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I. Introduction
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Certifying Bounds on Quadratic Forms

Goal: Build efficient algorithms taking in W ∈ Rn×nsym and
outputting upper bounds on

opt(W) := max
x∈{±1}n

x>Wx.

Applications and motivations:

• Maximum cut in graphs

• Community detection in graphs

• Statistical physics: ground states of Ising models
(Sherrington-Kirkpatrick model especially prominent)

• Statistics toy problems:

◦ Spiked matrix models
◦ “Planted” vector in a random subspace
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Sum-of-Squares: Algebraic Proof Formulation

Familiar to this audience: in time nO(D), can efficiently solve
the (even) degree D SOS relaxation:

minimize c
subject to c − x>Wx =

∑n
i=1pi(x)(x

2
i − 1)+

∑
j sj(x)2,

deg(pi) ≤ D − 2,
deg(sj) ≤ D/2.

Can be written as a semidefinite program by relating
polynomials q(x) to representing matrices Q with

q(x) =m(x)>Qm(x),

for m(x) the vector of low-degree monomials in x1, . . . , xn.
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Sum-of-Squares: Pseudomoment Formulation

Maybe slightly less familiar: a formulation of the convex
dual popular in theoretical computer science,

maximize Ẽ[x>Wx]
subject to Ẽ : R[x1, . . . , xn]≤D → R

Ẽ linear,
Ẽ[1] = 1,
Ẽ[(x2

i − 1)p(x)] = 0 for all i ∈ [n],
Ẽ[s(x)2] ≥ 0.

By linearity, enough to give pseudomoments Ẽ[xi1 · · ·xid],
and positivity a pseudomoment matrix M � 0, where

M(i1,...,id1),(j1,...,jd2)
:= Ẽ[xi1 · · ·xid1

xj1 · · ·xjd2
].
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Sum-of-Squares Lower Bounds

General questions: How large do we need to take D for SOS
to work well? What properties of W control this?

Negative results = lower bounds on the degree, saying that
we need to take D large to achieve some quality of certified
bound on opt(W).

Proof strategy: Construct a Ẽ, or equivalently a
pseudomoment matrix M, that is feasible for high-degree
SOS but gives a poor bound:

Ẽ[x>Wx] � opt(W) = max
x∈{±1}n

x>Wx.

Boils down to understanding the spectra of large patterned
matrix functions of various W—can be very technical!
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pseudomoment matrix M, that is feasible for high-degree
SOS but gives a poor bound:
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II. A Mystery in SOS Lower Bounds
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Grigoriev-Laurent Lower Bound

Let n be odd. Pin down the degree needed for exactness:

Theorem: [Grigoriev ’01, Laurent ’03] For some W ,

max
Ẽ of degree n−1

Ẽ[x>Wx] > opt(W).

Theorem: [Fawzi, Saunderson, Parrilo ’16] For all W ,

max
Ẽ of degree n+1

Ẽ[x>Wx] = opt(W).

Bad W is W := I − 1
n11> = projection to span(1)⊥. By parity,

x>Wx = n− 1
n

(∑n

i=1
xi
)2
≤ n− 1

n
,

but can find Ẽ such that

Ẽ [x>Wx] = n.
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Choosing Ẽ: First Steps

Equivalently, we want Ẽ[(
∑n
i=1xi)2] = 0.

Symmetrization Ẽ[p(x)]← 1
2(Ẽ[p(x)]+ Ẽ[p(−x)]) lets us

assume without loss of generality Ẽ[x1 · · ·x2k+1] = 0.

For even pseudomoments, guess:

0 = Ẽ
[(∑n

i=1
xi
)2
]

=
∑n

i=1
Ẽ[x2

i ]+ 2
∑

1≤i<j≤n Ẽ[xixj]

= n+n(n− 1)a2. (constraint + symmetry)

Solving leads to predict, for all i ≠ j,

Ẽ[xixj] := a2 = −
1

n− 1
.
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Choosing Ẽ: Finishing the Job

Symmetrize over (x1, . . . , xn), (xσ(1), . . . , xσ(n))�

Ẽ[xi1 · · ·xi2k] := a2k,

and expect these to satisfy

0 = Ẽ
[(∑n

i=1
xi
)2k

]
= constant+ linear combination of a2, . . . , a2k−2, a2k.

