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The Two Topics:

Sum-of-Squares Relaxations
(SOS)

continuous optimization

semidefinite programming

algebraic proofs

Equiangular Tight Frames
(ETFs)

discrete geometry

harmonic analysis

combinatorial designs
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The Basic Connection:

ETFs are feasible points for SOS

relaxations of an optimization problem.

Therefore, ETFs have to satisfy some

(new!) inequalities.
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Part 1: Motivation

A Gramian description of the degree 4 generalized
elliptope (2018)
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Initial Motivation: Relaxing MaxCut

Are relaxations good for problems like this?

M(A) := max
x∈{±1}N

x>Ax

This is the usual one:

M(A) = max
x∈{±1}N

〈A, xx>〉 ≤max
X�0
Xii=1

〈A,X〉.

We call this a relaxation because it is based on an inclusion
between the cut polytope and the elliptope,

C N := conv({xx> : x ∈ {±1}N})⋂
{X ∈ RN×N

sym : X � 0,Xii = 1} =: E N
2 .
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Sum-of-Squares: A Recipe for Improvement

To get a better algorithm, find a tighter inclusion!

Look at Y = (x ⊗ x)(x ⊗ x)> ∈ RN2×N2

sym , and write down linear
and psd inequalities it must satisfy for x ∈ {±1}N:

ñ Positivity: Y � 0.

ñ Normalization: Y(ii)(jj) = 1.

ñ “x2
i xjxk = xjxk”: Y(ii)(jk) = Y(i′i′)(jk).

ñ Symmetry: Y(ij)(k`) = Y(π(i)π(j))(π(k)π(`)).

Let E N
4 be the X ∈ RN×N

sym that are extendable to such Y
(occurring as Xij = Y(11)(ij), corresponding to xx>).

Then, C N ⊆ E N
4 ⊆ E N

2 .

6



Sum-of-Squares: A Recipe for Improvement

To get a better algorithm, find a tighter inclusion!

Look at Y = (x ⊗ x)(x ⊗ x)> ∈ RN2×N2

sym , and write down linear
and psd inequalities it must satisfy for x ∈ {±1}N:

ñ Positivity: Y � 0.

ñ Normalization: Y(ii)(jj) = 1.

ñ “x2
i xjxk = xjxk”: Y(ii)(jk) = Y(i′i′)(jk).

ñ Symmetry: Y(ij)(k`) = Y(π(i)π(j))(π(k)π(`)).

Let E N
4 be the X ∈ RN×N

sym that are extendable to such Y
(occurring as Xij = Y(11)(ij), corresponding to xx>).

Then, C N ⊆ E N
4 ⊆ E N

2 .

6



−1.5 −1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

1.5 Cut Polytope (C 5)

Degree 2 Elliptope (E 5
2 )

Degree 4 Elliptope (E 5
4 )

7



Vague Problem:

“Understand how to build” an extension of

a given X ∈ E N
2 \C N to degree 4.
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Specific Problem:

Explicitly construct some members of

E N
4 \C N and their extensions.
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The Only Previous Answer

Laurent (2003)1 showed (something stronger than) that,
when N ≥ 4, then

1 − 1
N−1 · · · − 1

N−1

− 1
N−1 1 · · · − 1

N−1
...

...
. . .

...

− 1
N−1 − 1

N−1 · · · 1

 ∈ E N
4 \C N.

This is the Gram matrix of the simplex ETF!

So, what about other (real) ETFs?

1Slightly previous work of Grigoriev (2001) and slightly later work
of Schoenebeck (2008) did very similar things.
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ETFs: A Very Brief Review

An equiangular tight frame (ETF) is a set of N vectors
v1, . . . ,vN in Rr or Cr , such that:

ñ They are unit norm: ‖v i‖2 = 1.

ñ They are equiangular: |〈v i,v j〉| = µ for all i ≠ j.

ñ They form a tight frame:
∑N

i=1 v iv
∗
i = N

r Ir .

Most important high-level intuition: broadly speaking, ETFs
are rigid, combinatorial, rare objects.
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Degree 4 Extensibility of ETF Gram Matrices

Theorem. (Bandeira, K. ‘18) The Gram matrix of an ETF
of N vectors in Rr is degree 4 extensible if and only if

N <
r(r + 1)

2
.

