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Abstract

The related tasks of certifying bounds on optimization problems and refuting unsatisfiable

systems of constraints have a long history in computer science and optimization, and deep

mathematical roots in the proof complexity of algebraic systems. From the algorithmic

perspective, these problems differ fundamentally from ordinary optimization in that they

ask not merely for a single high-quality solution, but rather for a simultaneous bound on

the quality of all possible solutions. The computational complexity of certification and its

connections with and distinctions from the complexity of optimization, especially in the

average case, remain poorly understood for many problems.

The purpose of this thesis is to study the average-case complexity of certification for con-

strained principal component analysis (PCA) problems, eigenvalue-like problems optimizing

quadratic forms over sets of structured vectors or low-rank matrices. As one notable ex-

ample, several of our results concern the much-studied Sherrington-Kirkpatrick (SK) Hamil-

tonian, a random function over the hypercube originating in the statistical physics of spin

glasses. In problems of this kind, a natural certification strategy is a bound by the spec-

tral norm of the relevant coefficient matrix. We provide evidence for spectral barriers in

constrained PCA problems, supporting the conjecture that, for reasonable instance distribu-

tions, no efficient certification algorithm can improve on the spectral bound.

In the first part of the thesis, we develop tools for proving reductions from certification

over instances drawn from the Gaussian orthogonal ensemble (GOE) to hypothesis testing
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in spiked matrix models. These models describe tiltings of the eigenspaces of the GOE

towards planted constrained PCA solutions. We then provide evidence that these testing

problems are hard via lower bounds against algorithms computing low-degree polynomials

of the observations. In doing so, we develop new techniques for working with the low-degree

likelihood ratio. Namely, we show that its L2 norm, which governs the efficacy of low-degree

tests, is in many models an expectation of a function of a scalar overlap or inner product of

two draws of the random signal observed in the model. We use this to give a simple, unified

account of old and new low-degree lower bounds, with tight results for testing in models

including tensor PCA, Wigner and Wishart matrix PCA of arbitrary rank, sparse PCA, and the

stochastic block model. Using our results for Wishart models, we deduce the conditional

hardness of better-than-spectral certification for the SK Hamiltonian, the Potts spin glass

Hamiltonian, and non-negative PCA.

In the second part, we investigate lower bounds against the sum-of-squares hierarchy

of semidefinite programming relaxations in the hypercube setting of the SK Hamiltonian.

We first study the structure of the degree 4 relaxation, giving constraints on the spectra

of pseudomoments and deterministic examples from finite frame theory. We then propose

a general means of extending degree 2 lower bounds to higher degrees, an alternative to

the pseudocalibration framework of Barak et al. (2019). We show that this technique is

exact for the deterministic lower bound of Grigoriev (2001) and Laurent (2003), and prove

a conjecture of Laurent’s on the spectrum of the associated pseudomoments. Finally, we

apply our extension to the SK Hamiltonian and give tight lower bounds for the degree 4

and 6 relaxations.
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1 | Introduction

To describe it in detail would be a pleasure.

—Samuel Beckett, Molloy

1.1 Search and Certification

Mathematical optimization, and combinatorial optimization in particular, have been inter-

twined with computational complexity since the very origins of both fields, Kantorovich

studying the economic applications of linear programming (LP) [Kan39] just as Turing de-

veloped his machines and so the theory of computability [Tur37]. The two developed in

tandem, with many of the classical hard problems of the theory of algorithms identified in

the NP complexity class [Coo71, Kar72, Lev73] already having a long history in the theory

and practice of optimization [Kar86, Sch05]. These problems, in their practical manifesta-

tions, were search problems. Given a mathematical object, find a near-optimal structure,

they asked: given a graph, find a large cut; given distances between locations, find a short

tour; given a set of points, find the furthest point in some direction.

The theory of computational complexity, however, often preferred decision problems:

given a graph, determine whether or not (answering just “yes” or “no”) there exists a large

cut, and so forth. This was perhaps a matter of convenience, as decision problems have
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simpler outputs less specific to the problem at hand.1 But, in fact, such problems al-

ready had a rich mathematical history, whose connections to computation slowly came

to light and eventually gave rise to new practical algorithms. A prototypical example of

a decision problem hiding in classical mathematics is Hilbert’s Nullstellensatz [Hil93]: ei-

ther f1, . . . , fk ∈ C[z1, . . . , zn] have a common zero, or there are g1, . . . , gk ∈ C[z1, . . . , zn]

such that
∑k
i=1 figi = 1, a polynomial sentence showing that the fi cannot have a common

zero. Precursors abound: Bézout’s identity over the integers, for instance, states that either

a,b ∈ Z have a non-trivial common divisor, or there exist x,y ∈ Z such that ax + by = 1;

such ideas are even apparent in the ancient so-called Chinese remainder theorem. The phi-

losophy of these results is, towards deciding if an object exists (a common zero, a common

divisor), to identify precisely what obstructions can prevent it from existing.

Gradually, the idea that such results could form the foundation for algorithms solving

the underlying decision problems—do the fi have a common zero or not—gained currency.

For the Nullstellensatz, for instance, one may bound the degree of the gi involved, thereby

reducing the question of their existence to a (potentially very large) linear system. The first

result on an “effective Nullstellensatz” giving bounds on the degree of the gi and thereby

indirectly studying the efficacy of this strategy is due to Hermann in 1926 ([Her98] is a mod-

ern translation).2 Improvements followed [Bro87, Kol88], as well as degree lower bounds

[MM82, BIK+96]. The question of polynomial-time algorithms—perhaps more efficient ones

than bounding the degree and solving a linear system—was proposed as a fundamental one

and related to P
?= NP by Shub and Smale [SS94, Sma98]. These ideas joined a rich and

active literature on “proof complexity” of various statements in different restricted, often

computationally-tractable, proof systems; important results adjacent to those above include

[CR79, GV01, Raz01, BSW01, GHP02, Raz02, Raz03, Ber18]. Often the decision problems one

1For example, Levin’s version of this theory in [Lev73] was developed in terms of search problems.
2As the translation discusses, this remarkable paper makes use of computational language a decade

before Turing, already recognizing the algorithmic implications of an effective Nullstellensatz.
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solves in this way are called refutation problems, as above we prove that some structure

cannot exist by manipulating its algebraic description into a contradiction.

However, this approach does not seem entirely adapted to the quantitative optimization

problems that we began by considering. The techniques do not fit on two counts. First,

while one may, for example, look for a large cut in a graph by repeatedly solving algebraic

formulations of “there exists a cut of size exactly k” and performing a search over k, this

technique seems eminently wasteful and subject to subtleties of parity or integrality as k

varies.3 Instead, we would like to somehow replay the idea of the effective Nullstellensatz

while actually being able to optimize a quantity rather than only check if it may have a

specific value. Second, and what is more material, often in applications one wishes to include

inequality constraints, such as the simple ones appearing in LPs, perhaps together with a

more complicated polynomial objective or some non-convex polynomial constraints.

The first steps hinting at a middle ground between proof systems and quantitative op-

timization came from practitioners of optimization. Knowing that LPs could be solved ef-

ficiently, the idea arose to formulate combinatorial problems as LPs by ignoring their con-

straints that variables be integer-valued—so-called relaxation of the constraints—and then

gradually add constraints that integer solutions must satisfy. This iterative form of re-

laxation was first proposed in a general form by Gomory in 1958 [Gom10] following prior

results for special cases. Gomory crystallizes the key idea:

“If the solution is not in integers, ingenuity is used to formulate a new constraint

that can be shown to be satisfied by the still unknown integer solution but not

by the noninteger solution already attained...What has been needed to transform

this procedure into an algorithm is a systematic method for generating the new

constraints.”

3For other problems, such as finding a clique of size at least k in a graph, there is a monotonicity (when-
ever there exists a clique of size k then there also exists one of any size k′ ≤ k) that makes this approach
more plausible.
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Different ways of systematizing this were then proposed by Chvátal [Chv73], and, in what

became the dominant approaches, by Sherali and Adams [SA90] and Lovász and Schrijver

[LS91], both groups proposing hierarchies of algorithms lifting problems to larger sets of

variables, relaxing some resulting integrality constraints, and then projecting the solution

of this relaxation by discarding the extra variables. These hierarchies blur the boundary

between proof systems and optimization techniques. On the one hand, they yield bounds

on the objective function, so they refute the existence of a feasible point with objective

value superior to that bound; also, they may be viewed as manipulating proofs with certain

inequalities derived from integrality of their variables. On the other hand, they are also

merely certain large LPs, and so may be studied as convex optimizations. For instance, the

latter viewpoint leads to the notion of rounding relaxed solutions—the variables from the

lift-and-project procedure, which is the dual formulation to that where proofs are assembled

by combining available inequalities—to genuine feasible solutions to the original problem.

In this way these algorithms are directly usable for search as well as refutation. All of this

remains in the toolbox of modern algorithm design; see the surveys [Tul10, CT12] for a

theoretical perspective. We will refer to algorithms that yield bounds (upper bounds, in

all cases we consider) on optimization problems as certification algorithms, and it is these

algorithms and their limitations that are the subject of this thesis.

The specific certification algorithms we study, however, go one step further and come

from a final line of work that again dates back to Hilbert, in this case to his seventeenth

problem: can every non-negative rational function on Rn be expressed as a sum of squares

of rational functions? Hilbert asked about rational functions because he had shown that, in

general, there are non-negative polynomials that cannot be expressed as sums of squares of

polynomials; Hilbert’s proof was non-constructive, but Motzkin later gave a concrete exam-

ple [Mot67]. While Artin eventually answered Hilbert’s question in the affirmative [Art27],

what we will be more concerned with are refinements of Hilbert’s initial failed attempt at
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a Nullstellensatz-like statement for non-negative polynomials. These so-called Positivstel-

lensatzen gave conditions on when systems of equality and inequality constraints in poly-

nomials admit Nullstellensatz-like refutations: they state that, under various conditions,

if f1, . . . , fk, g1, . . . , g` ∈ R[x1, . . . , xn], then there exists no x ∈ Rn with fi(x) ≥ 0 and

gj(x) = 0 if and only if there exist si,a, rj ∈ R[x1, . . . , xn] such that

k∑
i=1

 m∑
a=1

si,a(x)2
fi(x)+ ∑̀

j=1

rj(x)gj(x) = −1. (1.1)

There is a deep literature on such results; see [Ste74, Sch91, Put93, Rez95, Rez00, BPT12,

Sch17] and numerous references therein.

The relevance of this to the optimization problems we began with is that, in a minor

adjustment of the above, if we seek to maximize some F ∈ R[x1, . . . , xn] over the given

constraint set (rather than showing that the constraint set is empty), we may consider

minimize c

subject to c − F(x) =∑ki=1

(∑m
a=1 si,a(x)2

)
fi(x)+

∑`
j=1 rj(x)gj(x).

(1.2)

The given condition is a so-called sum-of-squares (SOS) proof that F(x) ≤ c on the given

constraint set. In a crucial insight, Lasserre [Las01] and Parrilo [Par00, Par03] concur-

rently observed that such problems, so long as the degrees involved are bounded (as in

the premise of the effective Nullstellensatzen), can be solved efficiently with semidefinite

programming (SDP).4 This yields the SOS hierarchy (sometimes called the Lasserre hierar-

chy) of certification or refutation algorithms, graded by the degree allowed in the above

equation.

4This approach can also be used to treat real-valued refutation problems instead of Nullstellensatz-based
systems, and is strictly more powerful. Also, Lovász and Schrijver in [LS91] gave an SDP-based precursor
in addition to the LP hierarchy mentioned above, and nascent versions of this idea were also present in
[Sho87, Nes00]. It is Lasserre’s variant of the SOS hierarchy that follows the lift-and-project formalism,
while Parrilo’s is the dual we give in (1.2).

5



SOS relaxations are, at least when measuring computational cost coarsely, as effective as

both the LP hierarchies mentioned above and other SDP hierarchies; see [Lau03a] for specific

comparisons for integer programming as well as the remarkable result on optimality of SOS

among a general class of SDP relaxations of [LRS15]. Thus we will take lower bounds against

the SOS hierarchy as the “gold standard” of difficulty of certification, which is at this point

a widely-held consensus. See also the surveys [BS14, Moi20] for more specific discussion of

various other lines of work that support this position.

1.2 Average-Case Computational Complexity

The other key aspect of the setting we will work in is that we will consider random instances

of optimization problems. Such questions were proposed at least concurrently with the

foundational results on worst-case computational complexity [Kar76, Kar86]. The most im-

mediate reason to wonder if algorithms perform well on random instances of a problem is

to avoid a false impression of intractability from contrived worst-case instances. One promi-

nent example is that of the simplex algorithm for LP: first introduced by Dantzig in 1947

(see [Dan65]), the simplex method remains an extraordinarily successful practical algorithm.

However, Klee and Minty in 1972 produced a sequence of instances on which it requires ex-

ponential time to terminate [KM72]. To reconcile the practical picture with the theoretical

one, a series of works showed that the simplex method terminates quickly on various ran-

dom models; e.g., the line of work of [Bor82, Sma83, Bor88] treated rotationally-invariant

distributions of the data. Finally, [ST04] introduced the weaker notion of smoothed analysis

where only a small random perturbation is made to input data, noting that i.i.d. distribu-

tions and the like seldom have much relevance to practical applications, and again proved

that the simplex method converges in polynomial time under such a random model.

While such situations are the practical motivation for average-case analysis, even for
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unrealistically uniform distributions of inputs, theorists were quick to observe that average-

case behavior exhibits intriguing new phenomena. Perhaps the main theoretical convenience

of average-case analysis for optimization problems specifically is that they allow a very

concrete assessment of performance that behaves quite differently from the “approximation

ratios” considered in the worst case. Namely, when a probability distribution over problem

instances is introduced, the true value of an optimization problem—in expectation, we may

usually safely say, since strong concentration often holds for large random problems by

generic arguments—is a single number. For example, Erdős-Rényi graphs on n vertices with

edge probability 1
2 (which we denote ER(n,p = 1

2)) typically have largest cliques of size

approximately 2 log2n. How close can a search algorithm reach to this number? Karp’s

analysis in [Kar76] led him to conjecture that no efficient algorithm could typically find a

clique of size (1+ ε) log2n; the same was confirmed for other search techniques by [Jer92].

Similar barriers to search have been observed in various random optimization problems,

especially many of the classical discrete constraint satisfaction problems (CSPs) including

graph coloring [GM75, COKV07b], largest independent set in graphs [COE15, GS14], and

various abstract CSPs such as satisfiability (SAT) and its variants [MMZ05, ART06, KMRT+07,

COKV07a, ACO08].

While conjectures such as Karp’s above were made on the basis of analysis of some

straightforward algorithms and perhaps their most immediate improvements, various more

systematic frameworks have since emerged for analyzing the average-case complexity of

search problems. Some of these heuristics for hardness are based on the putative optimality

of various classes of algorithms, while others consider other properties of the optimization

landscape.5 They include:

• failure of Markov chain Monte Carlo methods [Jer92, DFJ02];

5Some heuristic approach or restricted model of computation appears necessary to make progress on
such matters, as, even assuming P ≠ NP or similar complexity-theoretic conjectures, actual proofs of
average-case hardness seem far out of reach.

7



• failure of local algorithms [GS14, DM15a, BGJ20, CGPR19];

• failure of low-degree polynomial algorithms [GJW20, Wei20];

• failure of approximate message passing variants and related analysis with methods of

statistical physics [Mon18, AMS20, AM20];

• lower bounds against circuit models of computation [Ros10, Ros14];

• structural properties of the solution space and “shattering” of level sets [ACO08,

KMRT+07, GS14, GZ19];

• geometric analysis of critical points and dynamics on non-convex optimization land-

scapes [ABAČ13, MKUZ19].

Two more classes of random computational problems often considered—no longer op-

timization problems—are motivated instead by statistics. Here, we either draw a problem

instance from a distribution with a “planted” structure that we wish to recover (say, a large

clique in a graph, or a large principal direction in a matrix), or we observe an instance from

either such a planted distribution or a “null” distribution with no planted structure and

must decide which distribution the observation came from. The former is called estimation

in statistics and recovery in some more recent machine learning literature, and likewise the

latter is called either hypothesis testing (or simply testing) or detection. For these problems

there are further tools, some related to the above and some entirely different:

• failure of low-degree polynomial algorithms [HKP+17, HS17, BKW20b, DKWB19, SW20,

BBK+20, DHS20] (see also Chapter 3 for an overview based on the notes [KWB19], as

we will use these results later);

• failure of the local statistics hierarchy of semidefinite programs [BMR21, BBK+20];
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• methods from statistical physics which suggest failure of belief propagation or ap-

proximate message passing algorithms [DKMZ11b, DKMZ11a, LKZ15a, LKZ15b] (see

[ZK16] for a survey or [BPW18] for expository notes);

• geometric analysis of the optimization landscape of the maximum likelihood estimator

(see “geometric analysis” entries above);

• reductions from the planted clique model (which has become a “canonical” problem

believed to be hard in the average case) [BR13, HWX15, WBS16, BB19b, BB19a, BB20];

• lower bounds in the statistical query model [Kea98, KS07, FGR+17, FPV18, KV16,

DKS17].

That all concerns search, testing, and estimation. Here we will instead ask: what are

the barriers to certification for random optimization problems? In contrast to the wealth of

resources above, for certification there is essentially one plan: to prove lower bounds against

various hierarchies of convex relaxations, the SOS hierarchy if possible or the Sherali-Adams

or Lovász-Schrijver hierarchies if not.6

Perhaps the most prominent line of work in that direction concerns refutation of random

unsatisfiable CSPs. A notable paper of Feige [Fei02] used the difficulty of doing this for 3-

SAT as a “hypothesis” to derive hardness of approximation results, drawing attention to this

question, and [Gri01b, Sch08, KMOW17] showed that the SOS hierarchy cannot yield efficient

refutations until the number of clauses is far larger than the threshold at which a random

formula becomes unsatisfiable. Another prominent line of work concerns certifying bounds

on the size of the largest clique in a graph drawn from ER(n, 1
2), the certification side of the

search problem discussed above. As we mentioned, the typical size of the largest clique is

2 log2n; however, a series of results [FK00, MPW15, DM15b, HKP+18, BHK+19] showed that

6One notable exception is [WBP16], who use a reduction strategy similar to what we will pursue, albeit for
just one specific problem. See our discussion at the beginning of Chapter 2.
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SOS cannot efficiently certify a bound better than O(
√
n). The clique problem was harder to

address, being different from k-CSPs with k ≥ 3 in two salient ways: first, it is a quadratic

problem, concerning the quadratic form of a certain structured kind of vector with the

adjacency matrix. As we will see, this relates the problem to the spectrum of the adjacency

matrix, an additional structural feature that may be exploited by algorithms and complicates

the task of proving lower bounds. Second, it has globally-distributed information, meaning

that, unlike the specific and local information we learn from a CSP constraint about the

few variables it involves, each vertex of a dense graph only carries a weak signal as to its

propensity to belong to a large clique. All of this weak information must somehow be

synthesized to search for a large clique, certify bounds on the size of the largest clique, or

prove that either is impossible (see [Moi20] for lucid discussion of this point).

It is with these challenges that we pick up the thread. In this thesis, we will consider bar-

riers to certification both in a general class of quadratic problems formally resembling the

largest clique problem, and in a specific representative problem of this class that we discuss

below. We will develop a general notion of a “spectral barrier” to certification, give a new

kind of evidence for such a barrier based on reductions to hypothesis testing—expanding

the limited arsenal of tools available for demonstrating average-case complexity of certifi-

cation problems—and propose related new tools for proving lower bounds against the SOS

hierarchy.

1.3 A Motivating Example

While we have presented quite a broad setting above, the topics we will consider all stem

more or less directly from attempts to understand the hardness of certification for the
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following specific random optimization problem: for some random W ∈ Rn×nsym ,

M{±1/
√
n}n(W ) :=


maximize x>Wx

subject to x ∈ {±1/
√
n}n

 . (1.3)

From the perspective of combinatorial optimization, a natural choice ofW is a graph Lapla-

cian, in which case (1.3) computes (up to rescaling) the size of the largest cut. We are then led

to consider W the Laplacian of a random graph, and the most interesting regime turns out

to be the case of sparse random graphs, either Erdős-Rényi graphs ER(n, cn) or uniformly-

random regular graphs with fixed integer degree c ≥ 3, which we denote Reg(c,n).

We recall that, in the earlier average-case examples we considered, our first step was to

pin down the true typical value of the random optimization problem in question (e.g., that

the size of the largest clique in our earlier example was of order 2 log2n). Here, for fixed c

and n → ∞, this is an endeavor unto itself: it is known that the size of the maximum cut

is asymptotically n( c4 + f(c)
√
c) for some f(c) ∈ [a,A] for some 0 < a < A for all c, and

various quantitative bounds are available, but f(c) has not been exactly determined for any

specific c [DSW07, BGT10, GL18]. On the other hand, a remarkable result of [DMS17], first

conjectured by [ZB10], established that

lim
c→∞f(c) =

1
2

P∗ := 1
4

lim
n→∞ E

W∼GOE(n)
[M{±1/

√
n}n(W )] ≈ 0.382, (1.4)

where GOE(n) denotes the Gaussian orthogonal ensemble, the probability distribution over

symmetric matrices W where Wii ∼ N (0,2/n) and Wij = Wji ∼ N (0,1/n) when i ≠ j,

independently. That is, at least for the purposes of this optimization problem, GOE(n) may

be viewed as a kind of limit of the sparse random graph distributions as n→∞ followed by

c → ∞.7 Thus, to ease the technical difficulty of working with random graph distributions,

7One simpler hint that such a behavior might occur is the convergence of the Kesten-McKay law of the
eigenvalues of the random c-regular graph to the semicircle law of the eigenvalues of GOE(n) (suitably
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it is reasonable to consider W ∼ GOE(n) as a surrogate.

There are other reasons to be interested in this optimization problem. Most immediately,

the function of x in (1.3) when W ∼ GOE(n) is the random Hamiltonian of the celebrated

Sherrington-Kirkpatrick (SK) model, a mean-field model of spin glasses in statistical physics

[SK75]. Optimizing it, up to a change of sign, computes the ground state energy of the

model. The asymptotics of this value motivated a large body of fascinating mathemati-

cal and physical work; the quantity we cite in (1.4) comes from the predictions of Parisi

[Par79, Par80, CR02] using the non-rigorous replica method, which were later in part vali-

dated mathematically by [Gue03, Tal06, Pan13]. The remarkable fact is that the SK model

was the first model of its kind understood to exhibit a rich structure in its optimization

landscape known as continuous replica symmetry breaking. This entails, roughly speaking,

a hierarchical clustering of sets of x having high objective value, so that given such a high-

quality point there are points of comparable quality at many scales of distances to x.

Alternatively, from a point of view more familiar in optimization and convex analysis,

one may view this problem as choosing a uniformly random direction in the space of sym-

metric matrices—as the law ofW ∼ GOE(n) is isotropic with respect to the Frobenius inner

product—and measuring along that direction the width (up to rescaling) of the cut polytope,

the convex hull of the matrices xx> over x ∈ {±1}n. In this way we measure the Gaussian

width or the closely-related mean width, basic statistics for measuring the size of a con-

vex body and the first of the much-studied intrinsic volumes (see, e.g., [AS17]), for the cut

polytope, one of the central objects of combinatorial optimization [DL09].

Whichever of these three interpretations the reader might find most appealing, the prob-

lem (1.3) with W ∼ GOE(n) is evidently a central example of random combinatorial op-

timization. We have also seen that we know the typical value of this problem, which we

rescaled) as c →∞ [McK81].
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rewrite in its more usual normalization,

lim
n→∞ E

W∼GOE(n)
[M{±1/

√
n}n(W )] = 2P∗ ≈ 1.526 . (1.5)

We are now ready to ask: is it possible to efficiently optimize this random function? As we

have seen above, it is fruitful to think of “optimizing” both from above and from below—

either searching for a x achieving a large objective value, or using an algorithm that certifies

upper bounds guaranteed to be valid for all x. We may already evaluate some simple algo-

rithmic approaches.

Example 1.3.1 (Spectral search and certification). Two related spectral algorithms give sim-

ple examples of algorithms for both search and certification. For certification, writing λmax

for the largest eigenvalue of W , we may use the bound

x>Wx ≤ λmax · ‖x‖2 = λmax ≈ 2 (1.6)

for all x ∈ {±1/
√
n}n, whereby λmax is a certifiable upper bound on (1.3). From classical

random matrix theory [Gem80, AGZ10], it is known that λmax → 2 almost surely as n→∞.

For search, for vmax the eigenvector of λmax, we may take x = x(W ) := sgn(vmax)/
√
n

where sgn denotes the {±1}-valued sign function, applied entrywise. The vector vmax is dis-

tributed as an uniform random unit vector in Rn, so the quality of this solution may be

computed as

x>Wx = λmax · 〈x,vmax〉2 +O
(

1√
n

)
= λmax · ‖vmax‖2

1

n
+O

(
1√
n

)
≈ 4
π
≈ 1.273 (1.7)

with high probability as n→∞.8 (The error in the first equation is obtained as
∑
i λi〈vi,x〉2 ≈

8We say that a sequence of events (An)n∈N with An ∈ Fn the σ -algebra of an associated measurable
space occurs with high probability (in n) if the probability of An tends to 1 as n→∞.
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1
ntr(W )(1 − 〈vmax,x〉2), where the sum is over all eigenvectors vi except vmax. This analysis

appeared in [ALR87], an early rigorous mathematical work on the SK model.)

Comparing the three boxed numbers above, we see that neither spectral search nor spec-

tral certification gives a tight approximation of the SK Hamiltonian.

Montanari [Mon18] recently showed that, using a variant of approximate message pass-

ing, for any ε > 0 there in fact exists a polynomial-time search algorithm that with high

probability achieves a value of 2P∗ − ε (assuming a technical conjecture on the SK model,

and inspired by earlier results of [ABM20, Sub18]). This closed the question of efficient

“perfect” search. For certification, for some time the only algorithm beyond the spectral

bound that had been studied was the degree 2 SOS relaxation, an SDP also occurring in the

seminal results of Goemans, Wiliamson and Nesterov [GW95, Nes98]. For this algorithm,

[MS16] showed (in the course of applications to discrete problems in the vein of [DMS17])

that the value achieved is again 2, asymptotically—no better than the spectral algorithm. Fi-

nally, several works of the author [BKW20b, KB20, Kun20b] as well as the concurrent works

[MRX20, GJJ+20] showed, in the case of the first reference, that conditional on a conjecture

we will discuss in Chapter 3 no efficient certification algorithm can improve on the spectral

bound, and, for the remaining references, that no polynomial-time SOS relaxation improves

on the spectral bound.

Remark 1.3.2 (Proof complexity of the SK Hamiltonian). The above hardness of certification

is despite the fact that a relatively simple argument due to Guerra [Gue01], which may be

viewed in our context even more simply as an application of the Fernique-Sudakov Gaussian

comparison inequality (see Chapter 3 of [LT13]), gives a bound of 2
√

2/π < 2 (called the

“replica-symmetric prediction” in the spin glass literature) on the objective. The proof only

involves an interpolation argument between the optimization of x>Wx and a linear opti-

mization of x>g over g ∼N (0,In) (see, in addition to Guerra’s argument, Chatterjee’s proof
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along these lines of the Fernique-Sudakov inequality in [Cha05]). Thus these results suggest

that no simple algebraic “pointwise” argument can reproduce even this preliminary bound.

