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Paley Graph

Fp := Z/pZ = finite field on p elements for p ≡ 1 mod 4.

Gp a graph on vertices Fp with i ∼ j iff j − i is a square
mod p (for some x ≠ 0, j − i = x2).
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Fp := Z/pZ = finite field on p elements for p ≡ 1 mod 4.

Gp a graph on vertices Fp with i ∼ j iff j − i is a square
mod p (for some x ≠ 0, j − i = x2).

Example: p = 5 � squares are {1,4 ≡ −1}.
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Paley Graph

Fp := Z/pZ = finite field on p elements for p ≡ 1 mod 4.

Gp a graph on vertices Fp with i ∼ j iff j − i is a square
mod p (for some x ≠ 0, j − i = x2).

=⇒ deg(i) = p−1
2 ∼ 1

2p for each i ∈ Fp.

Heuristic: Gp is pseudorandom, behaving in many ways
like ER(p, 1

2), i.i.d. random graph with edge probability 1
2 .

Example: For any fixed graph H, as p →∞,

occurrences in Gp ∼ E [occurrences in ER]

∼ n|V(H)|
(

1
2

)(|V(H)|2 )
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Paley Graphs: The Clique Number

Question: What about H growing slowly with p?

Example: ω(G) := largest clique in G. Easy calculations =⇒

E[ω(ER)] ∼ 2 log2p.

Same for ω(Gp)? Not quite...

ω(Gpi) ≥ logpi log log logpi [Graham, Ringrose ’90]

ω(Gp)
?∼ (logp)2 (random heuristic)

And, in any case, the best upper bounds we have are

ω(Gp) ≤
√
p (spectral/Hoffman/trivial bound)

ω(Gp) ≤
√
p/2+ 1 [Hanson, Petridis ’21]
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Big Question 1: How can we break the

“square root barrier” and prove

ω(Gp) = O(p1/2−ε) ?

(Formally similar to controlling the restricted isometry
property for the Paley ETF.)
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Sum-of-Squares (SOS) Relaxations

For any graph G = (V , E), have Boolean optimization
formulation,

ω(G) = max

∑
i∈V
yi : y ∈ {0,1}V , yiyj = 0 if {i, j} ∉ E


Semidefinite programming upper bound recipe:

1. Write y⊗≤d = [1 y y⊗2 · · · y⊗d] and X = y⊗≤dy⊗≤d> .

2. Find some tractable constraints on X for feasible y:

• X � 0
• Xi,j = X(S) depends only on index set S in i, j
• X(∅) = 1, X(S) = 0 for all S not a clique in G

3. Optimize
∑
i∈V X({i}) over that enlarged set.
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Degree 2 =: SOS2(G) (Case d = 1)

maximize
p∑
i=1

X({i}) subject to

X =



1 X({1}) X({2}) · · · X({p})
X({1}) X({1}) X({1,2}) · · · X({1, p})
X({2}) X({1,2}) X({2}) · · · X({2, p})

...
...

...
. . .

...

X({p}) X({1, p}) X({2, p}) · · · X({p})


� 0,

X({i, j}) = 0 whenever i 6∼G j.

This has been studied earlier as the Lovász function ϑ(G).

d ≥ 2 � SOS2d(G) ≥ω(G), tighter bounds in time pO(d).

8



Degree 2 =: SOS2(G) (Case d = 1)

maximize
p∑
i=1

X({i}) subject to

X =



1 X({1}) X({2}) · · · X({p})
X({1}) X({1}) X({1,2}) · · · X({1, p})
X({2}) X({1,2}) X({2}) · · · X({2, p})

...
...

...
. . .

...

X({p}) X({1, p}) X({2, p}) · · · X({p})


� 0,

X({i, j}) = 0 whenever i 6∼G j.

This has been studied earlier as the Lovász function ϑ(G).

d ≥ 2 � SOS2d(G) ≥ω(G), tighter bounds in time pO(d).

8



Degree 2 =: SOS2(G) (Case d = 1)

maximize
p∑
i=1

X({i}) subject to

X =



1 X({1}) X({2}) · · · X({p})
X({1}) X({1}) X({1,2}) · · · X({1, p})
X({2}) X({1,2}) X({2}) · · · X({2, p})

...
...

...
. . .

...

X({p}) X({1, p}) X({2, p}) · · · X({p})


� 0,

X({i, j}) = 0 whenever i 6∼G j.

