrix Inequality

 $P \succeq 0$ turns out to be equivalent to this.

Corollary. Let $v_1, \ldots, v_N \in \mathbb{C}^r$ for r > 1 form an ETF. Let $R \in \mathbb{R}^{r \times r}_{sym}$ be defined by

$$R_{k\ell} = \sum_{i=1}^{N} |(\mathbf{v}_i)_k|^2 |(\mathbf{v}_i)_\ell|^2.$$

Then,

$$\boldsymbol{R} \leq \frac{1-\frac{1}{r}}{1-\frac{1}{N}}\boldsymbol{I}_r + \frac{\frac{N}{r}-1}{\boldsymbol{r}(1-\frac{1}{N})}\boldsymbol{1}\boldsymbol{1}^{\mathsf{T}}.$$

For V the ETF's "short fat matrix," the entries of R measure how much magnitudes of V's rows correlate.

Controlling Sparsity

Test the diagonal entries of the master matrix inequality.

Corollary. Let $V \in \mathbb{C}^{r \times N}$ be the short fat matrix of an ETF for r > 1. Let w be in the row space of V. Then,

$$\|\boldsymbol{w}\|_0 \ge \frac{N}{1 + \frac{(r-1)^2}{N-1}}$$

Proof. The master inequality gives $\|\boldsymbol{w}\|_4^4 \leq C \|\boldsymbol{w}\|_2^4$. By Cauchy-Schwarz, $\|\boldsymbol{w}\|_0 \geq \|\boldsymbol{w}\|_2^4 / \|\boldsymbol{w}\|_4^4 \geq C$.

We can also control sparsity of vectors perpendicular to the row space.

Corollary. Let $V \in \mathbb{C}^{r \times N}$ be the short fat matrix of an ETF for r > 1. Then,

spark(
$$\mathbf{V}$$
) := $\min_{\substack{\mathbf{w} \in \mathbb{C}^N \setminus \{\mathbf{0}\}\\ \mathbf{V}\mathbf{w} = \mathbf{0}}} \|\mathbf{w}\|_0 \ge \frac{N}{1 + \frac{(N-r-1)^2}{N-1}}.$

Proof. Previous slide on Naimark complement of V.

Controlling Sparsity Pattern Overlap

Now, test the 2×2 minors of the master matrix inequality.

Corollary. Let $V \in \mathbb{C}^{r \times N}$ be the short fat matrix of an ETF for r > 1. Define

$$D := \frac{N}{r^2} \left(1 + \frac{(r-1)^2}{N-1} \right), \quad E := \frac{\frac{N}{r}-1}{r(1-\frac{1}{N})}.$$

Then, for any two distinct rows w, w' of V,

$$\left|\sum_{i=1}^{N} |w_i|^2 |w'_i|^2 - E\right|^2 \leq (D - ||w||_4^4) (D - ||w'||_4^4).$$

Proof. Determinant monotonicity on 2×2 minors.

Measuring Tightness

When do we know how good these inequalities are?

Proposition. For any *Steiner ETF*² built from a *finite projective plane*, we have equality in the master matrix inequality:

$$\boldsymbol{R} = \frac{1-\frac{1}{r}}{1-\frac{1}{N}}\boldsymbol{I}_r + \frac{\frac{N}{r}-1}{r(1-\frac{1}{N})}\boldsymbol{1}\boldsymbol{1}^{\mathsf{T}}.$$

More generally, the dimension of the "tight subspace" for a Steiner ETF is the number of Steiner system "points," while *r* is the number of "lines."

²An ETF built from a combinatorial design generalizing the incidence structure of a finite geometry.

My Favorite ETF Open Problem (I'm Biased)

For $\boldsymbol{X} \in \mathbb{R}_{sym}^{N \times N}$ the Gram matrix of a real ETF, let

$$d(\boldsymbol{X}) = \max\{d \in 2\mathbb{N} : \boldsymbol{X} \in \mathscr{E}_d^N\}.$$

What does this number depend on?

Only (*N*, *r*)?

Can higher SOS constructions teach us more about sparsity?

Or about other structure in ETFs?

Thank you!