1.4 Spectral Barriers

In fact, we will see that this kind of failure of certification algorithms is unique neither to

optimization over the hypercube nor to the particular random function of the SK Hamil-

tonian. We will focus our initial efforts on the following broader class of problems, which

conveniently is broad enough to encompass many interesting problems of applied and the-

oretical interest, while enforcing enough structure that a unified explanation can be given

for the high computational costs of certification.

Definition 1.4.1 (Constrained PCA problem). Let X ⊆ Rn×k and W ∈ Rn×nsym . We call an

optimization problem of the following form a constrained principal component analysis (PCA)

problem:

MX(W ) :=


maximize tr(X>WX)

subject to X ∈ X

 . (1.8)

In essence, constrained PCA asks us to search for a structured vector or small collection

of vectors X (we will exclusively think of k, the “rank parameter,” as constant while n →

∞) aligned with those eigenvectors of W that lie close to the top of its spectrum. These

problems include finding large cuts and k-cuts in graphs [GW95, Tre12a], coloring graphs

[Hof70, AG84, AK97], variants of the satisfiability constraint satisfaction problem [Zwi98,

DMO+19], synchronization problems [Sin11], PCA with variously structured signals (non-

negative [MR15], sparse [ZHT06], and others [DMR14]), and certain cases of tensor-valued

PCA [RM14]. Despite this diversity of applications, for W random, many constrained PCA

problems appear to present one and the same difficulty to efficient certification algorithms.

Let us first define this notion that we have discussed informally above.
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Definition 1.4.2 (Certification algorithm). Let f be an algorithm, possibly randomized,9 that

takes a square matrix W as input and outputs a number f(W ) ∈ R. We say that f certifies

a value K on MX when W ∼ Qn for some sequence of distributions Qn ∈ P(Rn×nsym ) if

1. for any W ∈ Rn×nsym , MX(W ) ≤ f(W ), and

2. if W ∼ Qn, then f(W ) ≤ K + o(1) with high probability as n→∞.

The obstacle we will study is that such algorithms often cannot certify a better bound

than a spectral bound that follows from decoupling the dependences of constrained PCA on

W and X:

max
X∈X

tr(X>WX) ≤ λmax(W ) ·max
X∈X

‖X‖2
F . (1.9)

(Here ‖X‖2
F := tr(X>X).) When a spectral bound is optimal among some broad class of

efficient certification algorithms, but does not yield a tight result, we say that a constrained

PCA problem exhibits a spectral barrier. The main specific project of this thesis is to provide

evidence for spectral barriers in numerous constrained PCA problems, and to explore the

mathematical phenomena that appear to be responsible for these barriers.

We believe that spectral barriers are an exceptionally robust phenomenon. There will be

many indications in this work that spectral barriers are sensitive neither to the constraint set

X nor to the instance W (or, in the average case analysis we will mostly be concerned with,

to its distribution). So long as both are “generic” or sufficiently “incoherent” with respect to

the standard coordinate basis, spectral barriers seem to arise reliably.

As discussed above for the case of the SK Hamiltonian, spectral barriers sometimes arise

when optimal search can be performed efficiently; other times, both search and certification

appear unable to attain optimal performance. Beyond merely numerical gaps in the perfor-

mance various algorithms are able to achieve, though, we emphasize that the mechanisms

9We allow f to be randomized; i.e., it may use randomness in its computations, but the output K must
be an upper bound almost surely. We do not expect certification algorithms to require randomness, but it
may be convenient, e.g., to randomly initialize an iterative optimization procedure.
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giving rise to gaps in search and certification appear to be completely different. In the case

of the SK Hamiltonian, the spectral barrier to certification is in essence a matter of the diffi-

culty of refuting that a hypercube point might lie in the span of the top eigenvectors of W ,

a uniformly-distributed low-dimensional subspace in the case of W ∼ GOE(n). The proba-

bilistic setting of the spectral barrier is thus relatively simple; indeed, this is related to the

robustness mentioned above, since a sufficiently incoherent deterministic low-dimensional

subspace shares all the features of a random subspace that are relevant to the analysis of

the spectral barrier. On the other hand, the search algorithm of [Mon18] is intimately re-

lated to the “depths” of the landscape of the SK Hamiltonian and the complex structure of

the low-temperature Gibbs measures related to continuous replica symmetry breaking that

allow the landscape to remain navigable by an optimization algorithm to near-optimality.

Because of this, the algorithm itself is also likely brittle, being calibrated by quantities com-

puted from the Parisi formalism and other aspects of our theoretical understanding of the

particular SK Hamiltonian.

1.5 Summary of Contributions

We now outline the organization of the thesis and the content and main contributions of

each chapter. At the beginning of each chapter we give a more detailed summary and its

context at that point in the thesis, as well as specific references and lists of main results.

Overall, all of the content is based on the publications [BKW20b, KB20], as well as the articles

in submission [DKWB19, Kun20a, Kun20b, BBK+20, BKW20a], the article in revision [BK18]

at the time of writing, and the expository notes [KWB19]. Chapter 9 is based on a short

article in preparation.
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1.5.1 Reductions, Planting, and Low-Degree Polynomials

We begin by developing reductions from certification in constrained PCA problems to certain

associated hypothesis testing problems, and using a method based on analyzing algorithms

computing low-degree polynomials to provide evidence that these hypothesis testing prob-

lems are hard.

In Chapter 2, we give a unified treatment of these reductions, which have been proved on

an ad hoc basis in several publications. We also describe the spectral planting strategy un-

derlying the reductions, which gives an analytically-tractable way to skew the top eigenspace

of a GOE matrix towards a particular constrained PCA solution.

In Chapter 3, we introduce the method based on low-degree polynomials that we will use

to treat the resulting hypothesis testing problems, giving two justifications (one based on

the actual development of these ideas in prior literature on SOS optimization and another

streamlined one devised post hoc in [KWB19]) and describing consequences of the lower

bounds we will prove.

In Chapter 4, we prove bounds and formulae for the norm of the low-degree likelihood

ratio, the main quantity governing lower bounds against algorithms computing low-degree

polynomials. We explore the overlap form that these expressions often take, which show

that, though they describe high-dimensional sums of moments of random variables, the

norms can often be condensed into a single scalar expectation. We treat several observation

models in this way using various properties of orthogonal polynomials.

In Chapter 5, we apply these results to prove lower bounds against algorithms computing

low-degree polynomials. Using our tools we are able to treat a wide range of models beyond

those needed for our applications to certification: we give tight results with a unified and

simplified presentation for matrix and tensor PCA, sparse PCA, and the stochastic block

model. We use suitable matrix PCA results to then deduce conditional hardness results for
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certification for the SK Hamiltonian, the Potts spin glass Hamiltonian (related to a Gaussian

approximation of graph coloring), and non-negative PCA over a GOE input matrix.

1.5.2 The Sum-of-Squares Hierarchy

We then specialize to the hypercube constraints of the SK Hamiltonian, and study SOS re-

laxations over this constraint set and build up to proving SOS lower bounds.

In Chapter 6, we introduce basic properties of SOS relaxations over the hypercube and

present some background results. We also motivate our program of building pseudomo-

ment matrices—the objects underlying lower bounds against the SOS hierarchy—as Gram

matrices, and argue that this is more broadly a productive approach to understanding SOS.

In Chapter 7, we study the structure of degree 4 SOS pseudomoment matrices viewed

as Gram matrices. This yields constraints on the spectra of these matrices and intriguing

connections to the notions of entanglement and separability from quantum information

theory. We also use our characterization to demonstrate classes of examples of degree 2

Gram matrices that can and cannot be extended to degree 4 pseudomoments that are built

from equiangular tight frames, highly-structured combinatorial packings of vetors.

In Chapter 8, we reinterpret our degree 4 construction for Gram matrices of equiangular

tight frames as a Gaussian conditioning computation involving surrogate random matrices

from which we propose building degree 4 pseudomoments. Generalizing these to surrogate

random tensors, we propose a general scheme for extending degree 2 pseudomoments to

higher degrees, and derive a description of the result in terms of the decomposition of poly-

nomials into parts belonging to and orthogonal to an ideal under the apolar inner product.

We note that few general techniques for building pseudomoments are known; the main other

idea in this direction is the pseudocalibration technique of [BHK+19], to which our spectral

extension method gives a plausible alternative.

In Chapter 9, we show that the spectral pseudomoment extension applies exactly to
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a deterministic construction due to Grigoriev [Gri01a] and Laurent [Lau03b]. We give a

streamlined representation-theoretic proof of this result, and prove a conjecture of Laurent’s

concerning the eigenvalues of the associated pseudomoment matrix.

In Chapter 10, we propose a general closed-form pseudomoment extension derived from

the spectral extension, by heuristically generalizing the Maxwell-Sylvester representation

of harmonic polynomials to certain multiharmonic polynomials. This yields a combinato-

rial construction of sum-of-forests pseudomoments. We prove lifting theorems giving general

(though rather technical) conditions under which degree 2 pseudomoments may be extended

in this way to higher degrees. For “sufficiently incoherent” high-rank degree 2 pseudomo-

ments our lifting succeeds to any constant degree of SOS, while for low-rank degree 2 pseu-

domoments we adapt it to succeed to degree 6.

In Chapter 11, we apply our lifting theorems. We first show that the sum-of-forests

pseudomoments approximately recover, to leading order, the Grigoriev-Laurent pseudomo-

ments, giving an enumerative combinatorial interpretation of the construction’s behavior.

We also show that the lifting to high degree applies to uniformly-random high-rank projec-

tion matrices. Lastly, we show that the lifting to degree 6 applies to rescaled uniformly-

random low-rank projection matrices, which results in a tight degree 6 lower bound for the

SK Hamiltonian.

Finally, in Appendix A we collect several open problems concerning various topics dis-

cussed in the thesis.
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Part I

Computationally-Quiet Planting and

Low-Degree Polynomials
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2 | Spectral Planting and Reductions

to Hypothesis Testing

To address the question of whether efficiently certifying better-than-spectral bounds on

constrained PCA problems is possible, our first order of business will be to develop tools

that allow us to make a prediction and provide some indirect evidence of hardness. This

is helpful because analyzing specific convex relaxations, as we will do in Part II, both is

technically complicated and entails entirely different types of arguments—looking for SOS

proofs versus constructing pseudomoments, in our case—depending on whether we are

trying to show that it is possible or impossible to cross the spectral barrier. Instead, we

will see that we can consider a different class of lower bounds, which are governed by more

straightforward and unified computations that we expect can identify either situation. It will

also turn out that the tools we use to prove these lower bounds are quite broadly applicable,

and allow us to prove similar lower bounds in various other interesting settings.

Because of these further applications, we will eventually develop the tools for our lower

bounds in greater generality than just those relevant to constrained PCA. In this initial chap-

ter where we establish the connection between these lower bounds and constrained PCA, we

will also be quite general in allowing the constraint set X to vary, but for the most part we

will consider the same distribution of W as in the SK Hamiltonian, W ∼ GOE(n).

Our goal in this chapter will be to show that, if it is possible to cross the spectral barrier
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for certification in a constrained PCA problem, then it is possible to solve certain hypothesis

testing problems of distinguishing between pairs of probability distributions. The toolbox

for identifying computational hardness in testing problems is richer than that for average-

case certification problems, so this will give us a new avenue to argue the hardness of certifi-

cation. More specifically, we will show that certifying bounds necessarily involves excluding

the possibility of the problem instance being tampered with by planting high-quality solu-

tions: if we can certify a better-than-spectral bound, then we must have verified that W

has not been changed to align its top eigenspaces especially well with some X ∈ X. Thus

we will consider hypothesis testing between whether W was drawn from GOE(n) or some

tampered-with variant thereof. Moreover, any fixed collection of eigenspaces of GOE(n)

span a uniformly random subspace (see Proposition 2.2.2), we may “factorize” this testing

problem and test instead between a uniformly random subspace and one that has been

skewed to align well with X ∈ X.

Summary and References This chapter gives a unified and generalized treatment of a

reduction argument that has been repeated for several problems, mutatis mutandis, in the

following references: [BKW20b] for rank-one constrained PCA, [BBK+20] for higher-rank con-

strained PCA, and [BKW20a] for non-negative PCA, which is a type of rank-one constrained

PCA but which we will see presents minor additional technical obstacles. In Section 2.5 we

also discuss one example of this reduction when W is not drawn from GOE(n), which is

also taken from [BBK+20]. The main results of this chapter that we will use in the sequel are

Corollaries 2.3.3 and 2.3.4, which give general reductions from certification in constrained

PCA problems under the GOE to hypothesis testing in Wishart spiked matrix models.

Prior Work The idea of reducing hypothesis testing between null and planted models

to certifying bounds on some quantity under the null model is implicit in many works on
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the planted clique model, starting with its introduction by [Jer92, Kuč95] and becoming

especially apparent in the results on SOS of [DM15a, RS15, HKP+18, BHK+19], and even more

explicit in subsequent works using the pseudocalibration framework for other problems

[HKP+17, MRX20, GJJ+20]. However, none of these results draw a formal connection between

the two problems; rather, they only argue that if we believe it should be hard to distinguish a

given null and planted model, then that should constrain the possible SOS pseudomoments

in various ways. The only prior work we are aware of where a genuine reduction is conducted

is [WBP16], who do this for the specific problem of certifying the restricted isometry property

(see also [DKWB20], in which the author participated but which we will not discuss here,

where the framework we describe is applied to the same problem). More broadly, that

result belongs to a line of work on reductions among numerous average-case problems

[BR13, HWX15, WBS16, BB19b, BB19a, BB20], but [WBP16] is the only result in this direction

we are aware of that reduces to certification problems in particular.

2.1 Hypothesis Testing

We begin with some generalities about hypothesis testing. The basic setup that all of the

testing problems we study will share is as follows. Suppose (Pn)n∈N+ and (Qn)n∈N+ are

two sequences of probability distributions over a common sequence of measurable spaces

((Ωn,Fn))n∈N+ . In statistical parlance, we will think throughout of Pn as the model of

the alternative hypothesis and Qn as the model of the null hypothesis. In our previous

language, the distributions (Pn) include a “planted” structure, making the notation a helpful

mnemonic. Suppose we observe Y ∈ Ωn which is drawn from one of Pn or Qn. We hope to

recover this choice of distribution in the following sense.

Definition 2.1.1. A test is a measurable function fn : Ωn → {p,q}.
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Definition 2.1.2. A sequence of tests fn is said to (strongly) distinguish (Pn) and (Qn) if

fn(Y ) = p with high probability when Y ∼ Pn, and fn(Y ) = q with high probability when

Y ∼ Qn. If such fn exist, we say that (Pn) and (Qn) are statistically distinguishable.1

In statistics one often draws the distinction between the probabilities of a test returning an

incorrect result when Y ∼ Qn and Y ∼ Pn, called Type I and Type II errors respectively. We

will briefly discuss this point and some related facts later in Section 3.1, but generally we

will only consider tests successful when they drive both error probabilities to zero. We will

be especially interested in differences in the computational cost of hypothesis testing, for

which we introduce the following terminology.

Definition 2.1.3. If a sequence of tests fn distinguishes (Pn) and (Qn) and fn(Y ) may be

computed in time T(n), then we say that (Pn) and (Qn) are distinguishable in time T(n). If

T(n) grows polynomially in n, then we say that (Pn) and (Qn) are computationally distin-

guishable.

Remark 2.1.4 (Model of computation). For the sake of convenience, we suppose we may

perform real arithmetic exactly, and view T(n) above as counting the number of exact real

operations. We also will later assume we may compute eigendecompositions exactly in poly-

nomial time. However, all computations we perform should be numerically stable, and all

matrices should be well-conditioned, so our reductions and other claims should also hold in

weaker models of, say, floating point arithmetic. The so-called “real RAM” model common in

computational geometry is close to the informal model we adopt.

1We will only consider this so-called strong version of distinguishability, where the probability of success
must tend to 1 as n → ∞, as opposed to the weak version where this probability need only be bounded
above 1

2 . For high-dimensional problems, the strong version typically coincides with important notions of
estimating the planted signal. See, e.g., [BM17, EAKJ20, CL19] for some discussion of “weak detection” in
literature on some of the models we will study.
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2.1.1 Statistical-Computational Gaps

We emphasize that these computational distinctions are far from trivial. In fact, one of

the central phenomena of the asymptotics of high-dimensional testing problems is that sta-

tistical and computational distinguishability do not always coincide. Such a situation is

called a statistical-computational or information-computation gap. (See, e.g., [MM09, ZK16,

BPW18] for general discussion of this phenomenon and common analytical tools for study-

ing it drawn from statistical physics.) For this reason, while classical statistical theory pro-

vides tools for identifying statistically-indistinguishable distributions, for which the hypoth-

esis testing problem is impossible, these tools do not always suffice to accurately identify

computationally-indistinguishable distributions, for which the testing problem may be pos-

sible but is prohibitively difficult.

Indeed, as a concrete example, if we reduce the problem of certifying a bound on the

SK Hamiltonian to a hard hypothesis testing problem as we have outlined above, then such

a gap must occur. After all, in exponential time it is possible to certify a tight bound on

M{±1/
√
n}n(W ) by simply searching over all x ∈ {±1/

√
n}n, so perfect certification is pos-

sible but (we believe) hard. Accordingly, any hard hypothesis testing problem we reduce to

certification will be possible to solve, too. In this sense, our plan entails demonstrating that

a spectral barrier is a manifestation of a statistical-computational gap.

As we will soon meet a problem exhibiting a somewhat involved statistical-computational

gap, in the negatively-spiked Wishart matrix model, let us give a simpler preliminary exam-

ple for the time being. Typically, such a gap arises in the following more specific way.

Suppose the sequence (Pn) has a further dependence on a signal-to-noise parameter λ > 0,

forming a parametrized sequence (Pλ,n)λ>0,n≥1. This parameter should describe, in some

sense, the strength of the structure present under the planted distribution (or, in some

cases including the Wishart model, the number of i.i.d. samples received from a fixed distri-

26



bution). The following is one of the best-studied examples.

Example 2.1.5 (Planted clique problem [Jer92, Kuč95]). Under the null model Qn, we observe

an Erdős-Rényi random graph on n vertices and with edge probability 1
2 (that is, each pair of

vertices is connected independently with probability 1
2 ). The signal-to-noise parameter λ is an

integer 1 ≤ λ ≤ n. Under the planted model Pλ,n, we first choose a random subset of vertices

S ⊆ [n] of size |S| = λ, uniformly at random. We then take the union of a graph sampled

from Qn with a planted clique or complete subgraph on S.

The typical size of the largest clique under Qn is 2 log2n (with fluctuations of lower

order), so Pn and Qn are statistically distinguishable whenever λ ≥ (2 + ε) log2n for some

ε > 0. On the other hand, the best known algorithms for distinguishing Qn and Pn in

polynomial time [AKS98, FK00, DM15a] only succeed when λ = Ω(√n), and there is plentiful

further evidence that this performance is optimal [Jer92, Ros10, BHK+19, GZ19]. Thus there

is a large regime of (2+ε) log2n ≤ λ�
√
n where it is known that it is possible to distinguish

Qn and Pn, but conjectured that it is hard to do so.

2.2 Pushout and Computationally-Quiet Planting

We now move towards developing a means of reducing testing problems to certification in

constrained PCA problems, in such a way that we have reason to believe the testing problems

involved are hard. To begin, the following is a broad and easy claim that shows how, in

general, a certification algorithm can be used to test between a natural and a tampered-with

distribution of instances W .

Theorem 2.2.1 (Abstract reduction). Let C > 0. Let Pn ∈ P(Rn×nsym ) be such that, under

W ∼ Pn, for all ε > 0, with high probability MX(W ) ≥ C − ε (for instance, if MX(W )→ C in

probability). Let Qn ∈ P(Rn×nsym ) be such that there exists ε > 0 and an algorithm running in
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time T(n) that can certify with high probability a bound of at most C − ε on MX(W ) when

W ∼ Qn. Then, there exists an algorithm running in time T(n) +O(1) that can distinguish

(Pn) from (Qn).

Proof. Let g(W ) be the certificate the algorithm computes. Then, we define tests fn :

Rn×nsym → {p,q} by

fn(W ) :=


p if g(W ) ≥ C − ε/2,

q if g(W ) < C − ε/2,
(2.1)

and clearly under the assumptions the fn will distinguish (Pn) from (Qn).

Recall that we will be given Qn, usually Qn = GOE(n), and the assumption that a better-

than-spectral certification algorithm exists will be for the sake of contradiction. Therefore,

the main matter remaining will be to design Pn making MX(W ) typically large in a way that

is computationally-quiet, or difficult to distinguish from Qn. That is, we want to plant an

X ∈ X in W ∼ GOE(n) such that tr(X>WX) is nearly as large as possible (so that X

nearly saturates the spectral bound) in a way that is difficult to detect.

The notion of quiet planting has appeared previously in the literature, but mostly in

the context of statistically-quiet planting, seeking a planting such that Pn and Qn are close

in some measurement of distance between probability measures, or indistinguishable by

computationally-unbounded tests. This has been used in hopes of intentionally designing

random hard instances of constraint satisfaction problems [JP00, KZ09, ZK11], and also as

a mathematical technique for analyzing the unplanted distribution via the planted distri-

bution from which it is indistinguishable [COKV07b, COKV07a, ACO08], in particular for

establishing the “shattering” phenomenon in the solution spaces of random constrained

satisfaction problems. In these latter situations, the underlying random problem usually

has one or many solutions—satisfying assignments in a constraint satisfaction problem,

say—with high probability already, and we wish to plant another such solution that we have
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explicit control over. In our setting, in contrast, we are interested in planting something

(the matrix X , in a suitable sense) in Pn that with high probability does not exist under Qn.

Typically such a pair of distributions will be distinguishable by a brute-force search for the

planted object, so the restriction to computationally-bounded quietness is essential.

Before proceeding to consider quiet planting in the GOE, let us recall some basic facts

about it and its spectrum.

Proposition 2.2.2 (GOE spectrum [Wig93, Gem80, AGZ10]). For λ1 ≥ · · · ≥ λn eigenvalues

of W ∼ GOE(n) and w1, . . . ,wn ∈ Sn−1 the corresponding eigenvectors, the following hold.

• The λi are almost surely distinct.

• The empirical spectral measure 1
n
∑n
i=1 δλi converges weakly to the semicircle law on

[−2,2] having density 1{x ∈ [−2,2]} 1
2π

√
4− x2dx.

• λ1 → 2 and λn → −2 in probability.

• For any S ⊆ [n] independent ofW (including deterministic sets), the law of the subspace

span({wi : i ∈ S}) is that of a uniformly-distributed |S|-dimensional subspace of Rn.

Let us consider a naive strategy for planting in the GOE, for the moment working under

the hypercube constraints X = {±1/
√
n}n. A natural idea is additive planting, where we

draw W ∼ Pn by drawing W (0) ∼ GOE(n) and x ∼ Unif({±1/
√
n}n), and then set W =

W (0) + λxx> for some λ > 0. (This forms the so-called Wigner spiked matrix model, to

which we will return in greater detail in Example 4.1.2 and again in Section 5.2.4.) To achieve

x>Wx ≈ 2 to saturate the spectral bound, we want to take λ ≈ 2, since x>W (0)x is with

high probability of subconstant order. Will this planting be computationally-quiet? Perhaps

the most natural algorithm for distinguishing Pn from Qn in this setting is to compute the

largest eigenvalue of W , since adding a sufficiently large rank-one component under Pn

will eventually make the largest eigenvalue larger than that under Qn. We refer to this as

29



the PCA test (more properly, we compute the largest eigenvalue and then threshold it to

perform the test). Since typically λmax(W ) ≈ 2 underW ∼ Qn = GOE(n) and we are adding

a matrix with largest eigenvalue approximately 2, we might expect that the PCA test would

not notice the deformation ofW . However, results of random matrix theory tell us that this

is not the case. Instead, the added rank-one component λxx> and the unstructured noise

of W (0) ∼ GOE(n) “cooperate” to produce an eigenvalue larger than 2 even for λ < 2. The

following result characterizes this so-called “pushout effect” in our setting, a variant of the

celebrated Baik–Ben Arous–Péché (BBP) transition [BBAP05].

Proposition 2.2.3 ([FP07, BGN11]). Write vmax(W ) for the eigenvector corresponding to the

largest eigenvalue of a matrix W . For λ > 0 and any x ∈ Sn−1, when W = λxx> +W (0) for

W (0) ∼ GOE(n), the following hold.

• If λ ≤ 1, then λmax(W )→ 2 and 〈vmax(W ),x〉2 → 0 almost surely.

• If λ > 1, then λmax(W ) → λ + λ−1 > 2 and 〈vmax(W ),x〉2 → 1 − λ−2 ∈ (0,1) almost

surely.

Thus additive planting can be computationally-quiet only for λ ≤ 1, but will actually plant

a sufficiently high-quality solution to saturate the spectral bound only for λ ≥ 2. Reducing

certification to testing in this kind of additively-planted model then cannot satisfy all of our

criteria simultaneously.

The crux of the issue is in the second parts of the two results of Proposition 2.2.3:

when λmax(W ) > 2 under W ∼ Pn, then x is not actually the top eigenvector of W . The

additive planting therefore “wastes some of its effort,” in that it unintentionally plants a

vector x′ ≠ x with x′
>
Wx′ > x>Wx, and this x′ will depend in part on x and in part

on the GOE matrix W (0), so there is no guarantee that x′ is close to X. To correct this

misbehavior, we construct a spectral planting, where x is instead planted in a more direct

way to lie very close to the top few eigenspaces ofW ∼ Qn, without changing the eigenvalue
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distribution of W and therefore without creating a pushout effect that can be detected by

the PCA test.

We now describe how to achieve this in reasonable generality when Qn = GOE(n), using

a modification of a well-known spiked matrix model where we apply a negative spike instead

of the more usual positive spike. (This model itself is quite similar to the Wigner spiked

matrix model mentioned above, as we will also discuss at length later in Chapters 4 and 5,

but the way we use it for spectral planting will be different from how we used the Wigner

model for the additive planting.)

Definition 2.2.4 (Wishart spiked matrix model [Joh01]). Let k ∈ N+ (not depending on n), and

let Pn ∈ P(Rn×k). The Wishart spiked matrix model with signal strength β > −1, sampling

ratio γ, and spike prior (Pn) is specified by the following distributions over (y1, . . . ,yN) ∈

(Rn)N with N = N(n) = bn/γc:

• Under Qn, draw y1, . . . ,yN ∼N (0,In) independently.

• Under Pn, first draw X(0) ∼ Pn, and define

X :=


X(0) if β‖X‖2 > −1,

0 otherwise.
(2.2)

Then, draw y1, . . . ,yN ∼N (0,In + βXX>) independently.

More briefly, we say that (Qn,Pn)n≥1 form a Wishart spiked matrix model with parameters

(β, γ,Pn). We call k the rank of such a model or of the spike prior, and we call the model

negatively-spiked if β < 0.

We note that often the yi are viewed as being organized into a matrix Y ∈ Rn×N , and in

particular the sample covariance matrix 1
NY Y

> plays an important role in algorithms for

estimating the spike X , which is why this model is viewed as belonging to the family of
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spiked matrix models. While the positively-spiked version of this model has been studied at

great length, the negatively-spiked version is less common and apparently was first attended

to only by [PWBM18]. We discuss their results on this case in Section 2.4 below.

