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Paley Graph

F, := Z/pZ = finite field on p elements for p = 1 mod 4.

Gp a graph on vertices F, with i ~ j iff j — i is a square
mod p (for some x = 0, j — i = x?).

= deg(i) = 2* ~ 1p for each i € F,.

Heuristic: G, is pseudorandom, behaving in many ways
like ER(p, %), i.i.d. random graph with edge probability %

Example: For any fixed graph H, as p — o,

occurrences in G, ~ E[occurrences in ER]
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Same for w(G,)? Not quite...

w(Gyp,) = logpilogloglog pi [Graham, Ringrose "90]

w (Gp) L (|og P)z (random heuristic)
And, in any case, the best upper bounds we have are

w(Gp) = \/ﬁ (spectral/Hoffman/trivial bound)
w(Gp) <4\p/2+1 [Hanson, Petridis '21]



Big Question 1: How can we break the
“square root barrier” and prove

w(Gy) = 0(p'%) ?

(Formally similar to controlling the restricted isometry
property for the Paley ETF.)
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Sum-of-Squares (SOS) Relaxations

For any graph G = (V, E), have Boolean optimization
formulation,

w(G) = max{zyi . ye{0,1}Y, yiy;=0if {i,j} eEE}

eV
Semidefinite programming upper bound recipe:

1. Write y®<d =[1 y y®2 ... y®d]and X = y®=dy®=d’,
2. Find some tractable constraints on X for feasible y:

e X >0

e X;j = X(S) depends only on index set S in i, j

e X(@)=1,X(S)=0forall S notacliquein G
3. Optimize >;cy X({i}) over that enlarged set.



Degree 2 =: SOS,(G) (Cased =1)
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14
maximize » X({i}) subject to
i=1
[ 1 X({1}) X2 X({p})
X({1}) | X({1}) X({1,2}) - X({L,p})
X =| X({2}) | X({1,2}) X({2}) - X({2,p})
| X({p}H) | X{L,pH) X({2,p}) X({p})

X({i,j}) = 0 whenever i £¢ j.

This has been studied earlier as the Lovasz function 9(G).

d > 2 ~ S0S,4(G) = w(G), tighter bounds in time p©@,
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Lower Bounds for Random Graphs

To study average-case difficulty of w(-), people wanted to
understand how hard it is to compute w (ER(p, %)).

Theorem: (MW '13]...[BHKKP '19] For any fixed d, as p — oo,

E[SOS24(ER)]1 = Q(p'?) » Oflogp) = E[w(ER)].

SOS is a strong family of algorithms, so can view this as one
specific demonstration of average-case hardness of w(-).

Question: How important is the distribution of ER(p, %)?
What properties of a graph does this really depend on?



Big Question 2: How can we find
deterministic graphs H, with

w(Hy) = O(logp)
S0S24(Hy) = Q(p'/2) ?
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Our Results
Main message: Paley graphs achieve a partial
derandomization of SOS lower bounds for ER(p, %).
Easy to show: SOS,(G,) = Q(p'/?).
Main theorem: [KY] SOS4(G,) = Q(p'/?).

Remark: Derandomizes an early result on the random
graph case: [DM '15] showed E[SOS4(ER)] = Q(p'/3).



Ancillary Results I: Improve to Q(p'/%)?
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Exciting observation: Appear to have SOS4(G,) ~ p
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Ancillary Results II: Improve to Q(p )?

We use a simple X, first used by [FK '03], later by [MW "13],
but ultimately found to be insufficient by [BHKKP '19]:

X(S):= f(S]) - 1{S is a clique in G}.
Theorem: [Kelner '15] For ER(p, %) graphs, such proves only

E[SOS24(ER)] = Q(p!/ @),

Theorem: [KY| For Paley graphs, such proves only
SOS4(G,) = Q(p'/3),

i.e., our main result cannot be improved without a fancier
choice of X ~ probably significantly harder to analyze.
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Theoretical evidence: [BHKKP '19] proof depends on norm
bounds for graph matrices formed from the {+1}
adjacency matrix A.

Example: For a graph with sets of “left” and “right” vertices

we get a matrix

M7, (G) = D Au A iALiAi A A
i,J
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Theoretical evidence: [BHKKP 19| proof depends on norm
bounds for graph matrices formed from the {+1}
adjacency matrix A.

Theorem: [KY] There are some H for which

IM™ (Gl > E [IMPER)II],

i.e., the key technical tool does not derandomize in general
(luckily it does for small H to get our lower bound).

Basically, can build these by taking advantage of the
discrepancy between

Ag = pl-117,

AZg = pI + /p - (random matrix).
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Also boils down to bounding || M* (Gp) |l for various H, but
with different tools.

[AMP ’16], [BHKKP '19]: trace method using E[Tr((MY (ER))¥)]

[KY]: number-theoretic character sum estimates



Proof Idea

Also boils down to bounding || M* (Gp) |l for various H, but
with different tools.

[AMP ’16], [BHKKP '19]: trace method using E[Tr((MY (ER))¥)]
[KY|: number-theoretic character sum estimates

For x : F, — C the Legendre symbol character,

I Bt A A D
(Acp)i,j—{ 1 ifid }—X(l J),

so polynomials in x appear in entries of M. Not many
good tools for handling Tr((MH (Gp))¥) character sums, but
we can use other case-by-case tricks to avoid these.



In [F’; Nobody Can Hear You Scream

However, in practice it is not always so easy to compute Ggeom, even
when the parameter space is a curve. We often have only meager global
information about the sheaf in question, and so we try first to extract and
then to exploit information about its local monodromy around each of the
points at infinity of the parameter curve. One striking way in which pure
lisse sheaves arising from exponential sums differ from the more traditional
pure lisse sheaves arising as “cohomology along the fibres, with constant
coefficients, of a proper smooth morphism” is that the local monodromy of
the former can be quite wildly ramified, and can be so in quite interesting
ways. This possibility can often be exploited to impose some very severe
restrictions on Ggeom. The underlying mechanisms of wild ramification and
the restrictions it can impose are discussed in Chapter I.

One way in which the invariants and covariants of local monodromy can
be detected and analyzed is through their interpretation as the difference
between the compactly supported and the ordinary cohomology groups of
the parameter curve with coefficients in the sheaf under discussion. This
relation, together with a thorough discussion of the basic general facts about
curves and their cohomology, 1s given in Chapter II, and systematically
exploited in Chapter VIL

[Katz '88]
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Open Questions

1. What is the exponent n € [%, %] in SOS4(Gp) ~ p"?

2. If n < 1, what other graphs can fully derandomize the
Erdos-Rényi lower bound?

3. If n < %, how can we extract formal proofs from
numerical experiments with SOS?

4. Higher degree sum-of-squares relaxations?

5. How much of the structure of “clique space” of the
Paley graph behaves like random graphs?



Thank you!