Solving simple combinatorial recursion gives the
Grigoriev-Laurent pseudomoments,

Ẽ[xi1 · · ·xid] = ad = 1{d even} · (−1)d/2
d/2−1∏
i=0

2i+ 1
n− 2i− 1

.
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Ẽ[xi1 · · ·xid] = ad = 1{d even} · (−1)d/2
d/2−1∏
i=0

2i+ 1
n− 2i− 1

.

10



Laurent’s Proof

Must check positivity of Ẽ a 0 �M ∈ R(
[n]
≤D/2)×( [n]≤D/2) with

MS,T := a|S4T |.

(Symmetric difference appears from x2
i = 1 constraint, so

that repeated indices cancel in pseudoexpectation.)

Need spectrum of large patterned matrix (as promised).

Laurent’s proof: Use interlacing; find a large kernel and a
submatrix whose pdness may be checked by association
scheme theory and hypergeometric series combinatorics.

Observation: The eigenvalues of M have interesting
structure and high multiplicity. More direct proof possible?
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[n]
≤D/2)×( [n]≤D/2) with

MS,T := a|S4T |.

(Symmetric difference appears from x2
i = 1 constraint, so

that repeated indices cancel in pseudoexpectation.)

Need spectrum of large patterned matrix (as promised).

Laurent’s proof: Use interlacing; find a large kernel and a
submatrix whose pdness may be checked by association
scheme theory and hypergeometric series combinatorics.

Observation: The eigenvalues of M have interesting
structure and high multiplicity. More direct proof possible?

11



Mystery: Eigenvalues of Pseudomoments

Read across the diagonals to see Laurent’s recursion:

n = · · ·

1 3 5 7 9 11

0 0 0 0 0

1 1 13
8

19
12

263
128

1289
640

3
2 · 1 5

4 · 1 7
6 ·

13
8

9
8 ·

19
12

11
10 ·

263
128

5·3
4·2 · 1 7·5

6·4 · 1 9·7
8·6 ·

13
8

11·9
10·8 ·

19
12

7·5·3
6·4·2 · 1 9·7·5

8·6·4 · 1 11·9·7
10·8·6 ·

13
8

9·7·5·3
8·6·4·2 · 1 11·9·7·5

10·8·6·4 · 1

11·9·7·5·3
10·8·6·4·2 · 1

Not hard to predict multiplicities also.
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Bigger Mystery: Explaining Positivity

Philosophical comment: our process was to

1. Build M to satisfy the entrywise constraints, and...

2. observe that the spectral constraint “magically” holds.

This gets the job done, but why?

Question: What is the underlying phenomenon or identity
letting us satisfy both sets of constraints at once?

This work: A rederivation of the pseudomoments that
swaps the constraints’ statuses, building in psdness and
making entrywise patterns appear “magically.”
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III. Gramian Construction
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High-Level Strategy: Surrogate Random Tensors

To build in psdness, we will build M as a Gram matrix:

MS,T = Ẽ[xSxT ] := 〈vS ,vT 〉.

Probabilistic interpretation: for 0 ≤ d ≤ D/2, there are
jointly Gaussian random symmetric tensors G(d) such that

MS,T := E[G(|S|)S G(|T |)T ]

Intuition: for a “random x ∈ {±1}n with
∑n
i=1xi = 0,”

G(d) = x⊗d.

There is no such random x, but we can build G to “fake it”
as much as possible.
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Surrogate Tensor Desiderata

Reasonable demands on G(d) to look like x⊗d:

• G(0)∅ = 1 (x∅ = 1 normalization)

• G(d){i,i}+S = G
(d−2)
S (x2

i xS = xS )
•
∑n
i=1G

(d)
{i}+S = 0 (xS

∑n
i=1xi = 0)

G(d) as random as possible + these � condition canonical
(orthogonally invariant) Gaussian symmetric tensor.