We also introduce an assumption that we will always assume to hold when we are work-

ing with such a model in this section, saying that we are almost surely in the first case of

(2.2) above. When we later arrive at our applications of these results in Section 5.3, we will

present a simple way to adjust a spike prior to satisfy this.

Definition 2.2.5. A spike prior (Pn) is β-good for the Wishart spiked matrix model if β‖X‖2 >

−1 almost surely when X ∼ Pn.

Using this model we describe how to achieve a spectral planting of X in the top few

eigenspaces of the GOE.

Definition 2.2.6 (Spectrally-planted GOE model). Let (QWish
n ,PWish

n )n≥1 be the null and planted

distributions for a Wishart spiked matrix model with parameters (β, γ,Pn) with γ > 1. Define

Qn,Pn ∈ P(Rn×nsym ) in the following way. Suppose Dn ∈ {Qn,Pn}, and let DWish
n equal QWish

n

if Dn = Qn and equal PWish
n if Dn = Pn. To sample from Dn, first draw W̃ ∼ GOE(n) and

y1, . . . ,yN ∼ DWish
n . Let ŷ1, . . . , ŷN be an orthonormal basis for the span of the y1, . . . ,yN ,

and ŷN+1, . . . , ŷn be an orthonormal basis for the orthogonal complement of this span. Let

λ1 > · · · > λn be the eigenvalues of W̃ . Then, draw W := ∑n
i=1 λiŷn−i+1ŷ

>
n−i+1. We call

the sequence of pairs of distributions (Qn,Pn) defined in this way the spectrally-planted GOE

model with parameters (β, γ,Pn).

Note that, when β < 0, then ŷ1, . . . , ŷN span an N-dimensional subspace that is biased

away from the directions of the columns of X . Since we build W above to have as its top

eigenvectors a basis for the orthogonal complement of the span of these, in this definition

we are, somewhat indirectly, biasing the top eigenspace of W towards the directions of X ,

which is precisely what we claimed the spectral planting would achieve. The closer β is to
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−1, the stronger this bias is; the closer γ is to 1, the smaller the fraction 1−γ−1 of directions

occupied by this top eigenspace.

The following simple result shows that this model is indeed essentially just a “cloaked”

version of the Wishart spiked matrix model.

Proposition 2.2.7. If it is possible to distinguish between Pn and Qn in the spectrally-planted

GOE model with parameters (β, γ,Pn) in time T(n), then it is possible to distinguish between

Pn and Qn in the Wishart spiked matrix model with parameters (β, γ,Pn) in time T(n) +

O(poly(n)) using a randomized test, and likewise with the roles of the models reversed.

Proof. From the definition, we may sample from Pn or Qn in the spectrally-planted GOE

model by sampling (y1, . . . , yN) from Pn or Qn (respectively) in the Wishart spiked matrix

model, samplingW ∼ GOE(n) independently, and outputting a function gn(y1, . . . ,yN ,W ),

where gn is computable in polynomial time in n. Thus given tests fn that distinguish with

high probably in the spectrally-planted GOE model, randomized tests f ′n outputting f ′n(Y ) =

fn(gn(Y ,W )) forW ∼ GOE(n) will distinguish with high probability in the Wishart spiked

matrix model. For the second statement, the result follows immediately from the laws

of the top eigenvectors under Pn and Qn in the spectrally-planted GOE model being, by

construction, precisely the laws of observations under Pn and Qn respectively in the Wishart

spiked matrix model with the same parameters.

Remark 2.2.8 (Reductions). To simplify our language and work slightly informally without

a precisely-specified computational model, we state results of the above form in terms of the

existence of algorithms with prescribed runtimes. However, stronger formal statements in

terms of reductions also hold; for example, above, there exists a randomized polynomial-time

reduction from testing under the Wishart spiked matrix model to testing under the spectrally-

planted GOE model and a deterministic polynomial-time reduction from testing under the

spectrally-planted GOE model to testing under the Wishart spiked matrix model.
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2.3 Tools for Reductions Under the GOE

We now proceed to more technical results justifying that spectral planting actually achieves

what we have outlined above. The following is the key result showing that, under Pn of the

spectrally-planted GOE model, the sampled X ∼ Pn indeed lies near the top eigenspaces of

the sampled matrix. In fact it will be useful to be slightly more general and considerX ′ that

is itself close toX , for the purposes of our applications, but the key intuitions are captured

by thinking of X ′ =X below.

Theorem 2.3.1. If (Qn,Pn) are the null and planted distributions of the spectrally-planted

GOE model with parameters (β, γ,Pn), then Qn = GOE(n). Moreover, for any ε > 0, there

exist C > 0, β > −1, and γ > 1 such that the following holds. Let k ≥ 1 and Pn ∈ P(Rn×k)

be a β-good spike prior. Suppose further that there exists constants K,L > 0 and a random

variable X ′ coupled to X ∼ Pn such that ‖X ′‖2
F → K in probability and ‖X>X ′‖2

F ≥ L with

high probability. Then, lettingX ′ be the variable coupled to the spike matrixX drawn in the

Wishart spiked matrix model, under W ∼ Pn we have tr(X ′>WX ′) ≥ 2(K − C(K − L) − ε)

with high probability.

Our proof will use the following technical result, which, in the above setting, controls

how well
∑N
i=1 yiy

>
i approximates

∑N
i=1 ŷiŷ

>
i .

Proposition 2.3.2. Suppose y1, . . . ,yN ∼ Pn in a Wishart spiked matrix model with γ > 1 and

β ≤ 0. Then, for any ε > 0, with high probability

(1− ε)(√γ − 1)2
N∑
i=1

ŷiŷ
>
i �

1
N

N∑
i=1

yiy
>
i � (1+ ε)(

√
γ + 1)2

N∑
i=1

ŷiŷ
>
i . (2.3)

Proof. Since
∑N
i=1 ŷiŷ

>
i is the orthogonal projector to the row space of 1

N
∑N
i=1 yiy

>
i , and this
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matrix has exactly N non-zero eigenvalues almost surely, it suffices to show that

(1− ε)(√γ − 1)2 ≤ λN
 1
N

N∑
i=1

yiy
>
i

 ≤ λ1

 1
N

N∑
i=1

yiy
>
i

 ≤ (1+ ε)(√γ + 1)2. (2.4)

This follows immediately from Theorem 1.2 of [BS06], noting that the yi are drawn from

a spiked Wishart model with a covariance matrix with a constant number k of eigenvalues

different than 1, all of which are smaller than 1.

Proof of Theorem 2.3.1. Note that, since (Pn) is β-good, almost surely we are in the first case

of (2.2) in the definition of the Wishart spiked matrix model, so that y1, . . . ,yN ∼N (0,In +

βXX>). We begin with a direct computation. We note that 〈A,B〉 := tr(A>B) denotes the

Frobenius inner product for any A,B of equal size.

tr(X ′>WX ′) = 〈X ′X ′>,W 〉

=
〈
X ′X ′>,

n∑
i=1

λiŷn−i+1ŷ
>
n−i+1

〉

≥
〈
X ′X ′>, λn−N

n∑
i=N+1

ŷiŷ
>
i + λn

N∑
i=1

ŷiŷ
>
i

〉

=
〈
X ′X ′>, λn−N

In − N∑
i=1

ŷiŷ
>
i

+ λn N∑
i=1

ŷiŷ
>
i

〉

= λn−N‖X ′‖2
F − (λn−N − λn)

〈
X ′X ′>,

N∑
i=1

ŷiŷ
>
i

〉
. (2.5)

We consider the two terms here separately. In the first term, we have ‖X ′‖2
F → K in proba-

bility by assumption. For the second term, by Proposition 2.3.2 we have

〈
X ′X ′>,

N∑
i=1

ŷiŷ
>
i

〉
≤ 2
(√γ − 1)2N

〈
X ′X ′>,

N∑
i=1

yiy
>
i

〉
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and, viewing yi = (I + βXX>)1/2gi for gi independent from X and X ′, we have

= 2
(√γ − 1)2

〈
(I + βXX>)1/2X ′X ′>(I + βXX>)1/2,

1
N

N∑
i=1

gig
>
i

〉

≤ 2
(√γ − 1)2

∥∥∥∥∥∥ 1
N

N∑
i=1

gig
>
i

∥∥∥∥∥∥ tr
(
(I + βXX>)1/2X ′X ′>(I + βXX>)1/2

)

= 2
(√γ − 1)2

∥∥∥∥∥∥ 1
N

N∑
i=1

gig
>
i

∥∥∥∥∥∥ (‖X ′‖2
F + β‖X>X ′‖2

F) (2.6)

Here, the norm factor is bounded by 2(√γ + 1)2 with high probability again by Proposi-

tion 2.3.2, so for any given γ there will be a constant C > 0 such that, with high probability,

≤ C
5
(‖X ′‖2

F + β‖X>X ′‖2
F). (2.7)

Also for any γ, we will have λn−N −λn ≤ λ1−λn ≤ 5 with high probability. Thus, choosing γ

sufficiently close to 1 depending on ε and then β sufficiently close to −1, we will have that

tr(X ′>WX ′) ≥
(

2− ε
K

)
K − C

(
K − L+ ε

C

)
= 2 (K − C(K − L)− ε) , (2.8)

as claimed.

Finally, we may use this to derive a reduction from hypothesis testing in the Wishart

spiked matrix model to certification, for suitable spike priors. We give two versions: first,

using the flexibility introduced in Theorem 2.3.1, we allow the planted direction X in the

spike prior of the Wishart model to not be exactly in X, but only nearby. This is helpful, for

example, if X is a cone that cannot support a non-trivial centered distribution, which will

interfere with our arguments for arguing hardness of testing for Wishart models. We will

encounter this type of situation in Section 5.3 when we discuss non-negative PCA, where X

is the positive orthant Rn+ ⊂ Rn.
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Corollary 2.3.3 (Reduction: planting near X). Let K > 0. Suppose that, for any δ > 0

and β > −1, there exist Pβ,δ,n ∈ P(Rn×k) β-good spike priors such that there is a random

variable X ′ coupled to X ∼ Pβ,δ,n with X ′ ∈ X almost surely, ‖X ′‖2
F → K in probability,

and ‖X>X ′‖2
F ≥ K−δ with high probability. Suppose also that there exists an algorithm that

runs in time T(n) and certifies a bound of at most 2(K − ε) on MX(W ) when W ∼ GOE(n)

with high probability for some ε > 0. Then, there exist β ∈ (−1,0), γ > 1, δ > 0, and

an algorithm that can distinguish (Pn) and (Qn) in the Wishart spiked matrix model with

parameters (β, γ,Pβ,δ,n) in time T(n)+O(poly(n)).

Proof. By Theorem 2.3.1, there exist C > 0, β > −1 and γ > 1 such that, when W ∼

Pn under the spectrally-planted GOE model with parameters (β, γ,Pβ,δ,n), then MX(W ) ≥

tr(X ′>WX ′) ≥ 2(K − Cδ − 1
3ε) with high probability. Choosing δ small enough, we may

further ensure that MX(W ) ≥ 2(K− 2
3ε) with high probability. Then, by Theorem 2.2.1, it is

possible to distinguish Pn fromQn in this spectrally-planted GOE model in time T(n)+O(1).

Finally, by Proposition 2.2.7 it is possible to do the same in the Wishart spiked matrix model

in time T(n)+O(poly(n)).

Sometimes, it will be possible to just takeX ′ =X except on an event of low probability,

in which case we can dispense with the dependence on δ and simplify the statement in the

following way. By σ(X) we denote the vector of singular values of X .

Corollary 2.3.4 (Reduction: planting in X). Let K > 0. Suppose that, for any β > −1, there

exist Pn ∈ P(Rn×k) β-good spike priors, when X ∼ Pn then X ∈ X with high probability,

and both ‖σ(X)‖2
2 → K and ‖σ(X)‖4

4 → K in probability. Suppose also that there exists an

algorithm that runs in time T(n) and certifies a bound of at most 2(K − ε) on MX(W ) when

W ∼ GOE(n) with high probability for some ε > 0. Then, there exist β ∈ (−1,0), γ > 1,

and an algorithm that can distinguish (Pn) and (Qn) in the Wishart spiked matrix model with

parameters (β, γ,Pn) in time T(n)+O(poly(n)).
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The proof is immediate from Corollary 2.3.3 taking X ′ =X .

Remark 2.3.5. The conditions ‖σ(X)‖2
2 → K and ‖σ(X)‖4

4 → K in probability imply, loosely

speaking, that as n → ∞, X has K non-zero singular values that are all approximately

equal to 1. Thus K should be seen as the “effective rank” of the spike X , in contrast to the

dimensionality k. We will not find this essential in any of our examples, though one case

where it allows a more explicit representation of X is in the constraint set of the Potts spin

glass Hamiltonian that we treat in Section 5.3.

2.4 Hard Regime in the Wishart Spiked Matrix Model

As discussed earlier, our reductions only stand a chance of being useful if the Wishart spiked

matrix model has a statistical-computational gap and corresponding hard regime, where it

is possible but difficult to perform hypothesis testing. The kind of spike prior with respect

to which we would like this to be true depends on the constraint set X of the certification

problem in question. For example, for the case X = {±1/
√
n}n of the SK Hamiltonian, the

natural choice is the Rademacher spike prior, Pn = Unif({±1/
√
n}n).

On the basis of much of the literature on spiked matrix models, it would be tempting to

think that this hard regime is unlikely to occur. That is because by far the best-studied hard

regimes are for sparse priors. We briefly recount these results below.

Example 2.4.1 (Constant-sparsity PCA). Consider the Wigner spiked matrix model under the

sparse Rademacher prior where x ∼ Pn has i.i.d. entries drawn as

xi =


− 1√ρn with probability ρ/2,

0 with probability 1− ρ,

+ 1√ρn with probability ρ/2.

(2.9)
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Figure 2.1: Phase diagram of the Wishart spiked matrix model. We illustrate the regimes in the
(β, γ) plane where the Wishart spiked matrix model with Rademacher prior Pn = Unif({±1/

√
n}n)

has various computational complexities. This is identical up to cosmetics to Figure 3 of [PWBM18];
the small white region is not covered by their results and likely should be split between the red and
blue regions under more precise analysis.

In these models a hard regime was first conjectured based on computations with the replica

method for all ρ ∈ (0, ρ∗) with ρ∗ ≈ 0.092 [LKZ15b]. It is now rigorously established that,

indeed, when ρ < ρ∗ then an inefficient test succeeds in a parameter range where the PCA

test does not succeed (for all λ ∈ (λ∗,1) for a specific threshold λ∗ < 1, in the notation of our

earlier discussion in Section 2.2), while outside of this range no test succeeds [KXZ16, BDM+16,

LM19, BMV+18, PWBM18, EAKJ20]. The same methods suggest that not only the PCA test but

no polynomial-time test should succeed in these latter regimes (a conjecture that our results

in Section 5.2.4 bolster with lower bounds against low-degree polynomial tests).

This prominent line of work has led to a plausible intuition that sparsity is the key feature

leading to hard regimes in spiked matrix models.
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However, as observed by [PWBM18], hard regimes also arise for dense priors, like the

Rademacher prior that we hope to work with, in the unusual case of the negatively-spiked

Wishart model. They show, similar to the above discussion, that for various discrete spike

priors including the Rademacher prior, there is a parameter regime where the efficient PCA

test fails and an inefficient test succeeds. This inefficient test for the Rademacher prior

searches by brute force over all x ∈ {±1/
√
n}n for the one minimizing

∑N
i=1〈x,yi〉2, which

we note is compatible with our remark that, if we could reduce testing in the Wishart model

to certification, then certification by the same brute force search over all feasible x should

yield a successful test. We illustrate the “phase diagram” of which values of (β, γ) give rise

to what behavior in Figure 2.1; the blue region in the plot is the hard regime, which we note

includes the region of γ slightly larger than 1 and β close to −1 that corresponds to the

limiting cases of our reductions earlier.

2.5 An Example of Spectral Planting in Graphs

It may seem from the preceding discussion that the strategy of spectral planting is quite

specific to the GOE, or at least to the setting of continuous problem instances where the

instance can be deformed freely. While it is certainly true that these kinds of problems

make spectral planting more convenient and straightforward, we digress to present another

surprising example where it may be performed, for the problem of graph coloring. These

results are taken from [BBK+20]; the author was only modestly involved in formulating the

arguments concerning graph models in this article, so we give only a brief overview.

A k-coloring of a graph G = (V , E) is a map σ : V → [k] such that, whenever i ∼ j

(meaning {i, j} ∈ E) then σ(i) ≠ σ(j). Coloring appears to be a combinatorial optimization

problem, but it may also be formulated as constrained PCA in the following way. Suppose

|V | = n. Let v1, . . . ,vk ∈ Sk−1 be unit vectors pointing to the vertices of an equilateral
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simplex, such that 〈vi,vj〉 = − 1
k−1 whenever i ≠ j. Let X ⊂ Rn×(k−1) be the set of ma-

trices X all of whose rows equal
√
k−1
n vi for some i ∈ [k]. Note that this normalization

makes the columns of X have approximately unit norm for the rows chosen uniformly

from {v1, . . . ,vk}, following our convention. Then, letting A be the adjacency matrix of G,

we have

G is k-colorable a MX(−A) = 2|E|
n
, (2.10)

where the right-hand side is the maximum possible value of MX(−A).

Based on this formulation, there is a natural spectral bound for coloring (originally due

to Hoffman [Hof70]). We note first that A always has at least one non-positive eigenvalue

since its trace is zero, so λmin(A) ≤ 0. Then, by the ordinary spectral bound on constrained

PCA we have, since ‖X‖2
F = k− 1 for any X ∈ X,

MX(W ) ≤ |λmin(A)|(k− 1), (2.11)

and thus, letting χ(G) be the minimum k for which G is k-colorable, we have

χ(G) ≥ 1+ 2|E|
n|λmin(A)| . (2.12)

In particular, when G is d-regular, then |E| = nd/2, so the bound takes on the simpler form

χ(G) ≥ 1+ d
|λmin(A)| . (2.13)

A natural random model to test the efficacy of this as a certifiable lower bound on χ(G)

is the random graph distribution Reg(n,d) of uniformly-random d-regular graphs on n ver-

tices (see, e.g., [Wor99] for information on this distribution, including how to sample from

it—which seems a priori unclear—using the “configuration model”). When G ∼ Reg(n,d),
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then a series of combinatorial works have gradually shown that, for any given d, χ(G) con-

centrates on one or two consecutive numbers as n → ∞ [AM04, AN04, SW07, KPGW10,

COEH16], with asymptotic scaling χ(G) ∼ 1
2
d

logd . On the other hand, by Friedman’s cele-

brated theorem [Fri03] we have |λmin(A)| ≈ 2
√
d− 1, and thus the spectral bound (2.13) can

only certify the much smaller lower bound χ(G) Ý 1
2

√
d. Moreover, a pair of works on the

Lovász ϑ function SDP relaxation [CO03, BKM19], which is equivalent to the degree 2 SOS re-

laxation, showed that this relaxation achieves no better than the spectral bound, suggesting

that the problem of certifying bounds on the chromatic number of random d-regular graphs

might exhibit a spectral barrier.

As [BKM19] also observed, like the additive planting in Section 2.2, a natural strategy

for planting a coloring is not quiet enough to plant one both quietly and saturating the

spectral bound. This planting is an extremal variant of the stochastic block model (which

we will discuss further in Section 5.4.1), which amounts to choosing σ uniformly at random

and conditioning G on σ being a proper coloring. Such a planting with k colors, however,

can be detected once k < 1 + √d, so this strategy cannot quietly plant a coloring that

asymptotically meets the spectral bound but only one with roughly twice the number of

colors of the spectral bound.

Thus it is natural to search for a quieter planting that places X corresponding to σ (i.e.,

with the ith row ofX equal to vσ(i)) in the bottom eigenspaces ofA. While perhaps a priori

this seems difficult, it is actually achieved by planting the following special type of coloring

having an extra combinatorial structure.

Definition 2.5.1. A coloring is equitable if each vertex v ∈ V has an equal number of neigh-

bors of each color; i.e., |{w ∈ V : w ∼ v,σ(w) = i}| = d/k for all i ∈ [k] \ {σ(v)}.

The following pair of results bolster our hopes that this is the correct notion to work with.

Proposition 2.5.2. If a coloring saturates Hoffman’s bound (2.13), then it is equitable.
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See, e.g., [Abi19] for a proof.

Proposition 2.5.3. If a coloring σ of G is equitable, and X ∈ X corresponds to σ , then every

column of X is an eigenvector of A with eigenvalue − d
k−1 .

We note here that when k ∼ 1
2

√
d then the corresponding eigenvalue is ∼ −2

√
d, precisely

the smallest eigenvalue a graph of Reg(n,d) will have by Friedman’s theorem.

Thus spectral planting of colorings in random regular graphs is achieved by choosing

an equitable coloring σ uniformly at random (so long as the parameters n,d, k satisfy the

necessary divisibility conditions) and then choosing a graph conditional on σ being a proper

coloring. In [BBK+20], we go on to verify with various evidence that this planting is indeed

quiet down to k ≈ 1
2

√
d, and to carry out a reduction strategy similar to that in this chapter

to argue that graph coloring exhibits a spectral barrier. In Section 5.3, we will treat the Potts

spin glass Hamiltonian, a variant of the SK Hamiltonian that is essentially the “Gaussian

version” of graph coloring; this will entail working with the same constraint set X, but the

nuance of restricting our attention to equitable colorings will no longer play an important

role. We leave it as an intriguing open problem to understand what other manifestations

spectral planting can have in combinatorial problems.
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3 | Preliminaries on Low-Degree

Polynomial Algorithms

In the previous chapter we have seen how, when an efficient algorithm exists for better-

than-spectral certification in constrained PCA, then we can often show that an efficient algo-

rithm exists for hypothesis testing between a natural pair of associated models of the top

eigenspaces of problem instances. To show that better-than-spectral certification is hard,

it then suffices to show that this ancillary hypothesis testing problem is hard. Moreover,

these eigenspace models may be put into the convenient form of negatively-spiked Wishart

models, a Gaussian model that is relatively tractable to work with.

We have also seen in passing that to identify computational hardness in such problems

it is not in general enough to identify the stronger property of statistical or information-

theoretic impossibility. Instead, some testing problems exhibit hard regimes, where it is

possible to test in exponential or subexponential-yet-superpolynomial time, but appears

impossible to test in polynomial time. Therefore, we now take up the natural next question

of how to diagnose this latter situation.

There are numerous approaches to producing evidence of hardness of hypothesis test-

ing, which mostly boil down to showing (or sometimes making simplified computations sug-

gesting) that a particular class of algorithms fails to distinguish between two distributions.

Here we will describe how to analyze the testing problems arising from certification through
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the lens of algorithms computing low-degree polynomials. The idea of considering these al-

gorithms in the specific technical sense we will use here arose as an offshoot of a series of

works on SOS lower bounds for the planted clique problem [MW13, MPW15, DM15b, RS15,

HKP+18, BHK+19], subsequently elaborated in greater generality [HKP+17, HS17, Hop18].

It may also be viewed independently as a generalization of a related, older framework for

identifying statistical indistinguishability, the second moment method for Le Cam’s notion

of contiguity [LCY12]. We therefore first review this classical topic and its more recent ap-

plications as well as the motivation from the literature on SOS for low-degree polynomial

algorithms. We then give some clarifying discussion of what, concretely, the proposed com-

putations can say about the success or failure of low-degree polynomial tests, and outline

the main technique for proving such lower bounds.

Summary and References This expository chapter does not present any new results. Our

first presentation of the low-degree likelihood ratio as an adjustment of the second moment

method and our later results on consequent lower bounds for thresholded polynomials and

spectral algorithms are drawn from the notes [KWB19]. Our second presentation motivated

by SOS is a simplification of some of the discussion in [BHK+19], and is also informed by

the exposition in [RSS18].

3.1 Le Cam’s Contiguity and the Second Moment Method

We retain the same notations (Pn) and (Qn) for sequences of probability measures from our

earlier presentation of hypothesis testing in Section 2.1 in the later parts of our discussion,

but at first we will only be concerned with a single pair of distributions P and Q, defined

on a single mutual measurable space (Ω,F). For the sake of simplicity, we assume in either

case that Pn (or P) is absolutely continuous with respect to Qn (or Q, as appropriate).
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We have mentioned before the following basic ways of measuring quantitatively how well

a test distinguishes P from Q.

Definition 3.1.1. Let f be a test. The Type I error of f is the event of falsely rejecting the null

hypothesis, i.e., of having f(Y ) = p when Y ∼ Q. The Type II error of f is the event of falsely

failing to reject the null hypothesis, i.e., of having f(Y ) = q when Y ∼ P. The probabilities

of these errors are denoted

α(f) := Q[f (Y ) = p],

β(f ) := P[f (Y ) = q].

The probability 1− β(f) of correctly rejecting the null hypothesis is called the power of f .

There is a tradeoff between Type I and Type II errors. For instance, the trivial test that always

outputs p will have maximal power, but will also have maximal probability of Type I error,

and vice-versa for the trivial test that always outputs q. Thus, typically one fixes a tolerance

for one type of error, and then attempts to design a test that minimizes the probability of

the other type.

The following celebrated result shows that it is in fact possible to identify the test that

is optimal in the sense of the above tradeoff.1

Definition 3.1.2. Let P be absolutely continuous with respect to Q. The likelihood ratio (LR)

of P and Q is

L(Y ) := dP
dQ
(Y ). (3.1)

1Importantly, we are restricting our attention to deciding between two “simple” hypotheses, where each
hypothesis consists of the dataset being drawn from a specific distribution. Optimal testing is more subtle
for “composite” hypotheses in parametric families of probability distributions, a more typical setting in
practice. The mathematical difficulties of this extended setting are discussed thoroughly in [LR06].
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The thresholded likelihood ratio test with threshold η is the test

Lη(Y ) :=


p : L(Y ) > η

q : L(Y ) ≤ η

 . (3.2)

Let us first present a heuristic argument for why thresholding the likelihood ratio might be a

good idea. Specifically, we will show that the likelihood ratio is optimal in a particular sense

measured in L2(Q), i.e., when its quality is measured in terms of first and second moments

of a testing quantity. Below, and whenever we discuss hypothesis testing in the context of

a model (Q,P) or sequence of models (Qn,Pn), the norm of a function of the observation

variable Y is the norm in L2(Q), ‖f(Y )‖ := (EY ∼Qf(Y )2)1/2, and likewise the inner product

is the inner product in L2(Q), 〈f(Y ), g(Y )〉 = EY ∼Qf(Y )g(Y ).

Proposition 3.1.3. If P is absolutely continuous with respect to Q, then the unique solution

f? of the optimization problem

maximize E
Y ∼P
[f (Y )]

subject to E
Y ∼Q

[f (Y )2] = 1

(3.3)

is proportional to the likelihood ratio, f? = L/‖L‖, and the value of the optimization problem

is ‖L‖.

