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Unit-Norm Tight Frames

Vectors v1, . . . ,vN such that the Gram matrix X = (〈v i,v j〉)Ni,j=1 has:

1. diag(X) = 1.
2. X is a constant multiple of a projection matrix.

Seen differently, “UNTF-ness” is a property of a subspace:
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Unit-Norm Tight Frames: Special Kinds

We like UNTFs with only a few different values of Pij (angles or distances
among their vectors).

ñ Equiangular: Pij ∈ {α,−α} for all i ≠ j.

ñ Two-distance: Pij ∈ {α,β} for all i ≠ j.
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This Talk:

How to take a very nice UNTF and build a bigger,

slightly less nice UNTF.

But mostly, the strange way we found this

construction.
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Motivation

References (2018-2019):
(1) A Gramian description of the degree 4 generalized elliptope
(2) SoS optimization and the sparsity structure of equiangular tight frames
(3) A tight degree 4 SoS lower bound for the Sherrington-Kirkpatrick Hamiltonian
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Relaxations of MaxCut

How to approximate:
max

x∈{±1}N
x>Ax ?
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(
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Relaxations of MaxCut

The degree 2 sum-of-squares (SoS) relaxation:

max
x∈{±1}N

〈A, xx>〉 ≤ max
X�0

diag(X)=1

〈A,X〉.
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Relaxations of MaxCut

The degree 2 sum-of-squares (SoS) relaxation:

E N
2 :=

{
X ∈ RN×N

sym : X � 0,diag(X) = 1
}
.
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Did You Notice?

The constant multiples of projection matrices in E N
2

are exactly the Gram matrices of UNTFs.

More on that in a minute...
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Back to MaxCut...How to Improve?

max
x∈{±1}N

〈A, xx>〉 ≤ max
X extended by Y

〈A,X〉.
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Our Specific Problem

How to approximate:

M = max
x∈{±1}N

x>Ax for Aij ∼iid Normal(0,2) ?

Bound Value Reference

λmax(W) · ‖x‖2 (2+ o(1))N3/2 [Wigner 1955]

Degree 2 SoS (2+ o(1))N3/2 [Montanari, Sen 2016]

Degree 4 SoS (2+ o(1))N3/2 [Bandeira, K. 2019]

[Raghavendra et al 2019]
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The Degree 2 SoS Construction

Take X ≈ δ−1P for P the projection matrix to the top δN eigenvectors of W .

Observation: X is “nearly” the Gram matrix of a UNTF!

20 2--2 ε

δ

[Montanari, Sen 2016] SDPs on sparse random graphs and their application...
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So We Wondered...

What do degree 4 extensions of Gram matrices of

UNTFs look like?
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The Case of ETFs

Theorem. The Gram matrix of an ETF of N vectors in Rr is degree 4
extensible if and only if

N <
r(r + 1)

2
.

If so,

Y(ij)(k`) :=
r(r−1)

2
r(r+1)

2 −N
(XijXk` + XikXj` + Xi`Xjk)−

r2(1− 1
N )

r(r+1)
2 −N

N∑
m=1

XimXjmXkmX`m

gives an extension.

[Bandeira, K. 2018] A Gramian description of the degree 4 generalized elliptope
[Bandeira, K. 2019] SoS optimization and sparsity structure of equiangular tight frames
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Resolving the Gaussian Case

Pretend X ≈ δ−1P is an ETF, and use the same formula. With a small
correction, this shows X ∈ E N

4 , so we get...

Theorem. When W ∼ GOE(N),

max
X∈E N

4

〈W ,X〉 = (2+ o(1))N3/2

with high probability.

[Bandeira, K. 2019] A tight degree 4 SoS lower bound for the SK Hamiltonian
14



New Structured UNTFs

Reference (SPIE 2019):
Connections between SoS optimization and structured tight frames
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So...Where Did This Come From?

Y(ij)(k`) :=
r(r−1)

2
r(r+1)

2 −N
(XijXk`+XikXj`+Xi`Xjk)−

r2(1− 1
N )

r(r+1)
2 −N

N∑
m=1

XimXjmXkmX`m
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Spectral Constraints

Y is complicated entrywise, but simple spectrally:

Y = vec(X)vec(X)> + λP.

P is the projector to a subspace of RN2
where all of the eigenvectors of

Y − vec(X)vec(X)> must lie (for any degree 4 extension).

(Namely, P projects to the vectorized perturbation subspace of X in E N
2 .)

[Bandeira, K. 2018] A Gramian description of the degree 4 generalized elliptope
17



Spectral Constraints

Y is complicated entrywise, but simple spectrally:

Y = vec(X)vec(X)> + λP.

P is the projector to a subspace of RN2
where all of the eigenvectors of

Y − vec(X)vec(X)> must lie (for any degree 4 extension).

(Namely, P projects to the vectorized perturbation subspace of X in E N
2 .)

[Bandeira, K. 2018] A Gramian description of the degree 4 generalized elliptope
17



Hang On...

P is a projection matrix. What is its diagonal?

diag(P) = λ−1diag(Y − vec(X)vec(X)>)
= λ−1(1− vec(X) ◦ vec(X)).

But X is the Gram matrix of an ETF:

(vec(X) ◦ vec(X))(ij) = X2
ij =

{
1 : i = j,
α2 : i ≠ j.

Corollary. Let X be the Gram matrix of a non-maximal ETF. Then, the
minor of P indexed by (ij) with i < j is a “UNTF projector.” Its UNTF
consists of r(r+1)

2 −N vectors in RN(N−1)/2.
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Example: Simplex ETFs � Johnson TDTFs

The simplest ETFs:

N
N − 1

(
IN −

1
N

11>︸ ︷︷ ︸
projector to 1⊥

)
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“Degree 4 lifting” � two-distance UNTF of Johnson graph:
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Open Problems

ñ Counting distances in degree 4 liftings

ñ Structure of “entry graphs” of resulting few-distance UNTFs

ñ Relation to line graph construction

ñ Generalization to higher degree SoS
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Thank you!
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Where Does P Project?

Definition. For K ⊂ Rd a closed convex set and X ∈ K,

pertK(X) := {∆ : X ± t∆ ∈ K for all t sufficiently small}.

(Or, the affine hull of the smallest face containing X .)

Then, P projects to vec(pertE N
2
(X)).
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