Theorem: [K., Moore ’22] For a particular choice of scaling of
initial canonical Gaussian tensors, this sequence of G(d)

exactly recovers the Grigoriev-Laurent pseudomoments:

Ẽ[xSxT ] = a|S4T | = E[G(|S|)S G(|T |)T ].
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Ẽ[xSxT ] = a|S4T | = E[G(|S|)S G(|T |)T ].

16



Surrogate Tensor Desiderata

Reasonable demands on G(d) to look like x⊗d:

• G(0)∅ = 1 (x∅ = 1 normalization)

• G(d){i,i}+S = G
(d−2)
S (x2

i xS = xS )
•
∑n
i=1G

(d)
{i}+S = 0 (xS

∑n
i=1xi = 0)

G(d) as random as possible + these � condition canonical
(orthogonally invariant) Gaussian symmetric tensor.

Theorem: [K., Moore ’22] For a particular choice of scaling of
initial canonical Gaussian tensors, this sequence of G(d)

exactly recovers the Grigoriev-Laurent pseudomoments:
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Reaping the Benefits

1. A straightforward proof that M � 0, with
combinatorial identities “explaining” compatibility of
spectral and entrywise constraints.

2. An explicit calculation of the eigenvalues,
multiplicities, and eigenspaces of M by tracking the
Gaussian conditioning calculation, which gives...

3. A proof of Laurent’s empirical observations. In
particular, the formerly mysterious recursive pattern
in the eigenvalues may be seen to come from the
conditional construction of G(d) depending on the
previous G(d

′) over d′ < d.
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Connection with Apolar Inner Product

Gaussian conditioning: g ∼N (0, I) conditional on
〈ai,g〉 = bi for i ∈ [m] is:

• Constant on span(a1, . . . ,am), plus...

• lower-dimensionalN (0, I) on span(a1, . . . ,am)⊥.

Interpret projection with homogeneous polynomials:

G↔ g(y) := 〈G,y⊗d〉
〈G,H〉 = 〈g,h〉

under the apolar inner product of polynomials,

〈g,h〉 := 1
d!
g(∂)h(y) ∈ R.

18
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Interpret projection with homogeneous polynomials:
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Ideal-Multiharmonic Orthogonality

Our conditioning in homogeneous polynomial space:

G(d){i,i}+S ↔ multiples of y2
i∑n

i=1
G(d){i}+S ↔ multiples of

∑n

i=1
yi

� we condition on directions of a (homogeneous) ideal.

Beautiful adjointness of apolar inner product:

〈fg,h〉 ∝ 〈f , g(∂)h〉.

� apolar orthogonal complement of ideal I generated by
p1(y), . . . , pm(y) is the multiharmonic polynomials,

I⊥ =
{
f : pi(∂)f = 0 for i = 1, . . . ,m

}
.
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The Simplex-Harmonic Representation

Actually, treat our two families of conditions separately,
and end up projecting to simplex-harmonic polynomials:

Hn,d =
{
f ∈ R[z1, . . . , zn−1]homd : 〈si,∂〉2f = 0 for i ∈ [n]

}
,

for s1, . . . , sn ∈ Rn−1 vertices of an equilateral simplex.

Sn acts on Rn−1 by permuting the si (“standard” irrep)...

� acts onHn,d by permuting the 〈si,z〉.

Lemma: Hn,d is irreducible and isomorphic to the irrep of
the (n− d,d) partition. (New?)

� project toHn,d with standard character computations.
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Towards More Generic Settings

My original interest: SOS for random problems.

� same questions for random W

� multiharmonic polynomials from a random ideal

� heuristic guess/estimate for multiharmonic projection

� only approximate Gramian factorization

� not yet much easier than “magical psdness” methods

Could simplify technical proofs of important evidence for
difficulty of average-case optimization.
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Thank you!
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