Proof. We may rewrite the objective as

E
Y ∼P

f(Y ) = E
Y ∼Q

[L(Y )f (Y )] = 〈L, f 〉, (3.4)

and rewrite the constraint as ‖f‖ = 1. The result now follows since 〈L, f 〉 ≤ ‖L‖ ·‖f‖ = ‖L‖

by the Cauchy-Schwarz inequality, with equality if and only if f is a scalar multiple of L.

In words, this means that if we want a function to be as large as possible in expectation
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under P while remaining bounded (in the L2 sense) under Q, we can do no better than

the likelihood ratio. We will soon return to this type of L2 reasoning in order to devise

computationally-bounded statistical tests.

The following classical result shows that the above heuristic is accurate, in that the

thresholded likelihood ratio tests achieve the optimal tradeoff between Type I and Type II

errors.

Proposition 3.1.4 (Neyman-Pearson Lemma [NP33]). Fix an arbitrary threshold η ≥ 0. Among

all tests f with α(f) ≤ α(Lη) = Q(L(Y ) > η), Lη is the test that maximizes the power 1−β(f).

Since the likelihood ratio is, in the sense of the Neyman-Pearson lemma, an optimal

statistical test, it also stands to reason that it should be possible to argue about statistical

distinguishability solely by computing with the likelihood ratio. We present one simple

method by which such arguments may be made, based on an asymptotic theory introduced

by Le Cam. See, e.g., [LCY12] for a textbook treatment.

We return to working with sequences of probability measures (Pn) and (Qn) over mea-

surable spaces (Ωn,Fn), and we denote by Ln the likelihood ratio dPn/dQn. Norms and

inner products of functions are those of L2(Qn). The following is the crucial definition

underlying the arguments to come.

Definition 3.1.5. A sequence (Pn) of probability measures is contiguous to a sequence (Qn),

written (Pn) / (Qn), if whenever An ∈ Fn with Qn[An]→ 0, then Pn[An]→ 0 as well.

The next result gives the relevance of contiguity to asymptotically-successful testing.

Proposition 3.1.6. If (Pn)/(Qn) or (Qn)/(Pn), then (Qn) and (Pn) are statistically indistin-

guishable (in the sense of Definition 2.1.2, i.e., no test can have both Type I and Type II error

probabilities tending to 0).

Proof. We give the proof for the case (Pn)/(Qn); the other case may be shown by a symmet-

ric argument. For the sake of contradiction, let (fn)n≥1 be a sequence of tests distinguishing
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(Pn) and (Qn), and let An = {fn(Y ) = p}. Then, Pn[Acn] → 0 and Qn[An] → 0. But, by con-

tiguity, Qn[An]→ 0 implies Pn[An]→ 0 as well, so Pn[Acn]→ 1, a contradiction.

It therefore suffices to establish contiguity in order to prove negative results about statisti-

cal distinguishability. The following second moment method gives a means of establishing

contiguity through a computation with the likelihood ratio.

Lemma 3.1.7 (Second moment method for contiguity). If ‖Ln‖2 = EY ∼Qn[Ln(Y )2] remains

bounded as n→∞ (i.e., lim supn→∞ ‖Ln‖2 <∞), then (Pn) / (Qn).

Proof. Let An ∈ Fn. Then, using the Cauchy-Schwarz inequality,

Pn[An] = E
Y ∼Pn

[1An(Y )] = E
Y ∼Qn

[
Ln(Y )1An(Y )

] ≤ ( E
Y ∼Qn

[Ln(Y )2]
)1/2

(Qn[An])1/2 , (3.5)

and so Qn[An]→ 0 implies Pn[An]→ 0.

This second moment method has been used in recent literature to establish contiguity

for various high-dimensional statistical problems (e.g., [MRZ15, PWB16, BMV+18, PWBM18]).

Typically the null hypothesis Qn is a “simpler” distribution than Pn and, as a result, Ln =

dPn/dQn is easier to compute than dQn/dPn. In general, and essentially for this reason,

establishing (Qn)/(Pn) is often more difficult than (Pn)/(Qn), requiring tools such as the

small subgraph conditioning method introduced in [RW92, RW94] and used in, e.g., [MNS15,

BMNN16].2 Fortunately, one-sided contiguity (Pn) / (Qn) is sufficient for our purposes.

Let us remark on one limitation of the simple picture presented thus far. Note that ‖Ln‖,

the quantity that controls contiguity per the second moment method, is the same as the

2In these combinatorial results one sees the similarity between the ordinary second moment method of
the probabilistic method and the second moment method for contiguity. For example, [RW92, RW94] show
that random regular graphs with high probability have a Hamiltonian cycle; they may be viewed as either
doing so by counting Hamiltonian cycles with the ordinary second moment method, or by showing that
the random regular graph distribution with a planted Hamiltonian cycle is indistinguishable from the null
distribution with the second moment method for contiguity, and at a mathematical level these approaches
are equivalent.
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optimal value of the L2 optimization problem in Proposition 3.1.3:


maximize EY ∼Pn[f (Y )]

subject to EY ∼Qn[f (Y )2] = 1

 = ‖Ln‖. (3.6)

We might then be tempted to conjecture that (Pn) and (Qn) are statistically distinguishable

if and only if ‖Ln‖ → ∞ as n→∞. However, this is incorrect: there are cases when (Pn) and

(Qn) are not distinguishable, yet a rare “bad” event under Pn causes ‖Ln‖ to diverge. To

overcome this failure of the ordinary second moment method, some previous works (e.g.,

[BMNN16, BMV+18, PWB16, PWBM18]) have used conditional second moment methods to

show indistinguishability, where the second moment method is applied to a modified (Pn)

that conditions on these bad events not occurring.

Fortunately, as we will see, the low-degree variant of this second moment method seems

unafflicted by this challenge, because low-degree polynomials of Y fluctuate less wildly on

these bad events than do analytic functions like Ln(Y ). More generally, for settings such as

sparse PCA as we have discussed in Example 2.4.1, the dependence of information-theoretic

thresholds on the model parameters can be quite intricate, involving formulae coming from

analysis with the replica method of statistical physics. When such results apply, second

moment methods often give partial results weaker than the physics conjectures, but do not

offer a sharp analysis (as demonstrated in the case of sparse PCA by the partial results of

[BMV+18, PWBM18] before the conjectured behavior was fully established by [EAKJ20] with

a method more directly informed by the physics computations). On the other hand, the low-

degree predictions have proved effective in correctly identifying computational thresholds,

which can be in this sense simpler to pin down.
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3.2 Two Roads to the Low-Degree Likelihood Ratio

We now develop an analog of the above discussion for computationally-bounded hypothesis

testing. Our goal will be to justify a conjecture that an object called the low-degree likelihood

ratio—a close relative of the classical likelihood ratio—and in particular its norm in L2(Qn)

can be used to predict whether (Pn) and (Qn) are computationally distinguishable. We give

two ways to arrive at this idea. The first, arguably simpler approach, taken from [KWB19],

develops this object by analogy with the second moment method discussed above. The

second approach, more technical but historically prior to the first and stemming from the

series of works [BHK+19, HKP+17, HS17, Hop18] on SOS optimization, shows that the low-

degree likelihood ratio also appears in the context of the natural pseudocalibration strategy

for proving SOS lower bounds.

3.2.1 Computationally-Bounded Second Moment Method

The first approach proceeds by formulating low-degree analogs of the notions described

in the previous section, which together constitute a method for restricting the classical

decision-theoretic second moment analysis to computationally-bounded tests. The premise

of this low-degree method is to take low-degree multivariate polynomials in the entries of

the observation Y as a proxy for efficiently-computable functions. (We note that the poly-

nomials involved may have degree greater than two; the “second moment” here refers to

our working with polynomials in L2(Qn), and in particular to our thinking of a sequence of

polynomials being bounded under Qn as n→∞ if their second moments are bounded.)

In the computationally-unbounded case, Proposition 3.1.3 showed that the likelihood

ratio optimally distinguishes (Pn) from (Qn) in the L2 sense. Following the same heuristic,

we look for the low-degree polynomial that best distinguishes (Pn) from (Qn) in the L2

51



sense. In order for polynomials to be defined, we assume here that Ωn ⊆ RN for some

N = N(n), i.e., that our data (drawn from Pn or Qn) are real-valued, and we assume that Qn

has finite moments so that R[Y ] ⊂ L2(Qn).

Definition 3.2.1. Let R[Y ]≤D ⊂ L2(Qn) denote the linear subspace of polynomials Ωn → R

of degree at most D. Let P≤D : L2(Qn) → R[Y ]≤D denote the orthogonal (with respect to the

inner product of L2(Qn)) projection operator to this subspace. Finally, define the low-degree

likelihood ratio (LDLR) of degree D as L≤Dn := P≤DLn.

We now have a low-degree analog of Proposition 3.1.3, a simple but conceptually important

statement which first appeared in [HS17, HKP+17].

Proposition 3.2.2. The unique solution f? of the optimization problem

maximize E
Y ∼Pn

[f (Y )]

subject to E
Y ∼Qn

[f (Y )2] = 1,

f ∈ R[Y ]≤D,

(3.7)

is the (normalized) LDLR f? = L≤Dn /‖L≤Dn ‖, and the value of the optimization problem is

‖L≤Dn ‖.

Proof. As in the proof of Proposition 3.1.3, we can restate the optimization problem as max-

imizing 〈Ln, f 〉 subject to ‖f‖ = 1 and f ∈ R[Y ]≤D. Since R[Y ]≤D is a linear subspace of

L2(Qn), the result is then simply a restatement of the variational description and uniqueness

of the orthogonal projection in L2(Qn).

The following informal conjecture is at the heart of the low-degree method. It states that

a computationally-bounded analog of the second moment method for contiguity holds, with

L≤Dn playing the role of the likelihood ratio. Furthermore, it postulates that polynomials of
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degree roughly log(n) are a proxy for polynomial-time algorithms. This conjecture is based

on [HS17, HKP+17, Hop18], and particularly Conjecture 2.2.4 of [Hop18].

Conjecture 3.2.3 (Informal). For “sufficiently nice” sequences of probability measures (Pn)

and (Qn), if there exists ε > 0 and D = D(n) ≥ (logn)1+ε for which ‖L≤Dn ‖ remains bounded

as n→∞, then (Pn) and (Qn) cannot be distinguished in polynomial time (Definition 2.1.3).

Hopkins further proposed a more speculative “hypothesis” (Hypothesis 2.1.5 in [Hop18])

that captures a broader range of applications to subexponential-time algorithms. One con-

servative prediction we may extract from this is that, if ‖L≤(logn)KD(n)
n ‖ = O(1) for any K > 0,

then it is impossible to distinguish (Pn) from (Qn) in time exp(D(n)). We will refer to this

in the sequel as “the extended Conjecture 3.2.3.”

We give some clarification about the details left vague above. Hopkins proposed that

“sufficiently nice” above should mean that (1) Qn is a product distribution, (2) Pn is in-

variant under permutations,3 and (3) starting from such a distribution, Pn then undergoes

some further “noising” operation. We will see in our results that we obtain sensible predic-

tions even when (1) and (2) are relaxed, and these are likely too conservative. However, the

condition (3) is actually quite important; it excludes, for example, the well-known example

of planted solutions in k-XORSAT systems being detectable with Gaussian elimination—as

these are linear systems in a finite field—but invisible to most analytical methods oblivi-

ous to this algebraic structure. Adding a small amount of noise disturbs this structure and

makes identifying it (conjecturally) hard again. See, e.g., [IKKM12] for some discussion of

this specific example. The problems we consider, however, will not have special structure

of this kind, so we ignore this constraint as well. (The graph coloring problem discussed in

Section 2.5 does have a version of this difficulty, which is handled in [BBK+20], but we will

not return to that problem here.)

3It is important to allow for an “arity” in the data, i.e., for Pn to be interpreted as a measure over matrices,
tensors, graphs, multigraphs, etc., in which case the permutations in question permute the coordinates
simultaneously and are not arbitrary permutations of the entire collection of observations.
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Hopkins also suggested that “degree” should be interpreted as “coordinate degree,”

meaning the number of coordinates that a function depends on, rather than polynomial

degree. This, too, seems to be important sometimes, especially in models with distributions

other than Gaussian or Bernoulli, as we will discuss with an example of a non-Gaussian

spiked matrix model in Section 5.4.2. However, this example is rather peripheral for us

and the other models we consider will be Gaussian or Bernoulli, in which case ignoring this

distinction appears not to change the results obtained in any instances we are aware of.

All of this said, we suggest to the reader that, compared to the vast range of the statisti-

cal literature, only a vanishingly small number of quite similarly-structured testing problems

have been studied to date with the low-degree method. In light of this, more valuable than

a conjecture formulated safely might be a larger and better-understood collection of exam-

ples. In that spirit, the approach we take is to perform the low-degree computations for

interesting problems even when they do not quite fit the stated conjectures, compare these

results to other evidence of algorithmic hardness when such is available, and use these

results to make predictions about hardness in new problems when such is possible.

3.2.2 Appearance in Sum-of-Squares Lower Bounds

As an alternative motivation for studying ‖L≤Dn ‖, and one more faithful to the original de-

velopment of these ideas, we now briefly explain how this quantity naturally arises in the

pseudocalibration framework for SOS lower bounds, as developed by [BHK+19]. We will be

informal in our presentation, giving just the key ideas. In the setting we are interested in,

the hypothetical difficulty of distinguishing Pn from Qn is meant to guide the design of a

pseudoexpectation, a linear operator Ẽ = ẼY : R[X]≤D → R, which when Y ∼ Qn makes it

appear as if Y was drawn from Pn and has the associated planted structure. We will give

formal definitions in the specific setting of optimization over the hypercube in Chapter 6;

this informal understanding will suffice for our discussion here.
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Let us be explicit about the planted object involved in Pn, so that we speak of sampling

pairs (X?,Y ) ∼ Pn. For example, when Pn is the Wigner spiked matrix model, this pair

is (x, λxx> +G) for G having i.i.d. Gaussian entries and x drawn from the spike prior.

In this model, ẼY [xk] should give a plausible moment of a spike x in Y , if such a spike

were there. Or, in the planted clique model that [BHK+19] studied and that we presented

in Example 2.1.5, Y = (V , E) is a graph, and ẼY [xk] is a plausible moment of the indicator

variables x ∈ {0,1}V of membership in a large clique in the graph, if such a clique were

there.

To devise a way to compute ẼY , we combine two ideas. First, it should be impossible

to distinguish Pn from Qn using the output of our construction. In particular, ẼY [p(X)]

should be close to the same (at least in expectation) regardless of whether Y is drawn from

Pn or Qn. And second, when we draw (X?,Y ) ∼ Pn, then ẼY [p(X)] should behave like the

expectation of p(X?) conditional on Y . That is, when there actually is a planted object in

Y , then ẼY should just compute moments over what that object could be. Combining these

observations yields the pseudocalibration relations:

E
Y ∼Qn

ẼY [p(X)]
(1)≈ E
(X?,Y )∼Pn

ẼY [p(X)]
(2)≈ E

(X?,Y )∼Pn
p(X?), (3.8)

where (1) denotes the application of the first idea and (2) of the second.

Noting that the right-hand side does not actually involve ẼY , we see that this fixes the

means of all of the values of ẼY under Y ∼ Qn. In fact, we can say much more, noting that

the same argument holds verbatim if p(X) also depends on Y . Evaluating this enhanced

version of the relation with a factorized polynomial p(X)q(Y ) gives the following:

E
Y ∼Qn

q(Y ) ẼY [p(X)] ≈ E
(X?,Y )∼Pn

p(X?)q(Y ). (3.9)

Here we see the true power of the pseudocalibration relations: taking, for instance, q(Y ) to
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be a system of orthogonal polynomials underQn, we see that this gives the entire orthogonal

polynomial decomposition of ẼY [p(X)], as a function of Y for any p(X). (To be even

clearer on this point, we could write the left-hand side above as 〈q(•), Ẽ•[p(X)]〉 with the

inner product in L2(Qn).)

One crucial difficulty appears, to see which it suffices to consider the simplest p(X) to

insert above, namely p(X) = 1. Reasonably, any pseudoexpectation must satisfy ẼY 1 = 1.

Let us write f(Y ) := ẼY 1. Also, suppose q̂k are a system of orthonormal polynomials for

Qn. Then, the above says

〈f , q̂k〉 = E
Y ∼Qn

q̂k(Y )ẼY 1 ≈ E
(X?,Y )∼Pn

q̂k(Y ) = 〈Ln, q̂k〉, (3.10)

where we have introduced the likelihood ratio Ln = dPn/dQn. The above, taken literally,

would mean ẼY 1 = f(Y ) = Ln(Y ). This is also supposed to equal 1, but, when Pn and

Qn are (statistically) distinguishable, then, while indeed in expectation EY ∼QnLn(Y ) = 1,

Ln becomes increasingly poorly concentrated as n → ∞. For example, in this situation

VarY ∼Qn[Ln(Y )] = ‖Ln‖2 − 1 → ∞, since otherwise by the second moment method (see

the previous section) we would have contiguity (Pn) / (Qn) and Pn and Qn would not be

distinguishable.

To cross this last impasse in the construction, [BHK+19] introduce a final adjustment of

assuming ẼY is a low-degree function of Y , and only asking that (3.9) (and therefore (3.10))

hold for q(Y ) that are low-degree. One plausible reason they propose for this is that if ẼY

is the output of the SOS relaxation then it must, after all, be efficiently computable by a

solver of the SOS relaxation; therefore, it should not have high-degree components making

it prohibitively expensive to compute. That justification aside, this constraint is perhaps

best seen as a technical device; subsequent works using pseudocalibration have found it

necessary to adjust the ways that this truncation is applied to their convenience [HKP+17].
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If we admit this heuristic, however, then the connection with the low-degree likelihood

ratio is clear: f(Y ) above is the low-degree polynomial that agrees with Ln on inner prod-

ucts with low-degree orthogonal polynomials, and thus is precisely L≤Dn if D is the degree

threshold. Moreover, whether ‖L≤Dn ‖ is bounded or not as n→∞ is then precisely the ques-

tion of whether our putative value of ẼY 1 has bounded variance under Y ∼ Qn, making it a

plausible proxy for whether we expect pseudocalibration to “work.” The technical details of

the analysis in [BHK+19] and subsequent works have since confirmed that this is an accurate

heuristic.

3.3 Consequences of Low-Degree Lower Bounds

Finally, since Conjecture 3.2.3 remains novel and somewhat provisional, to shore up our

confidence in these methods it is helpful to have some more concrete consequences of low-

degree lower bounds. In particular, low-degree lower bounds are supposed to be lower

bounds against algorithms computing low-degree polynomials, but they only ensure certain

properties relating to means and variances of those polynomials. Can we use such bounds

to deduce something about whether more concrete algorithms actually succeed or fail in

distinguishing Pn from Qn?

We present two results in this direction, both due to Wein and appearing in [KWB19].

The first concerns thresholded polynomials, in the style of the thresholded likelihood ratio

tests featuring in the Neyman-Pearson Lemma, our Proposition 3.1.4.

Proposition 3.3.1. Suppose Q is a product distribution of N copies of either N (0,1) or

Unif({±1}n), and P is absolutely continuous with respect to Q. Suppose there exists f ∈

R[x1, . . . , xN]≤d and 0 < a < A such that EY ∼Pf(Y ) ≥ A and Q[|f(Y )| ≤ a] ≥ 1 − δ. Let
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0 ≤ k ≤ 1
4d log3(2/δ) be an integer. Then,

‖L≤2kd‖ ≥ 1
2

(
A
a

)2k
. (3.11)

The substance of this result in our framework is that, if when this setup is parametrized

by n it is possible to take k = k(n) → ∞, then ‖L≤2k(n)d(n)‖ → ∞. What that requires is for

δ = δ(n) to decay superexponentially in d = d(n). If we take d = (logn)1+ε as for analysis

of polynomial-time algorithms, and k = ω(1), then we will need δ ≤ n−ω(1); i.e., super-

polynomial decay of δ. Thus, conversely, if ‖L≤Dn ‖ is bounded, then there is no sequence

of polynomials f(Y ) achieving this quantitative notion of distinguishing Pn from Qn. The

decay condition on δ is a plausible one to impose, if an unusual one for the literature. Un-

fortunately, it remains unclear how to prove such results for softer notions of polynomial

thresholding satisfying bounds only with high probability.

The second result, quite similar to the first, concerns spectral algorithms that compute

the norm of a matrix built from the observations.

Proposition 3.3.2. Suppose that the hypotheses of Proposition 3.3.2 are fulfilled for f(Y ) not

a polynomial, but f(Y ) = ‖F (y)‖, where F : RN → RM×M such that each entry of F is a

polynomial of degree at most d. Then,

‖L≤2kd‖ ≥ 1
2M

(
A
a

)2k
. (3.12)

Both results are proved using hypercontractive concentration inequalities, which ensure

concentration of polynomials of inputs having favorable distributions. We will use these

kinds of inequalities in some of our other results, and present a related one in Proposi-

tion 11.3.2. It is the details of these inequalities that give rise to the particular dependence

on δ in the above results; it is an interesting open problem to investigate whether other
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tools can give more general results.

Remark 3.3.3 (Towards average-case equivalences). A recent result also suggests an equiva-

lence (suitably interpreted) between low-degree polynomial tests and algorithms in the statis-

tical query framework [BBH+20]; further equivalences of this kind are an interesting future

direction. Moreover, the historical motivation of low-degree algorithms described above in

Section 3.2.2 relates them to SOS in general, while [HKP+17] have related SOS to spectral

algorithms in general. There is therefore an incipient hope that some equivalences may be

drawn among the powers of all of these classes of algorithms; unfortunately, all results so

far have various limitations and technical subtleties that, taken together, amount to such

equivalences holding “morally” but not strongly enough to show that any one class of algo-

rithms dominates the performance of another for many problems of interest. Nonetheless,

we pose another open problem to this effect, suggested by the results of the next chapter, in

Section A.2.
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4 | Low-Degree Likelihood Ratio

Analysis: Overlap Formulae

We are now in principle equipped to prove low-degree lower bounds for the situations we

are interested in by following the strategy we have encountered tangentially in Section 3.2.2.

That is, we wish to bound the quantity ‖L≤Dn ‖, and may do so directly by expanding Ln

in orthogonal polynomials and bounding the sums of contributions to the norm made by

orthogonal polynomials with degree at most D. This approach was applied successfully to

several problems in early works proving low-degree lower bounds (see, e.g., Hopkins’ thesis

[Hop18] for several examples), and continues to be useful; we will carry out a calculation

like this in Section 5.4.2.

However, in this chapter we will digress to observe, in greater generality than we will

need for our immediate goals, a useful and independently intriguing phenomenon arising

in these calculations which is that, often, it is possible to prove a formula or bound of the

following form:

‖L≤Dn ‖2 ≤ E[pn,D(Rn)]. (4.1)

Here pn,D are suitable polynomials and Rn is a scalar random variable. We contrast this

with the immediate output of the aforementioned orthogonal polynomial approach, which

typically involves moments of high-dimensional random variables (as we will see, in the

Wigner and Wishart spiked matrix models and related settings, these will be moments of
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Model Parameters Overlap Link Function Reference

Wigner Spiked Matrix λ 〈x1,x2〉2 exp(λ2t) [KWB19]

General Gaussian Wigner (None) 〈X̃ 1,X̃ 2〉 exp(t) [KWB19]

Morris Class / NEF-QVF v2 〈z(x̃1),z(x̃2)〉 (1− v2t)−1/v2 [Kun20a]

Wishart Spiked Matrix β,N 〈x1,x2〉2 (1− β2t)−N/2 [BKW20b]

General Gaussian Wishart N X̃ 1X̃ 2 det(In − T )−N/2 [BBK+20]

Table 4.1: Summary of overlap formulae. We summarize the results of Chapter 4 on overlap
formulae for the norm of the LDLR in different models. For NEF-QVF models v2 is a coefficient in the
variance function of the exponential family, and z(x̃) is a function computing z-scores with respect
to the null model. For Wishart models N is the number of samples and β is the signal strength
for the spiked matrix model. For the Wigner spiked matrix model λ is the signal-to-noise ratio.
In overlap expressions, superscripts indicate independent copies, X̃ i or x̃i indicate “signals” that
can be arbitrary vectors or matrices, while xi indicate “spikes” that appear as factors of positive
semidefinite matrices xixi

>
. In all cases, the norm of the LDLR is given by the expectation of a

truncated Taylor series of the link function evaluated on the overlap.

the spike matrix X for X ∼ Pn). We will see that Rn gives an overlap between two in-

dependent draws of a signal, an inner product after some normalizations that vary from

setting to setting; in the rank-one Wishart spiked matrix model (Definition 2.2.4), it is just

Rn = 〈βx1x1> , βx2x2>〉 = β2〈x1,x2〉2 for xi ∼ Pn independently. Moreover, pn,D gives

the Taylor series truncation to order D of a link function, whose full untruncated form is

the function appearing in an analogous expression for ‖Ln‖2, the norm of the untruncated

likelihood ratio. Recognizing such identities and bounds often gives a much-simplified and

more conceptual analysis of the norm of the LDLR.

Summary and References The overlap formula for simple Gaussian models (including the

Wigner spiked matrix model) was first observed in [KWB19]. The discussion of analogous

results in other scalar-valued exponential families is taken from [Kun20a]. The treatment

of Wishart models given here is a streamlined derivation of the relevant results of both

[BKW20b] (which treated the rank-one spike case) and [BBK+20] (which treated the higher-

rank case); we give a somewhat cleaner derivation and make some new observations about
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the Taylor series involved that substantially simplifies the analysis we take up in the next

chapter. We summarize these results in advance in Table 4.1.

4.1 Gaussian Wigner Models

We will build up gradually from the simplest models to more complicated ones. Thus we

begin with the following model, assuming many convenient properties: Gaussianity, noise

applied additively, and entrywise independence of observations conditional on the signal.

Definition 4.1.1 (General Gaussian Wigner model). Let N = N(n) ∈ N+ and let X̃ (the “sig-

nal”) be drawn from some distribution P̃n (the “signal prior”) over RN . Let G ∈ RN (the

“noise”) have i.i.d. entries distributed asN (0,1). Then, we define Pn and Qn as follows.

• Under Qn, observe Y =G.

• Under Pn, observe Y = X̃ +G.

One typical case takes X̃ to be a low-rank matrix or tensor. (This case is so typical

that we reserve the notations X or x for the factors of X̃ , as below.) The following is

a particularly important and well-studied example, analogous to though often simpler to

work with than the Wishart spiked matrix model (Definition 2.2.4). In fact, in Section 5.2.1

we will see that the LDLR norm in the Wishart spiked matrix model can be bounded by that

in this model, making the analyses nearly identical.

Example 4.1.2 (Wigner spiked matrix model). Consider the Gaussian Wigner model with N =

n2, RN identified with Rn×n, and P̃n defined by sampling X̃ = λ√
2xx

> ∈ Rn×n, where λ =

λ(n) > 0 is a signal-to-noise parameter and x ∼ Pn for some Pn ∈ P(Rn). Then, the task

of distinguishing Pn from Qn amounts to distinguishing the laws of λxx> +G and G where

G ∈ Rn×n has i.i.d. entries distributed as N (0,1). (This variant is equivalent for all relevant
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purposes to the more standard model in which the noise matrix is symmetric and distributed

as
√
n·GOE(n); the reason for including the factor of

√
2 is to match the scaling in the typical

definition of GOE(n), as we will see in Section 5.2.4.)