If so,

Y(ij)(k`) :=
r(r−1)

2
r(r+1)

2 −N
(XijXk` + XikXj` + Xi`Xjk)

−
r2(1− 1

N )
r(r+1)

2 −N

N∑
m=1

XimXjmXkmX`m

gives a degree 4 extension.
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Part 2: Applications to ETFs

Sum-of-squares optimization and the sparsity structure of
equiangular tight frames (2019)
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Digging Into the Degree 4 Witness

The Y from our theorem has two eigenspaces:

Y = vec(X)vec(X)> + λP,

for P an orthogonal projector.

The theorem’s proof includes a formula for P = PX � 0,
whose quadratic form we can test to get inequalities on X :

〈A,PX[A]〉 ≥ 0.
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Where Does P Project To?

Definition. For K ⊂ Rd a closed convex set and x ∈ K,

pertK(x) := {y : x ± ty ∈ K for all t suff. small}.

(Or, the affine hull of the smallest face containing x.)

Then, P projects to vec(pertE N
2
(X)).

Remark. The same method gives a formula for P when
X is the Gram matrix of a complex ETF, too, if we use

Ẽ N
2 := {X ∈ CN×N

herm : X � 0,Xii = 1}.

Everything from now on applies to that version.
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The Master Matrix Inequality

P � 0 turns out to be equivalent to this.

Corollary. Let v1, . . . ,vN ∈ Cr for r > 1 form an ETF. Let
R ∈ Rr×r

sym be defined by

Rk` =
N∑

i=1

|(v i)k|2|(v i)`|2.

Then,

R �
1− 1

r

1− 1
N

Ir +
N
r − 1

r(1− 1
N )

11>.

For V the ETF’s “short fat matrix,” the entries of R measure
how much magnitudes of V ’s rows correlate.
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Controlling Sparsity

Test the diagonal entries of the master matrix inequality.

Corollary. Let V ∈ Cr×N be the short fat matrix of an
ETF for r > 1. Let w be in the row space of V . Then,

‖w‖0 ≥
N

1+ (r−1)2
N−1

.

Proof. The master inequality gives ‖w‖4
4 ≤ C‖w‖4

2. By
Cauchy-Schwarz, ‖w‖0 ≥ ‖w‖4

2/‖w‖4
4 ≥ C.
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Controlling Spark

We can also control sparsity of vectors perpendicular to the
row space.

Corollary. Let V ∈ Cr×N be the short fat matrix of an
ETF for r > 1. Then,

spark(V) := min
w∈CN\{0}

Vw=0

‖w‖0 ≥
N

1+ (N−r−1)2
N−1

.

Proof. Previous slide on Naimark complement of V .
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Controlling Sparsity Pattern Overlap

Now, test the 2× 2 minors of the master matrix inequality.

Corollary. Let V ∈ Cr×N be the short fat matrix of an
ETF for r > 1. Define

D := N
r2

(
1+ (r − 1)2

N − 1

)
, E :=

N
r − 1

r(1− 1
N )
.

Then, for any two distinct rows w,w ′ of V ,

∣∣∣∣ N∑
i=1

|wi|2|w′i |2 − E
∣∣∣∣2

≤
(
D − ‖w‖4

4

) (
D − ‖w ′‖4

4

)
.

Proof. Determinant monotonicity on 2× 2 minors.
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Measuring Tightness

When do we know how good these inequalities are?

Proposition. For any Steiner ETF2 built from a finite
projective plane, we have equality in the master matrix
inequality:

R =
1− 1

r

1− 1
N

Ir +
N
r − 1

r(1− 1
N )

11>.

More generally, the dimension of the “tight subspace”
for a Steiner ETF is the number of Steiner system
“points,” while r is the number of “lines.”

2An ETF built from a combinatorial design generalizing the
incidence structure of a finite geometry.
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My Favorite ETF Open Problem (I’m Biased)

For X ∈ RN×N
sym the Gram matrix of a real ETF, let

d(X) =max{d ∈ 2N : X ∈ E N
d }.

What does this number depend on?

Only (N, r)?

Can higher SOS constructions teach us more about sparsity?

Or about other structure in ETFs?

23



Thank you!
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