This has been studied earlier as the Lovász function ϑ(G).

d ≥ 2 � SOS2d(G) ≥ω(G), tighter bounds in time pO(d).

8



Lower Bounds for Random Graphs

To study average-case difficulty of ω(·), people wanted to
understand how hard it is to compute ω(ER(p, 1

2)).

Theorem: [MW ’13]...[BHKKP ’19] For any fixed d, as p →∞,

E [SOS2d(ER)] = Ω(p1/2) � O(logp) = E[ω(ER)].

SOS is a strong family of algorithms, so can view this as one
specific demonstration of average-case hardness of ω(·).

Question: How important is the distribution of ER(p, 1
2)?

What properties of a graph does this really depend on?
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Big Question 2: How can we find

deterministic graphs Hp with

ω(Hp) = O(logp)
SOS2d(Hp) = Ω(p1/2) ?

10



Our Results

Main message: Paley graphs achieve a partial
derandomization of SOS lower bounds for ER(p, 1

2).

Easy to show: SOS2(Gp) = Ω(p1/2).

Main theorem: [KY] SOS4(Gp) = Ω(p1/3).

Remark: Derandomizes an early result on the random
graph case: [DM ’15] showed E[SOS4(ER)] = Ω̃(p1/3).
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Ancillary Results I: Improve to Ω(p1/2)?

101 102

p

2× 100

3× 100

4× 100

6× 100

S
O

S
4
(G

p
)

1.075 p 0.383

SDP values

Exciting observation: Appear to have SOS4(Gp) ∼ p0.38....
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Ancillary Results II: Improve to Ω(p0.38...)?

We use a simple X, first used by [FK ’03], later by [MW ’13],
but ultimately found to be insufficient by [BHKKP ’19]:

X(S) := f(|S|) · 1{S is a clique in G}.

Theorem: [Kelner ’15] For ER(p, 1
2) graphs, such proves only

E [SOS2d(ER)] = Ω̃(p1/(d+1)).

Theorem: [KY] For Paley graphs, such proves only

SOS4(Gp) = Ω(p1/3),

i.e., our main result cannot be improved without a fancier
choice of X � probably significantly harder to analyze.
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Ancillary Results III: SOS and the “
√p Barrier”

Theoretical evidence: [BHKKP ’19] proof depends on norm
bounds for graph matrices formed from the {±1}
adjacency matrix A.

Example: For a graph with sets of “left” and “right” vertices

we get a matrix

MH
(a,b),(c,d)(G) ≈

∑
i,j

Aa,bAa,iAb,iAi,jAj,cAj,d.

14
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Ancillary Results III: SOS and the “
√p Barrier”

Theoretical evidence: [BHKKP ’19] proof depends on norm
bounds for graph matrices formed from the {±1}
adjacency matrix A.

Theorem: [KY] There are some H for which

‖MH(Gp)‖ � E
[
‖MH(ER)‖

]
,

i.e., the key technical tool does not derandomize in general
(luckily it does for small H to get our lower bound).

Basically, can build these by taking advantage of the
discrepancy between

A2
Gp = pI − 11>,

A2
ER = pI +

√
p · (random matrix).
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Proof Idea

Also boils down to bounding ‖MH(Gp)‖ for various H, but
with different tools.

[AMP ’16], [BHKKP ’19]: trace method using E[Tr((MH(ER))k)]

[KY] : number-theoretic character sum estimates

For χ : Fp → C the Legendre symbol character,

(AGp)i,j =
{
+1 if i ∼ j
−1 if i 6∼ j

}
= χ(i− j),

so polynomials in χ appear in entries of MH . Not many
good tools for handling Tr((MH(Gp))k) character sums, but
we can use other case-by-case tricks to avoid these.
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In Fkp Nobody Can Hear You Scream

[Katz ’88]
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Open Questions

1. What is the exponent η ∈ [1
3 ,

1
2] in SOS4(Gp) ∼ pη?

2. If η < 1
2 , what other graphs can fully derandomize the

Erdős-Rényi lower bound?

3. If η < 1
2 , how can we extract formal proofs from

numerical experiments with SOS?

4. Higher degree sum-of-squares relaxations?

5. How much of the structure of “clique space” of the
Paley graph behaves like random graphs?
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Thank you!
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