We first show how to compute the likelihood ratio and, as a warmup, its L2 norm without

truncation to low-degree polynomials, under a Gaussian Wigner model. This is a standard

calculation; see, e.g., [MRZ15, BMV+18, PWBM18, PWB16], where it is used together with

the second moment method for contiguity to establish statistical impossibility for various

testing problems.

Proposition 4.1.3 (Likelihood ratio for Gaussian Wigner model). Suppose (Pn) and (Qn) are

a Gaussian Wigner model as in Definition 4.1.1, with signal prior (P̃n). Then, the likelihood

ratio of Pn and Qn is

Ln(Y ) = dPndQn
(Y ) = E

X̃∼P̃n

[
exp

(
−1

2
‖X̃‖2 + 〈X̃ ,Y 〉

)]
.

Proof. Write L for the Lebesgue measure on RN . Then, expanding the gaussian densities,

dQn
dL (Y ) = (2π)

−N/2 · exp
(
−1

2
‖Y ‖2

)
(4.2)

dPn
dL (Y ) = (2π)

−N/2 · E
X̃∼P̃n

[
exp

(
−1

2
‖Y −X̃‖2

)]

= (2π)−N/2 · exp
(
−1

2
‖Y ‖2

)
· E
X̃∼P̃n

[
exp

(
−1

2
‖X̃‖2 + 〈X̃ ,Y 〉

)]
, (4.3)

and Ln is given by the quotient of (4.3) and (4.2).

Before proceeding to compute the norm, we isolate the following simple but crucial

formal idea, that we will use repeatedly in our calculations in this chapter.

Proposition 4.1.4 (Replica manipulation). For any random variable X with finite kth moment,
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if X1, . . . , Xk are independent copies of X, then

(EX)k = EX1 · · ·Xk. (4.4)

The proof is immediate from the definition of independence. Yet, this idea is very useful as

a means of “linearizing” powers of expectations into single expectations over independent

copies. Perhaps most notably, it is an important ingredient (though not the entirety, and not

the notoriously unrigorous part) of the “replica trick” of statistical physics; the interested

reader may consult the references [MPV87, MM09, BPW18].

Proposition 4.1.5 (LR norm for Gaussian Wigner model). Suppose (Pn) and (Qn) are a Gaus-

sian Wigner model as in Definition 4.1.1, with signal prior (P̃n). Then,

‖Ln‖2 = E
X̃ 1,X̃ 2∼P̃n

exp(〈X̃ 1,X̃ 2〉), (4.5)

where X̃ 1,X̃ 2 are drawn independently from P̃n.

Proof. We apply Proposition 4.1.4:

‖Ln‖2 = E
Y ∼Qn

( E
X̃∼P̃n

exp
(
〈Y ,X̃ 〉 − 1

2
‖X̃‖2

))2


= E
Y ∼Qn

[
E

X̃ 1,X̃ 2∼P̃n
exp

(
〈Y ,X̃ 1 +X̃ 2〉 − 1

2
‖X̃ 1‖2 − 1

2
‖X̃ 2‖2

)]
,

where X̃ 1 and X̃ 2 are drawn independently from P̃n. We now swap the order of the expec-

tations,

= E
X̃ 1,X̃ 2∼P̃n

[
exp

(
−1

2
‖X̃ 1‖2 − 1

2
‖X̃ 2‖2

)
E

Y ∼Qn
exp

(
〈Y ,X̃ 1 +X̃ 2〉

)]
,
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and the inner expectation may be evaluated explicitly using the moment-generating function

of a Gaussian distribution (if y ∼N (0,1), then for any fixed t ∈ R, E[exp(ty)] = exp(t2/2)),

= E
X̃ 1,X̃ 2

exp
(
−1

2
‖X̃ 1‖2 − 1

2
‖X̃ 2‖2 + 1

2
‖X̃ 1 +X̃ 2‖2

)
,

from which the result follows by expanding the term inside the exponential.

Next, we will show that the norm of the LDLR takes the following remarkable related

form under a Gaussian Wigner model. The truncation to low-degree polynomials of Ln, a

truncation in a high-dimensional space of polynomials, in fact has the simple effect on the

norm of truncating the univariate Taylor series of the exponential function.

Definition 4.1.6 (Link functions for Gaussian Wigner model). For D ∈ N, we define the func-

tions

φWig
D (t) :=

D∑
d=0

1
d!
td, (4.6)

φWig(t) = φWig
∞ (t) := lim

D→∞
φWig
D (t) = exp(t). (4.7)

Theorem 4.1.7 (LDLR norm for Gaussian Wigner model). Suppose (Pn) and (Qn) are a Gaus-

sian Wigner model as in Definition 4.1.1, with signal prior (P̃n). Let L≤Dn be as in Defini-

tion 3.2.1. Then, for D ∈ N∪ {+∞},

‖L≤Dn ‖2 = E
X̃ 1,X̃ 2∼P̃n

[
φWig
D (〈X̃ 1,X̃ 2〉)

]
, (4.8)

where X1,X2 are drawn independently from Pn.

In such an overlap formula, we will call φWig the link function and φWig
D the link polynomials,

as these functions deform the overlap before the expectation is computed in a manner for-

mally similar to the link function in a generalized linear model. Our proof of Theorem 4.1.7
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will follow the strategy of [HS17, HKP+17, Hop18] of expanding Ln in a basis of orthogonal

polynomials with respect to Qn, which in this case are the Hermite polynomials.

4.1.1 Hermite Polynomials

We first review the essential features of Hermite polynomials that we will use (the reader

may consult the standard reference [Sze39] for further information and omitted proofs).

Definition 4.1.8. The univariate Hermite polynomials are the polynomials hk(x) ∈ R[x]k for

k ≥ 0 defined by the recursion

h0(x) = 1, (4.9)

hk+1(x) = xhk(x)− h′k(x). (4.10)

The normalized univariate Hermite polynomials are ĥk(x) = hk(x)/
√
k!.

The following is the key property of the Hermite polynomials, which allows functions in

L2(N (0,1)) to be expanded in terms of them.

Proposition 4.1.9. The normalized univariate Hermite polynomials are a complete orthonor-

mal system of polynomials for L2(N (0,1)). In particular,

E
y∼N (0,1)

ĥk(y)ĥ`(y) = δk`. (4.11)

The following are the multivariate product basis formed from the Hermite polynomials.

Definition 4.1.10. The N-variate Hermite polynomials are Hk(X) :=∏N
i=1hki(Xi) indexed by

tuples k ∈ NN . The normalized N-variate Hermite polynomials are Ĥk(X) :=∏N
i=1 ĥki(Xi) =

(
∏N
i=1 ki!)−1/2∏N

i=1hki(Xi) for k ∈ NN .

Again, the following is the key property justifying expansions in terms of these polynomials.
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Proposition 4.1.11. The normalized N-variate Hermite polynomials are a complete orthonor-

mal system of (multivariate) polynomials for L2(N (0,IN)). In particular,

E
Y ∼N (0,IN)

Ĥk(Y )Ĥ`(Y ) = δk`. (4.12)

As a straightforward corollary, the collection of those Ĥk for which |k| := ∑Ni=1 ki ≤ D form

an orthonormal basis for R[Y1, . . . , YN]≤D.

We also introduce a few algebraic identities satisfied by the Hermite polynomials, which

will give various proofs of the key identity we show below.

Proposition 4.1.12 (Translation). For any k ≥ 0 and µ ∈ R,

E
y∼N (µ,1)

[
hk(y)

] = µk. (4.13)

Proposition 4.1.13 (Gaussian integration by parts). If f : R → R is k times continuously

differentiable and f(y) and its first k derivatives are bounded by O(exp(|y|α)) for some

α ∈ (0,2), then

E
y∼N (0,1)

[
hk(y)f(y)

] = E
y∼N (0,1)

[
dkf
dyk

(y)
]
. (4.14)

(The better-known special case that often goes by the name of “Gaussian integration by

parts” is k = 1, where one may substitute h1(x) = x.)

Proposition 4.1.14 (Generating function). For any x,y ∈ R,

exp
(
xy − 1

2
x2
)
=

∞∑
k=0

1
k!
xkhk(y). (4.15)
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4.1.2 Computing the Low-Degree Likelihood Ratio

We now proceed to a proof of Theorem 4.1.7. First, we may expand

L≤Dn (Y ) =
∑
k∈NN|k|≤D

〈Ln, Ĥk〉Ĥk(Y ) =
∑
k∈NN|k|≤D

1∏N
i=1 ki!

〈Ln,Hk〉Hk(Y ), (4.16)

and in particular we have

‖L≤Dn ‖2 =
∑
k∈NN|k|≤D

1∏N
i=1 ki!

〈Ln,Hk〉2. (4.17)

Our main task is then to compute quantities of the form 〈Ln,Hk〉. Note that, using the

likelihood ratio for a change of measure, these can be expressed equivalently as

〈Ln,Hk〉 = E
Y ∼Qn

[Ln(Y )Hk(Y )] = E
Y ∼Pn

[Hk(Y )]. (4.18)

We will give three techniques for carrying out this calculation, each depending on a different

algebraic identity satisfied by the Hermite polynomials. Each will give a proof of the follow-

ing remarkable formula, which shows that the quantities 〈Ln,Hk〉 are simply the moments

of P̃n.

Proposition 4.1.15 (LDLR components for Gaussian Wigner model). For any k ∈ NN ,

〈Ln,Hk〉 = E
X̃∼P̃n

 N∏
i=1

X̃kii

 .
Before continuing with the various proofs of Proposition 4.1.15, let us show how to use the

Proposition to complete the proof of Theorem 4.1.7.
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Proof of Theorem 4.1.7. By Proposition 4.1.15 substituted into (4.17), we have

‖L≤Dn ‖2 =
∑
k∈NN|k|≤D

1∏N
i=1 ki!

 E
X̃∼P̃n

 N∏
i=1

X̃kii

2

,

and applying Proposition 4.1.4, this may be written

= E
X̃ 1,X̃ 2∼P̃n

 ∑
k∈NN|k|≤D

1∏N
i=1 ki!

N∏
i=1

(X̃1
i X̃

2
i )
ki



= E
X̃ 1,X̃ 2∼P̃n

 D∑
d=0

1
d!

∑
k∈NN
|k|=d

(
d

k1, . . . , kN

) N∏
i=1

(X̃1
i X̃

2
i )
ki


= E
X̃ 1,X̃ 2∼P̃n

 D∑
d=0

1
d!
〈X̃ 1,X̃ 2〉d

 , (4.19)

where the last step uses the multinomial theorem.

We now proceed to the three proofs of Proposition 4.1.15. The three proofs respectively

use Propositions 4.1.12, 4.1.13, and 4.1.14, the three identities concerning Hermite polyno-

mials we introduced above.

Proof 1 of Proposition 4.1.15. We rewrite 〈Ln,Hk〉 as an expectation with respect to Pn:

〈Ln,Hk〉 = E
Y ∼Qn

[Ln(Y )Hk(Y )]

= E
Y ∼Pn

[Hk(Y )]

= E
Y ∼Pn

 N∏
i=1

hki(Yi)



69



and recall Y =X +G for X ∼ Pn and G ∼N (0,IN) under Pn,

= E
X∼Pn

 E
G∼N (0,IN)

N∏
i=1

hki(Xi +Gi)


= E
X∼Pn

 N∏
i=1

E
z∼N (Xi,1)

hki(z)


= E
X∼Pn

 N∏
i=1

Xkii

 ,
where we used Proposition 4.1.12 in the last step.

Proof 2 of Proposition 4.1.15. We simplify using Proposition 4.1.13:

〈Ln,Hk〉 = E
Y ∼Qn

Ln(Y ) N∏
i=1

hki(Yi)

 = E
Y ∼Qn

[
∂|k|Ln

∂Y k1
1 · · · ∂Y kNN

(Y )
]
.

Differentiating Ln under the expectation, we have

∂|k|L
∂Y k1

1 · · · ∂Y kNN
(Y ) = E

X∼Pn

 N∏
i=1

Xkii exp
(
−1

2
‖X‖2 + 〈X ,Y 〉

) .
Taking the expectation over Y , we have EY ∼Qn exp(〈X ,Y 〉) = exp(1

2‖X‖2), so the entire

second term cancels and the result follows.

Proof 3 of Proposition 4.1.15. We may use Proposition 4.1.14 to expand Ln in the Hermite

polynomials directly:

Ln(Y ) = E
X∼Pn

[
exp

(
〈X ,Y 〉 − 1

2
‖X‖2

)]

= E
X∼Pn

 N∏
i=1

 ∞∑
k=0

1
k!
Xki hk(Yi)


=

∑
k∈NN

1∏N
i=1 ki!

EX∼Pn

 N∏
i=1

Xkii

Hk(Y ).
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Comparing with the expansion (4.16) then gives the result.

4.2 Exponential Families and Variance Functions

We have seen above the first instance of an overlap formula, an expression for ‖L≤Dn ‖2 as an

expectation of a function of of 〈X̃ 1,X̃ 2〉 forX̃ i independent draws from P̃n, in the Gaussian

Wigner model. As mentioned earlier, besides their aesthetic appeal, these kinds of identities

will yield substantial simplifications in our later probabilistic analysis by allowing us to

appeal to concentration inequalities for the overlaps. We now ask: does this simplifying

phenomenon occur in other, more complicated observation models?

We recall that, ultimately, we will want to address this matter for the Wishart negatively-

spiked matrix model, where the signal is applied by deforming the covariance rather than

the mean of a Gaussian distribution.

Remark 4.2.1. Interestingly, the Wishart positively-spiked matrix model may be viewed as a

Gaussian Wigner model with a suitable Gaussian spike prior, since if y ∼ N (0,In +X̃ ) with

X̃ � 0, then we may view sampling y as drawing x ∼N (0,X̃ ) and then y ∼N (x,In).

Perhaps the key difference between the Wigner and Wishart models is that, conditional on

the signal, the observations in the Wigner model are entrywise independent, while those in

the Wishart model are not. Nonetheless, there is another analogy suggesting a similarity be-

tween the models: conditional on the signal, both make observations in an exponential fam-

ily (though the Wishart model must be adjusted to observe the sample covariance
∑N
i=1 yiy

>
i

instead of the samples y1, . . . ,yN to make this the case). The Gaussian exponential family

with fixed variance and varying means—the “Wigner family” arising in the Gaussian Wigner

model, to use our terminology—is, in a sense we will make precise below, perhaps the sim-

plest of all exponential families. The matrix-valued Wishart exponential family is surely
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more complicated, but still, in the same sense, is “not too complicated” and is formally

similar to certain other scalar-valued non-Gaussian exponential families.

Below we develop this analogy, measuring the complexity of exponential families by their

variance functions. We then study the low-degree likelihood ratio in the simplest exponential

families, those whose variance function is a constant, linear, or quadratic polynomial. First

we consider non-Gaussian scalar-valued exponential families—we will see later that these

calculations have interesting applications of their own—and then proceed to the Wishart

family. We will show that, in all of these situations, a suitable analog of the overlap formula

from the Gaussian Wigner model holds.

Throughout this section and the next we follow Morris’ presentation in the seminal pa-

pers [Mor82, Mor83], which first recognized the many shared statistical properties of the

scalar-valued exponential families we consider (though Meixner in [Mei34] already saw their

similarity from the perspective of orthogonal polynomials). We start by recalling the basic

notions of exponential families.

Definition 4.2.2. Let ν0 ∈ P(R) not be a single atom. Let ψ(θ) := logEx∼ν0[exp(θx)] and

Θ := {θ ∈ R : ψ(θ) < ∞}. Then, the natural exponential family (NEF) generated by ν0 is the

family of probability measures νθ, for θ ∈ Θ, given by

dνθ(x) := exp(θx −ψ(θ))dν0(x). (4.20)

Sometimes, the “natural parameter” θ is the mean of νθ or a translation thereof; however,

as the next example shows, the mapping θ , Ex∼νθ[x] can be more complicated.

Example 4.2.3. Taking dν0(x) = e−x1{x ≥ 0}dx, we have Θ = (−∞,1), and this generates

the NEF of exponential distributions, dνθ(x) = (1−θ)e−(1−θ)x1{x ≥ 0}dx. The mean of νθ is

Ex∼νθ[x] = 1
1−θ .

Nonetheless, it is always possible to reparametrize any NEF in terms of the mean in the

72



following way. The cumulant generating functions of the νθ are merely translations of ψ,

ψθ(η) := logEx∼νθ[exp(ηx)] = ψ(θ + η) −ψ(θ). Therefore, the means and variances of νθ

are

µθ := Ex∼νθ[x] = ψ′θ(0) = ψ′(θ), (4.21)

σ 2
θ := Ex∼νθ[x

2]− (Ex∼νθ[x])2 = ψ′′θ (0) = ψ′′(θ). (4.22)

Since ν0 is not an atom, neither is any νθ, and thus ψ′′(θ) = σ 2
θ > 0 for all θ ∈ R. Therefore,

ψ′ is strictly increasing, and thus one-to-one. Letting Ω ⊆ R equal the image of R under

ψ′ (some open interval, possibly infinite on either side, of R), we see that νθ admits an

alternative mean parametrization, as follows.

Definition 4.2.4. If ν0 generates the NEF νθ, then we let ρµ = ν(ψ′)−1(µ) over µ ∈ Ω. The

mean-parametrized NEF generated by ν0 is the family of probability measures ρµ, for µ ∈ Ω.

By the same token, within an NEF, the variance is a function of the mean. In the above

setting, we denote this function as follows.

Definition 4.2.5. For µ ∈ Ω, define the variance function V(µ) := σ 2
(ψ′)−1(µ) = ψ′′((ψ′)−1(µ)).

The function V(µ) is simple for many NEFs that are theoretically important, and its simplic-

ity appears to be a better measure of the “canonicity” of an NEF than, e.g., the simplicity of

the probability density or mass function. Specifically, the most important NEFs have V(µ) a

low-degree polynomial: V(µ) is constant only for the Gaussian NEF with some fixed variance,

and linear only for the Poisson NEF and affine transformations thereof.

The situation becomes more interesting for V(µ) quadratic, which NEFs Morris gave the

following name.

Definition 4.2.6. If V(µ) = v0 +v1µ+v2µ2 for some vi ∈ R, then we say that ν0 generates a

natural exponential family with quadratic variance function (NEF-QVF).
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Name dν0(x) Support V(µ)

Gaussian (variance σ 2 > 0) 1√
2πσ2

exp(− x2

2σ2 )dx R σ 2

Poisson 1
e

1
x! Z≥0 µ

Gamma (shape α > 0) 1
Γ(α)x

α−1e−xdx (0,+∞) 1
αµ

2

Binomial (m trials) 1
2m

(
m
x

)
{0, . . . ,m} − 1

mµ
2 + µ

Negative Binomial (m successes) 1
2m+x

(
x+m−1
x

)
Z≥0

1
mµ

2 + µ
Hyperbolic Secant (shape r > 0) ([Mor82], Section 5) R 1

r µ
2 + r

Wishart (n×n, N ≥ n samples)
det(x)

N−n−1
2 exp(− tr(x)

2 )
2nN/2Γn(N/2) dx Rn×n�0 A, 2

N tr(µAµA)

Table 4.2: Exponential families and variance functions. We describe the six scalar natural expo-
nential families with quadratic variance function from which, per the results of [Mor82], any such
family can be generated by an affine transformation. We also show the analogous quantities for the
Wishart matrix-valued natural exponential family; see Proposition 4.2.10 for further explanation.

NEF-QVFs are also sometimes called the Morris class of exponential families. One of the

main results of [Mor82] is a complete classification of the NEF-QVFs, as follows.

Proposition 4.2.7. Any NEF-QVF can be obtained by an affine transformation (X , aX + b

applied to the underlying random variables) of one of the six families listed in Table 4.2.

Conversely, any affine transformation of an NEF-QVF yields another NEF-QVF.

Other common distributions occur as special cases: Bernoulli is a special case of binomial,

geometric is a special case of negative binomial, and exponential and chi-squared are both

special cases of gamma. The sixth “generalized hyperbolic secant” family is more compli-

cated to describe, but one representative distribution generating the r = 1 family has den-

sity 1
2 sech(π2x)dx, and may be thought of as a smoothed Laplace distribution (see Figure 5.2

later in the text for an illustration). Indeed, its appearance is one of the major surprises of

Morris’ results; since his work these distributions have found some applications (see, e.g.,

[Fis13]) but remain rather obscure.

The value of the quadratic coefficient v2 will play an important role in our results on the
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low-degree likelihood ratio, so we make the following definition of the possible values this

coefficient can take in advance.

Definition 4.2.8 (Possible values of v2). Let V := [0,+∞)∪ {− 1
m :m ∈ N+} ⊂ R.

Proposition 4.2.9. For any NEF-QVF, v2 ∈ V. Conversely, for any v ∈ V, there exists an

NEF-QVF with v2 = v . The only NEF-QVFs with v2 < 0 are the binomial families (including

Bernoulli), and the only NEF-QVFs with v2 = 0 are the Gaussian and Poisson families.

Finally, let us show the analogy between the NEF-QVFs and the Wishart family, which also

has a “quadratic variance function” when properly interpreted as a function taking the mean

as input and outputting a linear functional on matrices. The reader may consult [LM08] for

a deep discussion of this exponential family and its generalizations.

Proposition 4.2.10 (Variance function of Wishart family). Suppose N ≥ n. Let ν(n,N)0 ∈

P(Rn×n�0 ) be the law of
∑N
i=1 yiy

>
i when yi ∼N (0,In) independently. Then, the NEF generated

by ν(n,N)0 (that is, if p(Y ) is the density of ν(n,N)0 , the collection of tilted measures with density

proportional to p(Y ) exp(〈A,Y 〉) for A ∈ Rn×nsym , when this is integrable) consists of the laws

of
∑N
i=1 yiy

>
i when yi ∼ N (0,Σ) independently, for Σ ∈ Rn×n�0 . Calling the above law ρ(n,N)NΣ ,

we have that the mean of this law is µ := NΣ, so this gives the mean parametrization of the

NEF. The associated variance function is then

Var
Y ∼ρ(n,N)µ

[〈Y ,A〉] = 2
N

tr(µAµA). (4.23)

We note that, rather remarkably, not only is this a quadratic polynomial of the entries of the

matrix µ, but it is even the trace of a quadratic matrix polynomial of µ and the input A.

Proof. The density of ν(n,N)0 is proportional to det(Y )(N−n−1)/2 exp(−1
2tr(Y )). Thus, the den-

sity of the tilting by exp(〈A,Y 〉) is proportional to det(Y )(N−n−1)/2 exp(−1
2tr((In−2A)Y )),
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which gives a normalizable density if and only if A ≺ 1
2In. In this case, the above is propo-

sitional to det((In − 2A)1/2Y (In − 2A)1/2)(N−n−1)/2 exp(−1
2tr((In − 2A)1/2Y (In − 2A)1/2)),

which is the law of
∑N
i=1 yiy

>
i for yi ∼N (0, (In − 2A)−1), giving the characterization of the

NEF generated by ν(n,N)0 .

For the variance function, we compute that, if yi ∼ N (0,Σ), so that the mean is EY =

NΣ =: µ, then

E〈Y ,A〉2 = E

 N∑
i=1

y>i Ayi

2

= N(N − 1)〈A,Σ〉2 +NE(y>1Ay1)2

= N(N − 1)〈A,Σ〉2 +N
N∑

i,j,k,`=1

AijAk`Eyiyjyky`

= N(N − 1)〈A,Σ〉2 +N
N∑

i,j,k,`=1

AijAk`(ΣijΣk` + ΣikΣj` + Σi`Σjk) (Wick’s formula)

= N〈A,Σ〉2 + 2Ntr(ΣAΣA)

= 〈A,µ〉2 + 2
N

tr(µAµA) (4.24)

and thus

Var〈Y ,A〉 = E〈Y ,A〉2 − 〈A,µ〉2 = 2
N

tr(µAµA), (4.25)

as claimed.

4.3 NEF-QVF Models

In this section, we give an overlap bound for the norm of the LDLR in NEF-QVFs, similar to

the exact overlap formula we obtained for the Gaussian Wigner model. We consider here a

model we call kin-spiked, where Pn belongs to the same NEF as Qn but has a different mean.

Later in Section 5.4.2 we will also work briefly with an additively-spiked model, where Pn is a
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translation of Qn, possibly not belonging to the same NEF. While these two models coincide

for the Gaussian Wigner NEF, they do not for the other NEF-QVFs, and we will see that the

kin-spiked model is far more natural mathematically.

Definition 4.3.1 (Kin-spiked NEF-QVF model). Let ρµ be a mean-parametrized NEF-QVF over

µ ∈ Ω ⊆ R.1 Let N = N(n) ∈ N and µn,i ∈ Ω for each n ∈ N and i ∈ [N(n)]. Let

P̃n ∈ P(ΩN(n)). Then, define sequences of probability measures Pn,Qn as follows:

• Under Qn, draw yi ∼ ρµn,i independently for i ∈ [N(n)].

• Under Pn, draw x̃ ∼ P̃n, and then draw yi ∼ ρx̃ i independently for i ∈ [N(n)].

4.3.1 Orthogonal Polynomials in NEF-QVFs

Our main tool will be that the orthogonal polynomials of NEF-QVFs satisfy variants of some

of the identities of Hermite polynomials that we used in Section 4.1.1 to treat the Gaussian

Wigner model, in particular the “translation formula” (Proposition 4.1.12) and the generating

function (Proposition 4.1.14). Indeed, as far as the generating function is concerned, as for

the Gaussian Wigner family, in an NEF-QVF there is a remarkable connection between the

likelihood ratio and the orthogonal polynomials of νθ. The likelihood ratio in any NEF is

simple:

dνθ
dν0

(y) = exp(yθ −ψ(θ)), (4.26)

where ψ(θ) = Ex∼ν0[exp(θx)]. We may also reparametrize in terms of the mean:

L(y ;µ) := L(y ; (ψ′)−1(µ)) = exp(y(ψ′)−1(µ)−ψ((ψ′)−1(µ))). (4.27)

As the following result of Morris shows, in an NEF-QVF, L(y ;µ) is a kind of generating

function of the orthogonal polynomials of ρµ.

1It will not matter for our purposes what the base measure ν0 is.
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Definition 4.3.2. For v ∈ R, define the sequences of constants

âk(v) :=
k−1∏
j=0

(1+ vj), (4.28)

ak(v) := k! · âk(v). (4.29)

Proposition 4.3.3 (NEF-QVF Rodrigues Formula; Theorem 4 of [Mor82]). Let µ0 = ψ′(0) =

Ex∼ν0[x]. Define the polynomials

pk(y ;µ0) := V(µ0)k

L(y,µ0)
· d

kL
dµk

(y, µ0). (4.30)

Then, pk(y ;µ0) is a degree k monic polynomial in y , and this family satisfies the orthogonal-

ity relation

E
y∼ρµ0

pk(y ;µ0)p`(y ;µ0) = δk` · ak(v2)V(µ0)k. (4.31)

In particular, defining the normalized polynomials

p̂k(y ;µ0) := 1

V(µ0)k/2
√
ak(v2)

pk(y ;µ0), (4.32)

the p̂k(y ;µ0) are orthonormal polynomials for ρµ0 .

The main property of these polynomials that will be useful for us is the following iden-

tity, also obtained by Morris, giving the expectation of a given orthogonal polynomial under

the kin spiking operation, i.e., under a different distribution from the same NEF-QVF.

Proposition 4.3.4 (Corollary 1 of [Mor82]). For all k ∈ N and x,µ ∈ Ω,

E
y∼ρx

pk(y ;µ) = âk(v2)(x − µ)k. (4.33)

This should be viewed as the analog of Proposition 4.1.12 for NEF-QVFs. We may obtain a
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straightforward further corollary by including the normalization, which allows us to incor-

porate the variance factor into a z-score, as follows.

Definition 4.3.5 (NEF-QVF z-score). For µ,x ∈ Ω, define the z-score as

zµ(x) := x − µ√
V(µ)

. (4.34)

Corollary 4.3.6 (Kin-spiked expectation). For all k ∈ N and x,µ ∈ Ω,

E
y∼ρx

p̂k(y ;µ) =
√
âk(v2)
k!

zµ(x)k. (4.35)

4.3.2 Computing the Low-Degree Likelihood Ratio

Returning to the multivariate setting, letQn and Pn be as in Definition 4.3.1 of the kin-spiked

NEF-QVF model. Then, the likelihood ratio is

Ln(y) := dPn
dQn

(y) = E
x̃∼Pn

 N∏
i=1

dρx̃ i
dρµn,i

(yi)

 . (4.36)

An orthonormal system of polynomials for Qn is given by the product basis formed from

the p̂k(y ;µn,i) that we defined in Proposition 4.3.3:

P̂k(y;µn) :=
N∏
i=1

p̂ki(yi;µn,i) (4.37)

for k ∈ NN , where µn := (µn,1, . . . , µn,N(n)).

We then show that the projection of Ln onto any component P̂k(·;µn) admits the follow-

ing convenient expression in terms of the z-score.

Lemma 4.3.7 (LDLR components for NEF-QVF model). For Ln the likelihood ratio of the kin-
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spiked NEF-QVF model, for all k ∈ NN ,

〈Ln, P̂k(·;µn)〉 =
√√√√∏N

i=1 âki(v2)∏N
i=1 ki!

E
x∼Pn

 N∏
i=1

zµn,i(xi)
ki

 . (4.38)

This is the direct analog of Proposition 4.1.15 for the Gaussian Wigner model and its Hermite

polynomials.

Proof. Performing a change of measure using the likelihood ratio and factorizing the inner

product using independence of coordinates under Qn, we find

〈Ln, P̂k(·;µn)〉 = E
y∼Qn

[
Ln(y)P̂k(y;µn)

]
= E
y∼Pn

[
P̂k(y;µn)

]
= E
x∼Pn

 N∏
i=1

E
yi∼ρ̃xi

[
p̂ki(yi;µn,i)

]
and using Corollary 4.3.6,

=
√√√√∏N

i=1 âki(v2)∏N
i=1 ki!

E
x∼Pn

 N∏
i=1

zµn,i(xi)
ki

 , (4.39)

completing the proof.

First, we give an exact formula for the norm of the untruncated likelihood ratio in a

kin-spiked NEF-QVF model. These involve a collection of link functions playing the role of

φWig(t) = exp(t) from the Gaussian Wigner model.

Definition 4.3.8 (Link functions for NEF-QVF model). For t ∈ R and v ∈ V, define

φMor(t;v) :=


et if v = 0,

(1− vt)−1/v if v ≠ 0 and t < 1/|v|,

+∞ if v > 0 and t ≥ 1/|v|.

(4.40)
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Figure 4.1: NEF-QVF LDLR nonlinearities. We plot the functions φMor(t;v) associated to the norm
of the low-degree likelihood ratio of an NEF-QVF with variance function having quadratic coefficient
v. We emphasize the monotonicity in v and the appearance of the exponential function for v = 0.

Moreover, for D ∈ N, let φMor
D (t;v) denote the order-D Taylor expansion of φMor(t;v) about

t = 0 for fixed v , and let φMor+∞ (t;v) := φMor(t;v).

See Figure 4.1 for an illustration of these functions “sandwiching” the exponential.

Theorem 4.3.9 (LR norm for NEF-QVF model). In the kin-spiked NEF-QVF model, for all n ∈ N,

‖Ln‖2 = E
x1,x2∼Pn

 N∏
i=1

φMor(zµn,i(x
1
i )zµn,i(x

2
i );v2)

 . (4.41)

The key technical step is to recognize that the function φMor(t;v) is in fact the exponen-

tial generating function of the âk(v), as follows.
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Proposition 4.3.10. For all t ∈ R and v ∈ V,

φMor(t;v) =
∞∑
k=0

âk(v)
k!

tk. (4.42)

Proof. Call the right-hand side f(t;v). Differentiating the power series termwise and using

the formula from Definition 4.3.2 gives the differential equation

∂f
∂t
(t;v) = f(t;v)+ vt∂f

∂t
(t;v) (4.43)

with initial condition f(0;v) = 1, and the result follows upon solving the equation.

Proof of Theorem 4.3.9. We have by Lemma 4.3.7

‖Ln‖2 =
∑
k∈NN

〈Ln, P̂k(·;µn)〉2

=
∑
k∈NN

∏N
i=1 âki(v2)∏N
i=1 ki!

 E
x∼Pn

 N∏
i=1

zµn,i(xi)
ki

2

= E
x1,x2∼Pn

 ∑
k∈NN

N∏
i=1

{
âki(v2)
ki!

(zµn,i(x
1
i )zµn,i(x

2
i ))

ki

}
= E
x1,x2∼Pn

 N∏
i=1


∞∑
k=0

âk(v2)
k!

(zµn,i(x
1
i )zµn,i(x

2
i ))

k


 , (4.44)

and the result follows from Proposition 4.3.10.

We note that this is not yet an “overlap bound” except in the case v2 = 0, since we do

not have φMor(s;v2)φMor(t;v2) = φMor(s+ t;v2) when v2 ≠ 0. However, we show in the next

result that, both for the norm of the full and low-degree likelihood ratios, we may obtain

such a bound from either above or below, depending on the sign of v2.

Theorem 4.3.11 (LDLR norm for NEF-QVF model). Let ρµ be a mean-parametrized NEF-QVF

over µ ∈ Ω ⊆ R, with variance function V(µ) = v0+v1µ+v2µ2. Let µn,i ∈ Ω and P̃n be as in
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Definition 4.3.1 of the kin-spiked NEF-QVF model. Define the z-score overlap,

Rn :=
N(n)∑
i=1

zµn,i(x̃
1
i )zµn,i(x̃

2
i ), (4.45)

where x̃1,x̃2 ∼ P̃n independently. Let L≤Dn denote the low-degree likelihood ratio.

• If v2 ≥ 0, then for any n ∈ N and D ∈ N∪ {+∞},

‖L≤Dn ‖2 ≤ E
[
φMor
D (Rn;v2)

]
, (4.46)

and equality holds if v2 = 0 (i.e., in the Gaussian and Poisson NEFs).

• If v2 < 0, then for any n ∈ N and D ∈ N∪ {+∞},

E
[
φMor
D (Rn;v2)

]
≤ ‖L≤Dn ‖2 ≤ E

[
φMor
D (Rn; 0)

]
. (4.47)

To prove this result, we first establish two more ancillary facts about the power series

coefficients âk(v).

Proposition 4.3.12 (Monotonicity). For k ∈ N, âk(v) is non-negative and monotonically non-

decreasing in v over v ∈ V.

Proof. Recall from (4.28) that, by definition,

âk(v) =
k−1∏
j=0

(1+ vj). (4.48)

Thus clearly âk(v) is monotonically non-decreasing over v ≥ 0, since each factor is mono-

tonically non-decreasing.

If v ∈ V with v < 0, then v = − 1
m for some m ∈ Z≥1. Thus for k ≥m+ 1, âk(v) = 0. So,

83



in this case we may rewrite

âk(v) = 1{k ≤m}
min{k−1,m−1}∏

j=0

(1+ vj). (4.49)

Now, each factor belongs to [0,1), and again each factor is monotonically non-decreasing

with v , so the result follows.

Proposition 4.3.13 (Multiplicativity relations). For all k ∈ NN and v ∈ V,

N∏
i=1

âki(v) ≤ â∑Ni=1 ki
(v) if v > 0, (4.50)

N∏
i=1

âki(v) = â∑Ni=1 ki
(v) if v = 0, (4.51)

N∏
i=1

âki(v) ≥ â∑Ni=1 ki
(v) if v < 0. (4.52)

Proof. When v = 0, then âk(v) = 1 for all k, so the result follows immediately. When v > 0,

we have

N∏
i=1

âki(v) =
N∏
i=1

ki−1∏
j=0

(1+ vj)

≤
N∏
i=1

∑i
a=1 ka∏

j=∑i−1
a=1 ka

(1+ vj)

=
∑N
i=1 ki∏
j=1

(1+ vj)

= â∑N
i=1 ki

(v). (4.53)

When v < 0, a symmetric argument together with the observations from Proposition 4.3.12

gives the result.
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Proof of Theorem 4.3.11. Suppose first that v2 ≥ 0. We have by Lemma 4.3.7

‖L≤Dn ‖2 =
∑
k∈NN|k|≤D

〈Ln, P̂k(·;µn)〉2

=
∑
k∈NN|k|≤D

∏N
i=1 âki(v2)∏N
i=1 ki!

Ex̃∼Pn
 N∏
i=1

zµn,i(x̃ i)
ki

2

= E
x̃1,x̃2∼P̃n

 ∑
k∈NN|k|≤D

∏N
i=1 âki(v2)∏N
i=1 ki!

N∏
i=1

(zµn,i(x̃
1
i )zµn,i(x̃

2
i ))

ki

 ,

Using Proposition 4.3.13,

≤ E
x̃1,x̃2∼Pn

 ∑
k∈NN|k|≤D

â|k|(v2)∏N
i=1 ki!

N∏
i=1

(zµn,i(x̃
1
i )zµn,i(x̃

2
i ))

ki



and following the same manipulations from the proof of Theorem 4.1.7,

= E
x̃1,x̃2∼Pn

 D∑
d=0

âd(v2)
d!

∑
k∈NN
|k|=d

(
d

k1, . . . , kN

) N∏
i=1

(zµn,i(x̃
1
i )zµn,i(x̃

2
i ))

ki



= E
x̃1,x̃2∼Pn

 D∑
d=0

âd(v2)
d!

 N∑
i=1

zµn,i(x̃
1
i )zµn,i(x̃

2
i )

d
 , (4.54)

giving the upper bound from (4.46) for v2 > 0. When v2 = 0, then equality holds above,

so we obtain equality in (4.46). Also, when v2 < 0, then the above argument holds with the

inequality reversed, giving the lower bound of (4.47).

Finally, for the upper bound of (4.47), note that when v2 < 0, we may bound ‖L≤Dn ‖2

85



using Proposition 4.3.12 and the result for v2 = 0 by

‖L≤Dn ‖2 =
∑
k∈NN|k|≤D

∏N
i=1 âki(v2)∏N
i=1 ki!

Ex̃∼Pn
 N∏
i=1

zµn,i(x̃ i)
ki

2

≤
∑
k∈NN|k|≤D

∏N
i=1 âki(0)∏N
i=1 ki!

Ex̃∼Pn
 N∏
i=1

zµn,i(x̃ i)
ki

2

= E
x̃1,x̃2∼P̃n

φMor
D (Rn; 0), (4.55)

giving the result.

4.3.3 Channel Monotonicity

The monotonicity of the functions φMor(t;v) in v evident in Figure 4.1 suggests that we

might expect ‖L≤Dn ‖ to be monotone across different kin-spiked NEF-QVF models with the

same signal prior P̃n. While this does not follow directly from the above result, a slightly

more careful argument shows that it is indeed the case.

Theorem 4.3.14. Suppose L(i)n for i ∈ {1,2} are the likelihood ratios for the hypothesis testing

problems in two kin-spiked NEF-QVF models, with mean domains Ω(i) and variance functions

V (i)(µ) = v(i)0 + v(i)1 µ + v(i)2 µ2. Suppose that the null means µn,j and the signal prior P̃n
are the same in both problems (in particular, Ω(1) ∩Ω(2) must contain the support of P̃n). If

v(1)2 ≤ v(2)2 , then, for any D ∈ N∪ {+∞}, ‖(L(1)n )≤D‖2 ≤ ‖(L(2)n )≤D‖2.

Informally, this says that if v(1)2 ≤ v(2)2 , then “Problem 1 is at least as hard as Problem 2,” for

any given computational budget. For example, for a fixed collection of null means µn,i and a

fixed signal prior P̃n, we would predict the following relationships among output “channels”

or observation distributions, with “≥” denoting greater computational difficulty:

Bernoulli ≥ Binomial ≥ Gaussian = Poisson ≥ Exponential. (4.56)
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The result is a simple consequence of the arguments we have made already to prove

Theorem 4.3.11.

Proof of Theorem 4.3.14. We have by Lemma 4.3.7

‖(L(i)n )≤D‖2 =
∑
k∈NN|k|≤D

〈L(i)n , P̂k(·;µn)〉2

=
∑
k∈NN|k|≤D

∏N
j=1 âkj(v

(i)
2 )∏N

j=1 kj !

Ex̃∼P̃n
 N∏
j=1

zµn,j(x̃ j)
kj

2

. (4.57)

In each term on the right-hand side, the only factor that depends on i is
∏N
j=1 âkj(v

(i)
2 ),

so the result follows from the monotonicity described by Proposition 4.3.12. (Indeed, this

shows slightly more, that the monotonicity holds even for the norm of the projection of L(i)n

onto the orthogonal polynomial of any given index k.)

4.4 Gaussian Wishart Models

Finally, we proceed to considering the prospect of an overlap formula in the more unusual

setting of the Wishart spiked matrix model of Definition 2.2.4. In fact, we will be able to

treat a more general setting, which allows arbitrary, possibly sign-indefinite signal matrices.

Definition 4.4.1 (Gaussian Wishart model). Let P̃n ∈ P(Rn×nsym ) be such that X̃ � −In almost

surely. The Gaussian Wishart model with sampling ratio γ and spike prior P̃n is specified by

the following distributions over (y1, . . . ,yN) ∈ (Rn)N with N = N(n) = bn/γc:

• Under Qn, draw y1, . . . ,yN ∼N (0,In) independently.

• Under Pn, first draw X̃ ∼ P̃n, and then draw y1, . . . ,yN ∼N (0,In+X̃ ) independently.

We might hope that ‖L≤Dn ‖ in this model would be governed by an expectation of a

function of 〈X̃ 1,X̃ 2〉, as for the Gaussian Wigner model. Unfortunately, all is not so simple:
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for Gaussian Wishart models, we will see that we must instead work with an overlap matrix,

given by X̃ 1X̃ 2. This may appear to be at odds with our goal of reducing the dimensionality

of the expectations arising in the evaluation of ‖L≤Dn ‖. However, a further nuance comes

to the rescue: the link function applied to the overlap matrix turns out to be det(In −

X̃ 1X̃ 2)−N/2, whereby, by Sylvester’s determinant identity, when X̃ ∼ P̃n is low-rank, say

rank k, we would be able to reduce our formula to an expectation of a function of a random

k × k, rather than n × n, matrix. Actually, in Section 5.2.1 we will also deduce from this

a bound comparing Wishart spiked matrix models to corresponding Wigner models, which

will, up to a usually-negligible correction, realize our initial hope to work with expectations

over 〈X̃ 1,X̃ 2〉, at least in our applications where the signal is sign-definite.

Before proceeding, let us give the derivation of the untruncated likelihood ratio and

its norm under such a model. This will confirm the link function mentioned above, and

will show what we expect from the computations to come. (A similar computation, though

constrained to the case of X̃ having rank one, appears in [PWBM18].) Let us view the obser-

vations as a collection Y = (y1, . . . ,yN) ∈ (Rn)N .

Proposition 4.4.2 (Likelihood ratio in Gaussian Wishart model). Suppose (Pn) and (Qn) are

a Gaussian Wishart model as in Definition 4.4.1, with signal prior (P̃n). Then,

Ln(Y ) = dPndQn
(Y )

= E
X̃∼P̃n

det(In +X̃ )−N/2 exp

−1
2

N∑
i=1

y>i ((In +X̃ )−1 − In)yi
 . (4.58)
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Proof. Expanding the Gaussian densities as for the Gaussian Wigner model,

dQn
dL (y1, . . . ,yN) = (2π)−nN/2 · exp

−1
2

N∑
i=1

‖yi‖2

 (4.59)

dPn
dL (y1, . . . ,yN) = (2π)−nN/2 · E

X̃∼P̃n

det(In +X̃ )−N/2 exp

−1
2

N∑
i=1

y>i (In +X̃ )−1yi


= (2π)−N/2 · exp

(
−1

2
‖Y ‖2

)
· E
X̃∼P̃n

[
exp

(
−1

2
‖X̃‖2 + 〈X̃ ,Y 〉

)]
, (4.60)

and taking the quotient gives the result.

Proposition 4.4.3 (LR norm for Gaussian Wishart model). Suppose (Pn) and (Qn) are a

Gaussian Wishart model as in Definition 4.4.1, with signal prior (P̃n). Let Ln = dPn/dQn.

Then,

‖Ln‖2 = E
X̃ 1,X̃ 2∼Pn

det(In −X̃ 1X̃ 2)−N/2. (4.61)

This is essentially Lemma 7 of [CMW15], and the rank-one case appeared later as Proposition

5.11 of [PWBM18].

Proof. We compute directly, following the proof of Proposition 4.1.5 from the Gaussian

Wigner model,

‖Ln‖2 = E
y1,...,yN∼N (0,In)

 E
X̃∼P̃n

det(In +X̃ )−N/2 exp

−1
2

N∑
i=1

y>i ((In +X̃ )−1 − In)yi
2

Using the replica manipulation (Proposition 4.1.4),

= E
y1,...,yN∼N (0,In)

E
X̃ 1,X̃ 2

det(In +X̃ 1)−N/2 det(In +X̃ 2)−N/2

exp

−1
2

N∑
i=1

y>i ((In +X̃ 1)−1 + (In +X̃ 2)−1 − 2In)yi


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and swapping the order of expectations,

= E
X̃ 1,X̃ 2

det(In +X̃ 1)−N/2 det(In +X̃ 2)−N/2

E
y1,...,yN∼N (0,In)

exp

−1
2

N∑
i=1

y>i ((In +X̃ 1)−1 + (In +X̃ 2)−1 − 2In)yi


Applying an orthogonal change of basis to diagonalize this matrix and evaluating the result-

ing χ2 moment generating function then gives

= E
X̃ 1,X̃ 2

det(In +X̃ 1)−N/2 det(In +X̃ 2)−N/2 det((In +X̃ 1)−1 + (In +X̃ 2)−1 − In)−N/2

= E
X̃ 1,X̃ 2

det
(
(In +X̃ 1)

(
(In +X̃ 1)−1 + (In +X̃ 2)−1 − In

)
(In +X̃ 2)

)−N/2
= E
X̃ 1,X̃ 2

det(In −X̃ 1X̃ 2)−N/2, (4.62)

as claimed.

Therefore, by analogy with our previous results, we expect that the LDLR norm in the

Gaussian Wishart model should involve the truncation of a Taylor series (in some suitable

sense) of the function T , det(In − T )−N/2. We derive this series representation now. We

write Part(S) for the set of partitions of a set S.

Definition 4.4.4. For d ∈ N and T ∈ Rn×nsym , define the polynomials

rN,d(T ) := 1
d!

∑
π∈Part([d])

(
N
2

)|π| ∏
S∈π
(|S| − 1)! tr(T |S|). (4.63)

Note that rN,d(T ) is homogeneous of degree d in the entries of T .

Proposition 4.4.5. If T ∈ Rn×n satisfies ‖T ‖ < 1, then

det(In − T )−N/2 =
∞∑
d=0

rN,d(T ). (4.64)
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Proof. We manipulate, using that the matrix logarithm log(In −T ) is well-defined thanks to

the norm constraint on T ,

det(In − T )−N/2 = exp
(
log det(In − T )

)−N/2
= exp

(
−N

2
tr log(In − T )

)

= exp

N
2

tr

 ∞∑
k=1

1
k
T k


= exp

N
2

∞∑
k=1

1
k!
(k− 1)! tr(T k)

 , (4.65)

and composing the exponential power series with the inner one gives the result (see, e.g.,

[FS09] for the analogous result for generating functions, from which this follows).

We also register the following cyclic property that the rN,d(A) inherit from their being

polynomials of traces of powers, which will be crucial in our computations.

Proposition 4.4.6. For any matricesA,B, not necessarily square but of compatible dimension

to form a square product AB, rN,d has the same cyclic property as the trace,

rN,d(AB) = rN,d(BA). (4.66)

Remark 4.4.7. Incidentally, this reasoning also gives a simple account of Sylvester’s determi-

nant identity det(I +AB) = det(I +BA): by the same introduction of exp(log(·)), these

functions (for sufficiently small A,B in norm) expand in polynomials of tr((AB)k), so the

cyclic property is inherited from that of the trace.

4.4.1 Hermite Polynomials, Revisited

We now work from the other direction, towards deriving the components of the LDLR norm.

As we have seen earlier, the most robust approach to evaluating ‖L≤Dn ‖ with orthogonal
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polynomials appears to be evaluating expectations of orthogonal polynomials for a given

parametrized family of distributions with the “wrong” parameter: this is what we did for

translations of Hermite polynomials in Proposition 4.1.12, and for distributions in a given

NEF-QVF with different means in Corollary 4.3.6. In the Wishart model, the relevant orthog-

onal polynomials are again Hermite polynomials, only now we must consider their expecta-

tions under Gaussians with differing variance rather than differing mean. The key tool for

our analysis will therefore generalize the following beautiful fact from the “umbral calculus”

of Hermite polynomials (a proof will be subsumed in our result below).

Proposition 4.4.8 (Hermite mismatched variance identity). Let a > −1. Then,

E
y∼N (0,1+a)

hk(y) =


(k− 1)!! · ak/2 if k is even,

0 if k is odd.
(4.67)

Note that the formula on the right-hand side is that for the moments of a Gaussian random

variable with variance a, but we extend it to apply even for negative a, which is the “umbral”

case of the result, admitting an interpretation in terms of a fictitious Gaussian of negative

variance—even if a ∈ (−1,0), the right-hand side may be viewed formally as the value

of “Eg∼N (0,a)gk.” A thorough exposition of such analogies arising in combinatorics and

associated to various polynomial sequences is given in [Rom05].

In fact, the same holds even for multivariate Gaussians. The correct result in this case

is given by imitating the formula for the moments of a multivariate Gaussian, via Wick’s

formula. While Proposition 4.4.8 is well-known in the literature on Hermite polynomials and

the umbral calculus, we are not aware of previous appearances of the formula below (though

it is likely folklore).

Proposition 4.4.9 (Multivariate Hermite mismatched variance identity). Let A ∈ Rn×nsym with

A � −In. For k ∈ Nn viewed as a multiset of elements of [n], let Part(k; 2) be the set of
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matchings of elements of k (the empty set for n odd), and for each M ∈ Part(k; 2) write

AM for the product of the entries of A located at positions indexed by pairs in M ; i.e., if

M = {{i1, j1}, . . . , {im, jm}}, then AM =∏m
a=1Aiaja . Then,

E
y∼N (0,In+A)

Hk(y) =
∑

M∈Part(k;2))

AM . (4.68)

Similarly to before, if A � 0 then the right-hand side equals Eg∼N (0,A)gk by Wick’s formula,

but again we have an umbral extension to indefinite matrices A.

We will use the following standard Gaussian integration by parts result, generalized in a

different direction from Proposition 4.1.13 presented before.

Proposition 4.4.10 (Gaussian integration by parts: general covariance). Let Σ ∈ Rn×n�0 and let

f : Rn → R be continuously differentiable with f(y) and ∂if(y) bounded by O(exp(|y|α))

for some α ∈ (0,2). Then,

E
x∼N (0,Σ)

xif(x) = E
x∼N (0,Σ)

n∑
j=1

Σij
∂f
∂xj

(x). (4.69)

In matrix notation,

E
x∼N (0,Σ)

xf(x) = Σ E
x∼N (0,Σ)

∇f(x). (4.70)

Proof of Proposition 4.4.9. Define

`k := E
y∼N (0,In+X)

Hk(y). (4.71)

Let ei ∈ Nn have ith coordinate equal to 1 and all other coordinates equal to zero, and write

0 ∈ Nn for the vector with all coordinates equal to zero. Clearly `0 = 1 and `ei = 0 for any
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i ∈ [n]. We then proceed by induction on |k|:

`k+ei = E
y∼N (0,In+X)

hki+1(yi)
∏

j∈[n]\{i}
hkj(yj)

= E
y∼N (0,In+X)

(
yihki(yi)− h′ki(yi)

) ∏
j∈[n]\{i}

hkj(yj) (Definition 4.1.8)

= E
y∼N (0,In+X)

 n∑
a=1

(In +X)ia
∏
j∈[n]

h
(δa,j)
kj (yj)−

∏
j∈[n]

h
(δi,j)
kj (yj)

 (Proposition 4.4.10)

=
∑
a∈[n]
ka>0

Xia E
y∼N (0,In+X)

∏
j∈[n]

h
(δj,a)
kj (yj)

=
∑
a∈[n]
ka>0

kaXia E
y∼N (0,In+X)

∏
j∈[n]

hkj−δj,a(yj)

=
∑
a∈[n]
ka>0

kaXia`k−ea . (inductive hypothesis)

Thus `k satisfy the same recursion and initial condition as the sum-of-products formula on

the right-hand side of (4.68), completing the proof.

4.4.2 Computing the Low-Degree Likelihood Ratio

This tool in hand, we proceed towards evaluating the LDLR norm. Let (Qn) and (Pn) be as in

the Gaussian Wishart model (Definition 2.2.4), and let Ln be the associated likelihood ratio.

Recall that the ambient parameter N is the number of samples yi we observe. Recall also

that we assume the signal prior to satisfy that X̃ ∼ P̃n satisfies X̃ � −In almost surely.

Definition 4.4.11 (Link functions for Gaussian Wishart model). For N,D ∈ N and T ∈ Rn×n,

we define the functions

φWish
N,D (T ) :=

bD/2c∑
d=0

rN,d(T ), (4.72)

φWish
N (T ) = φWish

N,∞ (T ) := det(I − T )−N/2. (4.73)
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Theorem 4.4.12 (LDLR norm for Gaussian Wishart model). Suppose (Pn) and (Qn) are a

Gaussian Wishart model as in Definition 4.4.1, with signal prior (P̃n) and sampling ratio γ >

0, and let L≤Dn be the low-degree likelihood ratio (Definition 3.2.1). Then, for D ∈ N∪ {+∞},

‖L≤Dn ‖2 = E
X̃ 1,X̃ 2∼P̃n

φWish
N,D (X̃ 1X̃ 2). (4.74)

Proof. For k ∈ (Nn)N , we denote

mk := E
Y ∼Qn

Hk(Y )L(Y ), (4.75)

m̂k := E
Y ∼Qn

Ĥk(Y )L(Y ) = 1√
k!
mk. (4.76)

We may compute these numbers as follows. For any k ∈ (Nn)N , we have, passing to an

expectation under Pn rather than Qn and then using Proposition 4.4.9,

mk = E
Y ∼P

Hk(Y )

= E
X̃∼P̃n

N∏
i=1

E
y∼N (0,I+X̃ )

Hki(y)

= E
X̃∼P̃n

N∏
i=1

 ∑
M∈Part(ki;2)

X̃M

 . (4.77)

We then have, applying the usual replica manipulation,

‖L≤Dn ‖2 =
∑

k∈(Nn)N
|k|≤D

m̂2
k

=
∑

k∈2(Nn)N
|k|≤D

N∏
i=1

1
ki!

 E
X̃∼P̃n

∑
M∈M(ki)

X̃M

2

(by (4.77))

= E
X̃ 1,X̃ 2∼P̃n

∑
k∈(Nn)N
|k|≤D

N∏
i=1

1
ki!

 ∑
M∈M(ki)

(X̃ 1)M
 ∑

M∈M(ki)
(X̃ 2)M

 (Proposition 4.1.4)
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And, since if any |ki| is odd then Part(ki; 2) is empty and the corresponding term is zero,

we may restrict

= E
X̃ 1,X̃ 2∼P̃n

bD/2c∑
d=0

∑
k∈2(Nn)N
|k|=2d

N∏
i=1

1
ki!

 ∑
M∈M(ki)

(X̃ 1)M
 ∑

M∈M(ki)
(X̃ 2)M

 . (4.78)

Thus we will be finished if we can show the identity

rN,d(AB) =
∑

k∈(Nn)N
|k|=2d

N∏
i=1

1
ki!

 ∑
M∈Part(ki;2)

AM

 ∑
M∈Part(ki;2)

BM

 =: sN,d(A,B), (4.79)

which will occupy the rest of the proof. We have sN,d(A,B) = 0 for all odd d since in this

case some |ki| must be odd, whereby Part(ki; 2) = ∅. It remains to show that, for even

d, rN,d/2(AB) = sN,d(A,B). Since either side is a polynomial, it suffices to show this for

(A,B) belonging to a subset of (Rn×nsym )2 having positive measure. We will show that the

equality holds when A,B � 0 and ‖A‖,‖B‖ < 1.

We proceed by computing the (ordinary) generating functions of either collection of poly-

nomials. We already know from Proposition 4.4.5 that

R(t) :=
∞∑
d=0

rN,d(AB)t2d = det(In − t2AB)−N/2 (4.80)

for |t| < 1. Thus it suffices to show the same equality for

S(t) :=
∞∑
d=0

sN,d(A,B)td. (4.81)
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We note that, under our assumptions, by Wick’s formula

sN,d(A,B) =
∑

k∈(Nn)N
|k|=d

N∏
i=1

1
ki!

(
E

g∼N (0,A)
gki
)(

E
h∼N (0,B)

hki
)

= E
g1,...,gN∼N (0,A)
h1,...,hN∼N (0,B)

∑
k∈(Nn)N
|k|=d

|ki| even for all i∈[N]

N∏
i=1

1
ki!
(gi)ki(hi)ki

and, grouping by the values of |ki|,

= E
g1,...,gN∼N (0,A)
h1,...,hN∼N (0,B)

∑
d1,...,dN∈2N∑N

i=1 di=d

1∏N
i=1 di!

∑
k1,...,kN∈Nn
|ki|=di

N∏
i=1

(
di
ki

)
(gi)ki(hi)ki

so that by the multinomial theorem,

= E
g1,...,gN∼N (0,A)
h1,...,hN∼N (0,B)

∑
d1,...,dN∈2N∑N

i=1 di=d

N∏
i=1

〈gi,hi〉di
di!

=
∑

d1,...,dN∈2N∑N
i=1 di=d

N∏
i=1

1
di!

E
g∼N (0,A)
h∼N (0,B)

〈g,h〉di (4.82)

We introduce the moment-generating function of the remaining expectations:

f(t) :=
∞∑
d=0

td

d!
E

g∼N (0,A)
h∼N (0,B)

〈g,h〉d = E
g∼N (0,A)
h∼N (0,B)

exp
(
t〈g,h〉) . (4.83)

Then, sN,d(A,B) above is simply the coefficient of td in the Taylor series of f(t)N , and thus

S(t) = f(t)N . So, it will suffice for us to establish that

f(t) ?= det(In − t2AB)−1/2. (4.84)
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However, f(t) may be evaluated with a direct computation:

f(t) = E
g,h∼N (0,In)

exp
(
tg>

√
A
√
Bh

)

= E
g∼N (0,I2n)

exp

g>
 0 t

2

√
A
√
B

t
2

√
B
√
A 0

g


and applying an orthogonal change of basis to diagonalize this matrix and evaluating the χ2

moment generating function then gives

= det


 In −t√A√B

−t√B√A In



−1/2

= det
(
In − t2

√
AB

√
A
)−1/2

and by Sylvester’s identity,

= det
(
In − t2AB

)−1/2
, (4.85)

which completes the proof.

Lastly, we make two remarks that are specific to the Wishart spiked matrix model, where

the signal is sign-definite. First, we observe that, for the purposes of bounding the LDLR

norm, we may ignore the “truncation clause” of the spiked matrix model, as this only makes

the norm smaller.

Proposition 4.4.13. In the Wishart spiked matrix model with parameters (β, γ,Pn) for Pn not

necessarily β-good (Definition 2.2.5), for any (finite) D ∈ N,

‖L≤Dn ‖2 ≤ E
X1,X2∼Pn

φWish
N,D (β2X1X1>X2X2>). (4.86)
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Proof. For Xi ∼ Pn independently for i ∈ {1,2}, let βAi be the “effective spikes” in the

Wishart spiked matrix model,

Ai =


XiXi> if β‖Xi‖2 > −1,

0 otherwise.
(4.87)

In either case, Ai � 0. Then, by Theorem 4.4.12 and using the cyclic property of the link

functions, we have

‖L≤Dn ‖2 = EφWish
N,D (β2A1A2)

= EφWish
N,D (β2(

√
A1

√
A2)(

√
A1

√
A2)>) (Proposition 4.4.6)

Here, the argument of the link function is zero if either Ai is zero, and is always positive

semidefinite. Since the rN,d are non-negative on positive semidefinite matrices and zero on

the zero matrix, the link function has the same property. In particular, the link function

does not decrease from replacing a 0 input with any positive semidefinite matrix, so

≤ EφWish
N,D (β2(

√
X1X1>

√
X2X2>)(

√
X1X1>

√
X2X2>)>)

= EφWish
N,D (β2X1X1>X2X2>), (Proposition 4.4.6)

completing the proof.

Second, to illustrate the result above in a more familiar setting, we consider the special

case when P̃n is supported on rank-one matrices, for which this result simplifies substan-

tially to a scalar formula similar to those we have seen in other models. These results were

also derived in [BKW20b] more directly before the general framework presented here was

developed in [BBK+20].

Corollary 4.4.14. In the Wishart spiked matrix model with rank one and parameters (β, γ,Pn)
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for Pn ∈ P(Rn) a β-good spike prior, for any D ∈ N∪ {+∞},

‖L≤Dn ‖2 = E
x1,x2∼Pn

φWish
N,D (β2〈x1,x2〉2) = E

x1,x2∼Pn

bD/2c∑
d=0

aN,d(β2〈x1,x2〉2)d, (4.88)

where the coefficients are

aN,d =
(
N/2+ d− 1

d

)
= 1
d!

d−1∏
k=0

(
N
2
+ k

)
, (4.89)

with the binomial coefficient interpreted in the generalized manner of the final right-hand

side even when N/2 is not an integer. These coefficients satisfy

∞∑
d=0

aN,dtd = (1− t)−N/2. (4.90)

We note that the original argument in [BKW20b] did not take advantage of the simple ex-

pression (4.89) for the coefficients appearing here, which we will see in Section 5.2.1 dra-

matically simplifies the treatment of Wishart spiked matrix models, completely reducing

them to Wigner models. We note also that by Proposition 4.4.13, even for a prior that is not

necessarily β-good, (4.88) holds as an inequality for finite D.

Proof. Let X̃ i ∼ P̃n independently be formed as X̃ i = βxixi> with xi ∼ Pn independently

for i ∈ {1,2}. Then, by the cyclic property from Proposition 4.4.6, for any N,d we have

rN,d(X̃ 1X̃ 2) = rN,d(β2x1x1>x2x2>) = rN,d(β2〈x1,x2〉2). (4.91)

Thus it suffices to show that rN,d(t2) = aN,dt2d for t ∈ R. The generating function (4.90)

for these coefficients follows from the series expression of Proposition 4.4.5. The formula

(4.89) then follows from the generalized binomial theorem, which gives aN,d = (−1)d
(−N/2

d

)
,

which, upon expanding and cancelling signs, gives the stated product.
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5 | Low-Degree Likelihood Ratio

Analysis: Lower Bounds

In this chapter, we will reap the benefits of the machinery developed in the rest of Part I to

prove lower bounds for the hypothesis testing problems to which certification for various

constrained PCA problems reduces. More broadly, we will also provide streamlined and

sometimes improved results on low-degree lower bounds for related problems, including

Wigner and Wishart matrix PCA (i.e., spiked matrix models), tensor PCA, and the stochastic

block model. We will see how, using the tools we have developed and some further tools we

introduce below for analyzing overlap formulae for the norm of the low-degree likelihood

ratio, all of these problems may be treated within one framework. Our approach also mostly

avoids the explicit moment computations, often having a combinatorial character, common

to these analyses carried out in previous literature. The applications of the results for

Wishart models to constrained PCA are given in Section 5.3.

Summary and References The results in this chapter are taken mostly from the same

publications as the previous chapter; we have only reorganized the material to group the

overlap formulae together and their consequences for lower bounds together. However, this

chapter also describes some proof techniques that have not yet appeared in print, including

a low-degree comparison inequality between Wigner and Wishart models (Section 5.2.1) that
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dramatically simplifies the analysis of Wishart models, and the generic approach to Wigner

models through integrated tail bounds rather than moment computations (used through-

out). Similar applications to Gaussian Wigner models appeared in [KWB19], to sparse PCA

in [DKWB19], and the applications to Wishart models are streamlined versions of the argu-

ments of [BKW20b, BBK+20], which also respectively treated the applications to certifica-

tion for the SK and Potts spin glass Hamiltonians. The application to certification for non-

negative PCA is based on [BKW20a]. The computations for the stochastic block model (which

sharpen previous computations appearing in [HS17]) also appeared in [BBK+20], while the

non-Gaussian spiked matrix model of Section 5.4.2 appeared in [Kun20a] and is inspired by

the work of [PWBM18] on similar models.

The following is a summary of our main results in this chapter.

1. (Theorem 5.2.6) A tight low-degree lower bound for tensor PCA, agreeing with pre-

vious results on the performance of conjecturally-optimal algorithms [RM14, HSS15,

ADGM17, HSSS16], SOS lower bounds [HSS15, HKP+17], and results on subexponential-

time algorithms [BGG+16, BGL16, WEM19].

2. (Theorem 5.2.10, Theorem 5.2.12) Tight low-degree lower bounds for the Wigner and

Wishart spiked matrix models, giving strong evidence for the optimality of PCA among

all subexponential-time algorithms in these Gaussian models (for example, giving fur-

ther evidence for conjectures on constant-sparsity PCA discussed in Example 2.4.1).

3. (Theorem 5.2.14, Theorem 5.2.15) A tight low-degree lower bound for Wigner and

Wishart sparse PCA (with sub-constant sparsity, unlike the above), matching the be-

havior of similar sub-exponential time algorithms proposed by [DKWB19, HSV20].

4. (Corollary 5.3.6) A conditional result that better-than-spectral certification is hard for

the SK Hamiltonian, giving evidence towards an answer to a question of Montanari and
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Jain, Koehler, and Risteski [JKR19].1

5. (Corollary 5.3.7) A conditional result that better-than-spectral certification is hard for

non-negative PCA on GOE matrices, giving evidence towards an answer to a question

of [MR15].

6. (Corollary 5.3.8) A conditional result that better-than-spectral certification is hard for

the Potts spin glass Hamiltonian.

5.1 Tools for Scalar Overlap Analysis

We have seen that, in many cases of interest, a bound (and indeed, often a formula with

equality) of the following form holds for the norm of the LDLR:

‖L≤Dn ‖2 ≤ E[pn,D(Rn)]. (5.1)

We now take up the technical matter of how to bound expectations such as those on the

right-hand side above in the situations we will be interested in. We decompose this task into

three parts: first, an inequality that decouples the dependence of this quantity on the growth

of pn,D(t) and that on the tail decay of Rn; second, a notion of “modest growth” for pn,D(t);

and third, a notion of “fast decay” for Rn. Moreover, these latter analytic notions turn out to

have the following piecewise character. For Rn we will be concerned separately with “small

deviations” and “large deviations,” following the style of computation of [PWB16, PWBM18].

For pn,D(t), as these will always be truncations of a Taylor series in our applications, we will

be concerned separately with small inputs t where pn,D accurately approximates the entire

series, which grows exponentially in t, and large inputs where its more modest polynomial

O(tD) growth becomes evident.

1“Hard” in this result and the below means requiring nearly-exponential time.
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It is tempting to attempt to give general conditions on Rn and pn,D that ensure bounded-

ness of the low-degree likelihood ratio. However, we will mostly be concerned with only two

different observation models, the Gaussian Wigner and Wishart models, and even between

these two models we will see shortly that the Wigner model controls the Wishart model (and

reduces the higher-rank Wishart models where it may seem on the basis of Section 4.4 that

we must deal with overlap matrices to simpler scalar problems). Thus we illustrate the ba-

sic themes of these computations on a case-by-case basis; developing abstract statements

that work for many distributions and associated polynomial sequences “automatically” is

an interesting project for future investigation.

Our decoupling inequality, the most generic of the above ingredients, is the following

simple but general integrated tail bound.

Lemma 5.1.1. Suppose that p ∈ R[t] has non-negative coefficients and φ : R≥0 → R≥0 is

strictly increasing. Suppose also that X ≥ 0 is a random variable satisfying the tail bound

that, for all t ≥ 0, P[X ≥ t] ≤ f(t). Then,

E[p(φ(X))] ≤
∫∞

0
f(φ−1(t))p′(t)dt. (5.2)

Proof. Suppose that p(t) =∑Dd=0 adtd. We expand directly,

E[g(φ(X))] =
D∑
d=0

adEφ(X)d

=
D∑
d=0

ad
∫∞

0
P[φ(X)d ≥ t]dt

and, applying the tail bound,

≤
D∑
d=0

ad
∫∞

0
f(φ−1(t1/d))dt
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and making the substitution s = t1/d we find

=
D∑
d=0

dad
∫∞

0
f(φ−1(s))sd−1ds

=
∫∞

0
f(φ−1(s))p′(s)ds (5.3)

as desired.

5.1.1 Well-Behaved Spike Priors

We also introduce some definitions that will be useful for specifying spike priors that yield

well-behaved overlaps Rn. We always think of spike variables x ∼ Pn in rank-one spiked

models (both the Wigner and Wishart spiked matrix models and the tensor models we will

discuss in Section 4.4) as having norm approximately 1, so that the typical magnitude of

the overlap is, for a dense prior, |〈x1,x2〉| ∼ n−1/2. Likewise, when the rank is k ≥ 1, we

think of X ∼ Pn as having k columns each of norm approximately 1. Below we work with

the arbitrary-rank setting, so we use matrix notation, but the same notions apply to vector

spikes.

We first recall the following standard tail bound property.

Definition 5.1.2 (Subgaussian). A centered random variable R is σ 2-subgaussian if, for all

t ∈ R, E[exp(tR)] ≤ exp(σ
2

2 t
2).

Proposition 5.1.3. Let R be a centered random variable. Then, the following conditions are

equivalent.

1. R is σ 2-subgaussian for some σ 2 > 0.

2. There exist C, ε > 0 such that P[|R| ≥ t] ≤ C exp(−εt2) for all t ≥ 0.

3. There exists ε > 0 such that E exp(εR2) <∞.
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Proof. Clearly (2) implies (3) by integrating the tail bound. Conversely, (3) implies (2) by

Chernoff bound, since

P[|R| ≥ t] = P[exp(sR2) ≥ exp(st2)] ≤ (E exp(sR2)) exp(−st2) (5.4)

for any s < ε. Thus (2) and (3) are equivalent.

Moreover, by the same argument as above but choosing s sufficiently small, (3) implies a

stronger version of (2) with the constant C arbitrarily close to 1, since lims→0 E exp(sR2) = 1

so long as this expectation is finite for some positive s. With C = 2, (2) implies (1) by a

slightly involved argument of bounding moments; see, e.g., Lemma 1.5 of [RH17] for this

computation. Finally, (1) implies (2) by another Chernoff bound, completing the proof.

Subgaussianity will be a useful assumption later, but most immediately in spike priors

we will work with the following weaker notion.

Definition 5.1.4 (Locally subgaussian). A sequence of random variables Rn ≥ 0 is locally

subgaussian with speed ρ(n) ≤ 1 if, for any η > 0, there exists δ > 0 such that, for all

t ∈ [0, δρ(n)],

P[Rn ≥ t] ≤ exp
(
−n1− η

2
t2
)
. (5.5)

When ρ(n) is not specified, we take ρ(n) = 1. A spike prior (Pn) is locally subgaussian if the

sequence ‖X1>X2‖F is locally subgaussian for Xi ∼ Pn independently.

Often this definition has been given in other works with 2σ 2 in the rate denominator, giving

a notion of “locally subgaussian with variance proxy σ 2” by analogy with the usual “global”

notion of subgaussianity (Definition 5.1.2), but such factors can always be absorbed into the

spike prior itself in our setting, so we work with this simpler and stricter definition. We use

the notation ρ(n) here and below because this will turn out to correspond to the sparsity of

a prior, so that ρ(n) ·n is the typical number of non-zero entries.
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The assumption on spike priors we will usually work with combines local subgaussianity

controlling small deviations with a modest bound on large deviations.

Definition 5.1.5 (Tame prior). A spike prior (Pn) is tame with speed ρ(n) ≤ 1 if there exist

ξ, T > 0 such that, for any η > 0, there exists a further δ > 0 such that

P⊗2
n

[
‖X1>X2‖F ≥ t

]
Ü exp

−n ·


1−η
2 t

2 if 0 ≤ t ≤ δρ,

ρ2 1−η
2 δ

2 if δρ ≤ t ≤ Tρ,

ρ2(log(1+ t))1+ξ if t ≥ Tρ.



 . (5.6)

In this case, we call T the upper threshold. As above, when ρ(n) is not specified, we take

ρ(n) = 1.

The middle condition for t ∈ [δρ, Tρ] follows from the bound at t = δρ, so this is really

only a combination of local subgaussianity and the bound on t ≥ Tρ. We also note that,

in the dense case ρ(n) = 1, one simple way for a spike prior to satisfy the large deviations

condition of being tame is for it to be bounded in norm.

Lastly, we give some broad classes of natural examples of tame priors. All of our exam-

ples will be drawn from priors having at least the following independence structure.

Definition 5.1.6 (Priors with i.i.d. rows). Let π ∈ P(Rk). Then, we denote by Pπn ∈ P(Rn×k)

the prior formed by sampling X ∼ Pπn as having i.i.d. rows r̂1, . . . , r̂k, with r̂k = 1√
nrk for

rk ∼ π independently.

Below we will use the fact that a centered random variable X is subgaussian with some

variance proxy if and only if E exp(εX2) <∞ for some ε > 0; see Proposition 5.1.3.

Proposition 5.1.7. Let π ∈ P(Rk) have Ev∼πv = 0, Ev∼πvv> � Ik, and ‖v‖ subgaussian with

any variance proxy. Then, (Pπn ) is a tame spike prior (with speed ρ(n) = 1).
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Proof. To lighten the notation, let us write Pn = Pπn for this proof. Suppose X1,X2 ∼ Pn
independently, and let r1

1, . . . ,r1
n ∼ π and r2

1, . . . ,r2
n ∼ π , all independently, be the rows of

√
nX1 and

√
nX2, respectively. Then, we note that

‖X1>X2‖F =
∥∥∥∥∥∥ 1
n

n∑
i=1

r1
i r

2>
i

∥∥∥∥∥∥
F

=
∥∥∥∥∥∥ 1
n

n∑
i=1

r1
i ⊗ r2

i

∥∥∥∥∥∥ . (5.7)

Since ‖ri‖ is subgaussian, E exp(ε‖ri‖2) < ∞ for some ε > 0. Therefore, the moment

generating function of the law of r1
i ⊗ r2

i , i.e., the function M : Rk
2 → R defined by M(u) :=

Ev1,v2∼π exp(〈u,v1 ⊗ v2〉), exists on the ball of radius ε centered at the origin, since 〈u,v1 ⊗

v2〉 ≤ ‖u‖ · ‖v1 ⊗ v2‖ = ‖u‖ · ‖v1‖ · ‖v2‖ ≤ 1
2‖u‖(‖v1‖2 +‖v2‖2). Since this law is centered

and has covariance matrix � Ik2 (as this is the tensor square of the covariance matrix of π ),

we have ∇M(0) = 0 and ∇2M(0) � Ik2 . Thus we have that, for any η > 0, there exists δ > 0

such that, whenever ‖u‖ ≤ δ, then

M(u) ≤ exp

(
1

2
√

1− η‖u‖
2

)
, (5.8)

by comparing the second-order Taylor expansions of either side.

Then, the moment generating function of the sum above is bounded by

M(n)(u) := E
r1
i ,r

2
i

exp

〈u, 1
n

n∑
i=1

r1
i ⊗ r2

i

〉 = M (
1
n
u
)n
≤ exp

(
1
n

1

2
√

1− η‖u‖
2

)
(5.9)

whenever ‖u‖ ≤ δn. Accordingly, taking a Chernoff bound, for any ‖u‖ ≤ 1 and t ≤ δ, we

have

P⊗2
n

〈u, 1
n

n∑
i=1

r1
i ⊗ r2

i

〉
≥ t

 = P⊗2
n

〈√1− ηntu, 1
n

n∑
i=1

r1
i ⊗ r2

i

〉
≥
√

1− ηnt2


≤ exp

(
−n

√
1− η
2

t2

)
. (5.10)
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Now, let N be a net of Sk
2−1, such that for any v ∈ Sk

2−1 there exists u ∈ N with 〈u,v〉 ≥

(1− η)1/4. We then have, for any t ≤ δ, by union bound,

P⊗2
n

[
‖X1>X2‖F ≥ t

]
= P⊗2

n

∥∥∥∥∥∥ 1
n

n∑
i=1

r1
i ⊗ r2

i

∥∥∥∥∥∥ ≥ t


≤ P⊗2
n

max
u∈N

〈
u,

1
n

n∑
i=1

r1
i ⊗ r2

i

〉
≥ (1− η)1/4t


≤ |N | exp

(
−n1− η

2
t2
)
, (5.11)

giving the local subgaussianity condition (since |N | may be taken to depend only on k and

η and thus subsumed into the leading constant).

For the bound on large deviations, we note that, since ‖X1>X2‖F ≤ ‖X1‖F‖X2‖F , if

‖X1>X2‖F ≥ t then either ‖X1‖2
F ≥ t or ‖X2‖2

F ≥ t. Therefore, by union bound,

P⊗2
n

[
‖X1>X2‖F ≥ t

]
≤ 2Pn

[
‖X‖2 ≥ t

]
= 2Pn

 1
n

n∑
i=1

‖ri‖2 ≥ t


and by Chernoff bound, for C = Ev∼π exp(ε‖v‖2),

≤ 2
(
E
r∼π

exp(ε‖r‖2)
)n

exp(−εnt)

Ü exp(−n(εt − logC)), (5.12)

which gives the required bound for upper threshold T sufficiently large.

As a special case, this automatically treats the simpler situation of priors with i.i.d. entries.

Corollary 5.1.8. Let π ∈ P(R) have mean zero, variance at most 1, and be subgaussian with

any variance proxy. Then, for any k ≥ 1, (P(π⊗k)n ) is a tame spike prior (with speed ρ(n) = 1).

Finally, we also consider the analogous situation for sparse priors, where we use the case
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ρ(n)� 1 of the definitions of tameness and subgaussianity. We restrict our attention to the

rank-one case, as it is unclear how to most naturally extend the notion below to “sparsifying”

priors with i.i.d. rows.

Definition 5.1.9 (Sparse priors with i.i.d. entries). Let π ∈ P(R) and ρ(n) ≤ 1. Then, we

denote by Pπ,ρ(n)n the spike prior formed by sampling x ∼ Pπ,ρ(n)n as having xi = 1√
ρ(n)·nwisi,

for wi ∼ π and si ∼ Ber(ρ(n)) all drawn independently for i ∈ [n].

Proposition 5.1.10. Let π ∈ P(R) have mean zero, variance at most 1, and be subgaussian

with any variance proxy. Then, for any ρ(n) ≤ 1, (Pπ,ρ(n)n ) is a tame spike prior with speed

ρ(n).

Proof. Again, let us write Pn = Pπ,ρ(n)n to lighten the notation. Following the beginning of

the proof of Proposition 5.1.7, we find that π itself satisfies that for any η > 0 there exists

δ > 0 such that, for all |t| ≤ δ,

E
w1,w2∼π

exp(tw1w2) ≤ exp

(
1

2
√

1− ηt
2

)
. (5.13)

Thus we have

E
x1,x2∼Pn

exp(t〈x1,x2〉) = E
w1
i ,w

2
i ∼π

s1
i ,s

2
i ∼Ber(ρ)

exp

 t
ρn

n∑
i=1

w1
iw

2
i s

1
i s

2
i



=

 E
w1,w2∼π
s1,s2∼Ber(ρ)

exp

(
t
ρn
w1w2s1s2

)
n

and since s1s2 = 1 with probability ρ2 and otherwise equals zero, taking the expectation

over these variables first gives

=
(

1− ρ2 + ρ2 E
w1,w2∼π

exp

(
t
ρn
w1w2

))n
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so if t ≤ δρn, then

≤
(

1+ ρ2

(
exp

(
t2

2
√

1− ηρ2n2

)
− 1

))n

Choosing δ sufficiently small that for all |x| ≤ δ we furthermore have exp( x2

2
√

1−η) − 1 ≤
1

2(1−η)x
2, which is possible by comparing Taylor expansions, we then have

≤
(

1+ t2

2(1− η)n2

)n

≤ exp

(
t2

2(1− η)n

)
. (5.14)

Finally, applying a Chernoff bound we have, for t ≤ δρ,

P⊗2
n [〈x1,x2〉 ≥ t] = P⊗2

n [(1− η)nt〈x1,x2〉 ≥ (1− η)nt2]

≤ exp
(
−n1− η

2
t2
)
, (5.15)

which gives the local subgaussianity with speed ρ(n), with the other tail bound following

by a symmetric argument.

For the large deviations bound, we follow the proof of Proposition 5.1.7. If |〈x1,x2〉| ≥ t,

then either ‖x1‖2 ≥ t or ‖x2‖2 ≥ t, so, by union bound,

P⊗2
n [|〈x1,x2〉| ≥ t] ≤ 2Pn[‖x‖2 ≥ t]

= 2Pn
 1
ρn

n∑
i=1

w2
i si ≥ t


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and by Chernoff bound, if C = E exp(εw2),

≤ 2
(
E exp(εw2s)

)n
exp(−ερnt)

= 2
(
1+ ρ2(E exp(εw2)− 1)

)n
exp(−ερnt)

≤ 2 exp
(
Cρ2n− ερnt

)
, (5.16)

giving the upper bound for t ≥ Tρ for sufficiently large T .

We note that a fairly similar analysis has appeared in [LWB20] using Bernstein’s inequal-

ity to control the overlaps of sparse priors. Our application of Proposition 5.1.10 serves the

same purpose—Bernstein’s inequality similarly interpolates smoothly between different tail

regimes for small and large deviations—but is slightly more flexible in treating subgaussian

underlying distributions rather than only bounded ones.

5.2 Gaussian Wigner and Wishart Models

5.2.1 Bounding Wishart by Wigner

We first show a very useful relationship between Gaussian Wigner and Wishart models,

which essentially states that, up to a rescaling and small shift of the magnitude of the signal,

a sign-definite Wishart model is at least as hard as a Wigner model with the same signal

prior. Moreover, this simple relationship even holds pointwise for the link polynomials

φWish
N,D and φWig

D , without taking expectations over signal priors.

Lemma 5.2.1. For N,D ∈ N+ and T � 0,

φWish
N,D (T ) ≤ φWig

D

((
N
2
+D

)
tr(T )

)
. (5.17)
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Proof. Since T � 0, we have tr(T k) ≤ tr(T )k. Therefore, working from Definition 4.4.4 of

the polynomials rN,d appearing in φWish
N,D , we have

rN,d(T ) = 1
d!

∑
π∈Part([d])

(
N
2

)|π| ∏
S∈π
(|S| − 1)! tr(T |S|)

≤ tr(T )d

d!

∑
π∈Part([d])

(
N
2

)|π| ∏
S∈π
(|S| − 1)!

and now, noting that the remaining sum by Definition 4.4.4 and Corollary 4.4.14 is just equal

to d!aN,d from the statement of the Corollary (alternatively, one may compute this directly

as an evaluation of one definition of Stirling numbers of the first kind), we have

= tr(T )d

d!

d−1∏
k=0

(
N
2
+ k

)

and if d ≤ D, then

≤ 1
d!

((
N
2
+D

)
tr(T )

)d
. (5.18)

Thus, we have

φWish
N,D (T ) =

D∑
d=0

rN,d(T ) ≤
D∑
d=0

1
d!

((
N
2
+D

)
tr(T )

)d
= φWig

D

((
N
2
+D

)
tr(T )

)
, (5.19)

as claimed.

To see briefly why this relation will be so useful, recall that we will consider Wishart

models with signals X̃ = βXX>, whereby the overlaps input into φWish
N,D will be of the form

β2X1X1>X2X2> . By the cyclic property of φWish
N,D (following from the cyclic property of the

rN,d from Proposition 4.4.6), we will then have

φWish
N,D (β2X1X1>X2X2>) = φWish

N,D (β2(X1>X2)(X1>X2)>), (5.20)
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where the input is now positive semidefinite and Lemma 5.2.1 applies.

5.2.2 Truncated Exponential Polynomials

In light of the previous result, the only link polynomials whose analytic properties we will

need to consider carefully are the φWig
D (t) =∑Dd=0

1
d!t

d. One useful device is the following in-

tegral form of these “truncated exponential polynomials;” see, e.g., [DCS03] for this identity

and further information. Recall that, at least for large t, we expect φWig
D (t) ≈ tD

D! ; this result

gives an exact integral expression for the excess in this approximation.

Proposition 5.2.2. For any t > 0,

φWig
D (t) = t

D

D!

∫∞
0
e−s

(
1+ s

t

)D
ds, (5.21)

and φWig
D (0) = 1.

Proof. Expanding the integral with the binomial theorem,

1
D!

∫∞
0
e−s(s + t)D =

D∑
d=0

td

d!(D − d)!
∫∞

0
e−ssD−dds =

D∑
d=0

td

d!
= φWig

D (t) (5.22)

with the integrals evaluated as gamma functions.

Corollary 5.2.3. For any t ≥ 0, we have the bounds

tD

D!
≤ φWig

D (t) ≤ min

{
exp(t),2

(2D ∨ t)D
D!

}
. (5.23)

Proof. The lower bound is immediate since all terms in φWig
D are non-negative. For the

upper bound, φWig
D (v) ≤ exp(v) is again immediate for the same reason. For the remaining

inequality, since φWig
D (v) is increasing in v , it suffices to consider the case v > 2D. In this
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case, we bound

φWig
D (v) = v

D

D!

∫∞
0
e−u

(
1+ u

v

)D
du

≤ v
D

D!

∫∞
0

exp
(
−u+ u

v
D
)
du

≤ v
D

D!
· 1

1− D
v

≤ 2
vD

D!
, (5.24)

and the result follows.

We also make the following simple observation, which we will use repeatedly to handle

the differentiation of the link function appearing in Lemma 5.1.1.

Proposition 5.2.4. For any D ∈ N and t ≥ 0, d
dtφ

Wig
D (t) = φWig

D−1(t) ≤ φWig
D (t), where we

interpret φWig
−1 = 0.

5.2.3 Tensor PCA

The following model, first introduced by [RM14], has become quite popular as a tensor-

valued analog of spiked matrix models. We present results on this model before those for

spiked matrix models since, as we will see, the latter are just a special case of the former

where a more precise analysis is possible.

Definition 5.2.5 (Spiked tensor model). Let p ≥ 2 and λ = λ(n) > 0. Given a sequence Pn ∈

P(Rn), the spiked tensor model of order p is the Gaussian Wigner model with N(n) = np

and signal prior X̃ ∼ P̃n given by sampling X̃ = λx⊗p for x ∼ Pn. That is, the null and

planted distributions are given respectively by:

• Under Qn, draw Y ∈ (Rn)⊗p with independent entries distributed asN (0,1).
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• Under Pn, first draw x ∼ Pn, draw G ∈ (Rn)⊗p with independent entries distributed as

N (0,1), and observe Y = λx⊗p +G.

More briefly, we say (Qn,Pn)n≥1 form a spiked tensor model with parameters (λ,Pn).

Theorem 5.2.6 (Spiked tensor lower bound: dense, rank one). Suppose (Pn) is a tame rank-

one spike prior. Then, there exists c > 0 depending only on p and the tail bounds in the

tameness of the prior such that, whenever D ≤ cn and λ ≤ (9p)−p/4np/4D(2−p)/4, then

‖L≤Dn ‖ = O(1) in the spiked tensor model with parameters (λ,Pn).

This suggests that, per the extended Conjecture 3.2.3, in time exp(O(nδ)) we may dis-

tinguish in the spiked tensor model so long as λ � n−p/4−δ(p−2)/4 (neglecting logarith-

mic factors). For δ = 0 this concerns polynomial-time algorithms, and the threshold of

λ � n−p/4 is the same as that achieved by various algorithms in the literature [RM14,

HSS15, ADGM17, HSSS16]. For δ > 0 this concerns subexponential-time algorithms, and

the corresponding relationship between computational cost and the threshold λ coincides

to other subexponential-time algorithms [BGG+16, BGL16, RRS17, WEM19]. Finally, for δ = 1

this concerns exponential-time algorithms, and thus at least informally we expect to recover

the threshold of statistical distinguishability, since we do not expect super-exponential time

algorithms to be of use when exponential-time algorithms cannot distinguish Pn from Qn.

Indeed, this gives the threshold λ � n(1−p)/2, which is the threshold below which distin-

guishing is impossible [RM14, PWB16, LML+17, JLM20].

Proof. Let X̃ 1 = λ(x1)⊗p,X̃ 2 = λ(x2)⊗p be two independent draws from P̃n, for two inde-

pendent draws xi ∼ Pn. Then, the overlap is 〈X̃ 1,X̃ 2〉 = λ2〈x1,x2〉p. Let us write ψ(t) for

the “rate function” of the tail bound on the overlap that tameness provides: for a given η,δ
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parameters of local subgaussianity,

ψ(t) =



1−η
2 t

2 if 0 ≤ t ≤ δ,
1−η

2 δ
2 if δ ≤ t ≤ T ,

(log(1+ t))1+ξ if t ≥ T .

(5.25)

Then, we recall that P⊗2
n [|〈x1,x2〉| ≥ t] ≤ exp(−nψ(t)). Therefore, we have

‖L≤Dn ‖2 = EφWig
D (λ2〈x1,x2〉p) (Theorem 4.1.7)

and, before proceeding, we note that this is monotone in λ, whereby we may suppose with-

out loss of generality that λ = (9p)−p/4np/4D(2−p)/4 = (n/9pD)p/4√D. Continuing,

≤
∫∞

0
exp

(
−nψ

(
λ−2/pt1/p

))
φWig
D (t)dt (Lemma 5.1.1)

Let local subgaussianity hold over [0, δ] with η = 1
3 . Let us choose c ≤ δ2

18p , so that D ≤
δ2

18pn, whereby we have δpλ2 = (δ2n/9pD)p/2D ≥ 2p/2D ≥ 2D. Therefore, letting T be the

upper threshold in the tameness assumption on the spike prior, assuming without loss of

generality that T > δ, we may divide the integral into four regions and substitute in the

corresponding behavior of ψ and φWig
D , as follows:

≤
∫ 2D

0
exp

(
t − 1

3
nλ−4/pt2/p

)
dt

+
∫ δpλ2

2D
exp

(
−1

3
nλ−4/pt2/p

)
tD

D!
dt

+
∫ Tpλ2

δpλ2
exp

(
−1

3
nδ2

)
tD

D!
dt

+
∫∞
Tpλ2

exp
(
−n(log(1+ t))1+ξ

) tD
D!
dt

=: A1 +A2 +A3 +A4. (5.26)
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We now treat the four terms individually, showing that each is O(1) as n→∞. We also note

before proceeding that nλ−4/p = 9pD
p−2
p .

For A1, since t , t2/p is a concave function, on the interval t ∈ [0,2D] we have t2/p ≥

(2D)−
p−2
p t as this line is the secant of the function on this interval. Thus we find

A1 ≤
∫∞

0
exp

t
1− 2−

p−2
p

3
nλ−4/pD2/p−1

dt
=
∫∞

0
exp

(
t
[

1− 2−
p−2
p · 3p

])
dt (5.27)

The remaining rate is strictly negative, so this integral is a finite constant and A1 = O(1).

For A2, we extend the domain of integration and compute the full integral over R≥0,

A2 ≤ 1
D!

∫∞
0

exp
(
−3pD

p−2
p t2/p

)
tDdt

If p = 2, then the integral is at most D! by evaluating it as a gamma function, whereby we

find A2 ≤ 1. Thus let us suppose p ≥ 3. Performing the change of variables s = 3pD
p−2
p t2/p,

we find

= 1
6

1
D!
(3p)−

pD+p−2
2 D−

p−2
2 (D+1)

∫∞
0
e−ss

pD+p−2
2 ds

Evaluating again as a gamma function and bounding the result, we find

≤ 1
D!
D−

p−2
2 (D+1)

(
pD + p − 2

6p

)pD+p−2
2

≤ 1
D!
D−

p−2
2 (D+1)

(
D
3

)pD+p−2
2

≤ 1
D!

(
D
3

)D
, (5.28)

which is bounded by Stirling’s approximation, so A2 = O(1).
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For A3, we note that the rate term is constant, so we simply have

A3 ≤ exp
(
−1

3
nδ2

)∫ Tpλ2

δpλ2

tD

D!
dt

≤ exp
(
−1

3
nδ2

)
· T

p(D+1)λ2(D+1)

(D + 1)!

≤ exp
(
−1

3
nδ2

)
· (T

2 n
D)
p(D+1)/2DD+1

(D + 1)!

and using Stirling’s approximation and suppressing a constant,

Ü exp
(
−1

3
nδ2

)
·
(
eT 2n

D

)p(D+1)/2

Assuming without loss of generality that T ≥ e, we see upon taking a derivative that the

second term is increasing with D over all 0 ≤ D ≤ n. Therefore, if c < 1 and D ≤ cn, over

these permissible D the second factor will be maximized by D = cn, with which we find

≤ exp

(
−n

[
1
3
δ2 − pc log

(
eT 2

c

)])
, (5.29)

whereby choosing c small enough will make the exponent negative, and thus A3 = O(1).

Finally, for A4 we may again compare to the integral extended to all of R≥0, and bound

coarsely using D ≤ n:

A4 ≤
∫∞

0
exp

(
−n

[
(log(1+ t))1+ξ − log(1+ t)

])
dt, (5.30)

whereby A4 = O(1), completing the proof.

We illustrate this proof in Figure 5.1, comparing the rate function in the tail bound on

the overlap and the truncated exponential polynomials on the exponential scale and showing

how our decomposition corresponds to the different regimes of these functions.
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Remark 5.2.7 (Leading-order behavior and prefactor). The decomposition we have introduced

in the proof above into integrals Ai conveniently corresponds to determining increasingly

fine-grained behavior of the threshold of computational hardness: the analysis of A1 gives

the dependence of the critical λ upon n and D, the analysis of A2 gives the exp(Θ(−p logp))

dependence of the prefactor on p, and the analyses of A3 and A4 are essentially generic and

do not use any special properties of the model.

Remark 5.2.8 (Wishart spiked tensor models). It is reasonable to wonder whether there is a

model whose LDLR is given by the Wishart link function φWish
D applied to the tensor over-

lap 〈x1,x2〉p. In fact, a similar model appeared recently in [CHK+20], under the name

of “single-spike block mixtures,” where in the planted model one draws s ∼ Unif({±1}d),

x ∼ Unif({±1/
√
n}n), and then yi1, . . . ,yim ∼ N (0,I + λsixx>) for i ∈ [d]. This may be

written as a Wishart spiked matrix model with a block-structured covariance matrix, but one

may check that, after applying the comparison bound of Lemma 5.2.1, its LDLR is bounded

by ‖L≤Dn ‖2 ≤ EφWig
D (λ2〈s1,s2〉〈x1,x2〉2), like a Wigner tensor model with spike λs ⊗ x ⊗ x.

Our tools should yield a streamlined proof of the results on this model used there; it would be

interesting to understand if such models arise in other settings.

5.2.4 Dense Matrix PCA

We now consider spiked matrix models. We recall that we have seen two variants: the

Wishart spiked matrix model of Definition 2.2.4, and the Wigner spiked matrix model of

Example 4.1.2. We restate more precisely and generally the definition of the latter model

below, in particular allowing spikes of arbitrary fixed rank.

Definition 5.2.9 (Wigner spiked matrix model). Let λ = λ(n) > 0 and k ∈ N+ not depending

on n. Given a sequence Pn ∈ P(Rn×k), the Wigner spiked matrix model is the Gaussian

Wigner model with N(n) = n2 and signal prior X̃ ∼ P̃n given by sampling X̃ = λ√
2XX

> for
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0 2D δpλ2 Tpλ2

∼ n
(2
D)
−(p
−2)
/p λ

−4/
p t

∼ t

∼ D log t

← A1 → ← A2 → ← A3 → ← A4 -→

Ω(n)

O(D log(nD ))

p ≥ 3

nψ(λ−2/pt1/p)
log exp≤D(t)

0 2D δ2λ2 T 2λ2

∼ (
n/
λ
2 )t

∼ t

∼ D log t

← A1 → ← A2 → ← A3 → ← A4 -→

Ω(n)

O(D log(nD ))

p = 2

nψ(
√
t/λ)

log exp≤D(t)

Figure 5.1: Low-degree lower bounds: dense matrix and tensor PCA. We illustrate the proofs
of Theorems 5.2.6 and 5.2.10, showing the relationship on an exponential scale between the tail
bound on a tame prior and the truncated exponential polynomial. “Knots” where these functions
change behavior are marked with solid circles, and bounds from the proofs are marked with dotted
lines.
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X ∼ Pn. Equivalently, this is the spiked tensor model with p = 2 and λ rescaled by
√

2, or the

model with null and planted distributions given respectively by:

• Under Qn, draw Y ∈ Rn×n with independent entries distributed asN (0,1).

• Under Pn, drawG ∈ Rn×n with independent entries distributed asN (0,1), and observe

Y = λ√
2XX

> +G.

More briefly, we say (Qn,Pn)n≥1 form a Wigner spiked matrix model with parameters (λ,Pn).

The reason for rescaling λ is that, more often, this model is taken with symmetric matrix

observations and G ∼ √n · GOE(n) above (or, what is equivalent, G ∼ GOE(n) and λ

a constant independent of n). The above model is a priori more “favorable” for testing,

since this symmetric model may be recovered by forming Y sym = 1√
2(Y + Y >), with the

normalizing factor chosen so that Y sym has the law
√
n ·GOE(n) when Y ∼ Qn. Actually, it

is straightforward to show that the two models are equivalent for the purposes of hypothesis

testing. Under this symmetrizing transformation the
√

2 in the definition above cancels, so

we expect the model defined above to have the same critical λ as the GOE model, namely

λ(n) = √n.

Theorem 5.2.10 (Wigner spiked matrix lower bound: dense, rank k). Suppose (Pn) is a tame

spike prior. Then, for any ε > 0, there exists c > 0 depending only on ε and the tail bounds in

the tameness of the prior such that, whenever λ ≤ (1−ε)√n and D ≤ cn, then ‖L≤Dn ‖ = O(1)

in the Wigner spiked matrix model with parameters (λ,Pn).

We note that this matches the behavior of the PCA test mentioned earlier, for which the

threshold of distinguishing is λ ∼ √n per Proposition 2.2.3.

Remark 5.2.11 (The “Gaussian heuristic”). We mention a useful heuristic argument that can

be used to quickly predict the outcome of such a computation quite easily. Suppose we are in
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the rank-one case of the Wigner spiked matrix model. Then, at the critical scaling, we have

‖L≤Dn ‖2 = EφWig
D (1

2 λ̂n〈x1,x2〉2) for λ̂ of order constant. Since ‖x‖ ≈ 1 for x ∼ Pn, for “nice”

spike priors we may suppose by a central limit theorem heuristic that
√
n〈x1,x2〉 → N (0,1)

in distribution. In particular, for large n, n〈x1,x2〉2 is approximately distributed as a χ2

random variable (with one degree of freedom). Supposing that D → ∞ slowly enough that

φWig
D → φWig “after” this convergence in distribution, we might expect lim supn→∞ ‖L≤Dn ‖2 Ü

E exp(1
2 λ̂g

2) for g ∼ N (0,1). This is finite if and only if λ̂ < 1, recovering our result above.

It is an intriguing open problem to find a direct way to make this reasoning rigorous with a

quantitative version of the central limit theorem for priors of interest.

Proof of Theorem 5.2.10. We essentially repeat the proof of Theorem 5.2.6 with a few ad-

justments. First, because of our rescaling and the more general rank-k spike prior, we will

have 〈X̃ 1,X̃ 2〉 = 1
2λ

2‖X1>X2‖2
F . Recall, though, that by the definition of tameness of pri-

ors, the overlap will satisfy the same tail bound as in the rank-one case used in the proof of

Theorem 5.2.6,

P⊗2
n [‖X1>X2‖F ≥ t] ≤ exp(−nψ(t)), (5.31)

for ψ(t) as in (5.25).

Second, we will make full use of local subgaussianity: let η > 0 be a small constant to be

fixed later, and δ corresponding width of the interval of local subgaussianity. Then,

‖L≤Dn ‖2 = EφWig
D

(
λ2

2
‖X1>X2‖2

F

)
(Theorem 4.1.7)

≤
∫∞

0
exp

(
−nψ

(√
2t
λ

))
φWig
D (t)dt (Lemma 5.1.1)
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and decomposing as before,

≤
∫ 2D

0
exp

(
t − (1− η) n

λ2
t
)
dt

+
∫ δ2λ2

2D
exp

(
−(1− η) n

λ2
t
)
tD

D!
dt

+
∫ C2λ2

δ2λ2
exp

(
−(1− η)nδ2

) tD
D!
dt

+
∫∞
C2λ2

exp
(
−n(log(1+ t))1+ξ

) tD
D!
dt

=: A1 +A2 +A3 +A4. (5.32)

We have A3 = O(1) and A4 = O(1) by the same coarse bounds as in the proof of Theo-

rem 5.2.6. We choose η sufficiently small that 1−η
(1−ε)2 > 1. Thus we will have A1 = O(1)

and A2 ≤ 1 by extending both to full integrals over R≥0, and integrating directly for A1 and

evaluating A2 as a gamma function.

We also give a graphical illustration of this argument in Figure 5.1 as for the tensor case,

showing how the sharp threshold arises from the small deviation tails exhibiting exponential

decay (with linear exponent) independent of D.

Next, displaying the power of Lemma 5.2.1, we deduce with almost no further work the

corresponding lower bound for the Wishart model.

Theorem 5.2.12 (Wishart spiked matrix lower bound: dense, rank k). Suppose (Pn) is a tame

spike prior. Then, for any β > −1 and γ > 0 such that β2/γ < 1, there exists c > 0 depending

only on β,γ, and the tail bounds in the tameness of the prior such that, whenever D ≤ cn,

then ‖L≤Dn ‖ = O(1) in the Wishart spiked matrix model with parameters (β, γ,Pn).

Proof. Recall by Proposition 4.4.13 that we may ignore the truncation in the Wishart spiked

matrix model for the purposes of these bounds. Using the cyclic property of Proposi-

tion 4.4.6 to transform the Wishart link polynomials, and then bounding with Lemma 5.2.1,
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we find

‖L≤Dn ‖2 = EφWish
n/γ,D

(
β2X1X1>X2X2>

)
= EφWish

n/γ,D

(
β2(X1>X2)(X1>X2)>

)
≤ EφWig

D

(
β2

2γ

(
n+ γ

2
D
)
‖X1>X2‖2

F

)
(5.33)

≤ EφWig
D

(
β2

2γ

(
1+ γ

2
c
)
n‖X1>X2‖2

F

)
(5.34)

whereby the result holds by taking c sufficiently small that β
2

γ (1+ γ
2c) < 1 and applying the

argument of Theorem 5.2.10.

Remark 5.2.13. As is well-understood in the random matrix literature, for the Wishart model

β2/γ behaves as the “effective signal-to-noise ratio,” playing the role of λ/
√
n from the Wigner

model. Lemma 5.2.1 gives us a pleasantly direct way of applying this equivalence to derive

computational lower bounds, as we have done above. We risk belaboring this point because,

while in all relevant statistical and computational behaviors the analogy between the Wigner

and Wishart spiked matrix models is quite strong, we are not aware of any earlier works that

have found tools to directly compare one to the other.

5.2.5 Sparse Matrix PCA

Finally, we also consider the case of the setting of the previous section where the spike prior

is sparse (here we mean having sparsity ρ(n) = o(1), in contrast to the constant sparsity

discussed in Example 2.4.1).

Theorem 5.2.14 (Wigner spiked matrix lower bound: sparse, rank one). Suppose (Pn) is a

tame rank-one spike prior with speed ρ = ρ(n) satisfying that lim infn→∞ ρ(n)2n > 0. Then,

for any ε > 0, there exists c > 0 depending only on ε and the tail bounds in the tameness of

125



the prior such that, whenever λ ≤ (1−ε)√n and D ≤ cρ2n, then ‖L≤Dn ‖ = O(1) in the Wigner

spiked matrix model with parameters (λ,Pn).

The result suggests that it is possible to distinguish in the spiked matrix model (Wigner in

this case, or Wishart below) in time exp(O(ρ2n)) for a prior of sparsity ρ. This matches

the threshold achieved by algorithms that enumerate principal submatrices of size ρ2n ×

ρ2n and search by brute force for such a submatrix with a large eigenvalue, as proposed

concurrently by [DKWB19, HSV20]. For polynomial-time algorithms this suggests that ρ Ü

1/
√
n is required when λ ≤ (1−ε)√n (below the PCA or BBP threshold), which is compatible

with the algorithms of [JL09, DM14], the SOS lower bounds of [MW15, HKP+17], and the

reduction arguments of [BR13, WBS16, BBH18, BB19b].

Proof. We recapitulate the proof of Theorem 5.2.10 with a few adjustments. As there, let

η > 0 be a small constant to be fixed later, and δρ the corresponding width of the interval

of local subgaussianity. Then,

‖L≤Dn ‖2 = EφWig
D

(
λ2

2
〈x1,x2〉2

)
(Theorem 4.1.7)

where we note that this expression is increasing in λ, so we may suppose without loss of

generality that we have λ = (1 − ε)√n. Then, choosing c sufficiently small depending on

δ, we will have 2D ≤ 2cρ2n ≤ δ2ρ2λ2 = (1 − ε)2δ2ρ2n, whereby we may proceed with our

usual bound

≤
∫∞

0
exp

(
−nψ

(√
2t
λ

))
φWig
D (t)dt (Lemma 5.1.1)
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and our usual decomposition of the integral:

≤
∫ 2D

0
exp

(
t − (1− η) n

λ2
t
)
dt

+
∫ δ2ρ2λ2

2D
exp

(
−(1− η) n

λ2
t
)
tD

D!
dt

+
∫ T2ρ2λ2

δ2ρ2λ2
exp

(
−(1− η)δ2ρ2n

) tD
D!
dt

+
∫∞
T2ρ2λ2

exp
(
−ρ2n(log(1+ t))1+ξ

) tD
D!
dt

=: A1 +A2 +A3 +A4. (5.35)

The proof is now mostly identical to that of Theorem 5.2.10: A1, A2, A3 = O(1) by the same

arguments, with n replaced by ρ2n throughout and noting that the assumption D ≤ cn has

been replaced with D ≤ cρ2n accordingly. The only small difference is in A4, where we have

A4 ≤
∫∞

0
exp

(
−ρ2n

[
(log(1+ t))1+ξ − log(1+ t)

])
, (5.36)

and here we use the assumption that ρ2n is bounded above 0 for sufficiently large n so that

this is O(1) as well.

Theorem 5.2.15 (Wishart spiked matrix model: sparse, rank one). Suppose (Pn) is a tame

rank-one spike prior with speed ρ = ρ(n) satisfying that lim infn→∞ ρ(n)2n > 0. Then, for

any β > −1 and γ > 0 such that β2/γ < 1, there exists c > 0 depending only on β,γ, and the

tail bounds in the tameness of the prior such that, whenever D ≤ cρ2n, then ‖L≤Dn ‖ = O(1)

in the Wishart spiked matrix model with parameters (β, γ,Pn).

The proof is identical to that of Theorem 5.2.12, essentially following immediately from

Lemma 5.2.1.
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5.3 Consequences for Certification

We finally arrive at our applications to certification for constrained PCA problems. Here, of

the above results, we will draw only on the Wishart spiked matrix model, Theorem 5.2.12

above. This will be combined with the reduction results from Chapter 2.

It will be convenient to have a tool to truncate priors to force them to be β-good, as we

have seen is important for our reduction arguments with the Wishart spiked matrix model.

Definition 5.3.1 (β-truncation). For β > −1 and P ∈ P(Rn×k), define truncβ(P) ∈ P(Rn×k) by

sampling X ∼ truncβ(P) by first drawing X(0) ∼ P, and setting X =X(0) if β‖X(0)‖2 > −1,

and X = 0 otherwise.

The following are the important properties of this definition: truncation makes a spike prior

β-good and does not change the Wishart spiked matrix model.

Proposition 5.3.2. truncβ(P) is β-good for any P ∈ P(Rn×k).

Proposition 5.3.3. The Wishart spiked matrix models with parameters (β, γ,Pn) and with

parameters (β, γ, truncβ(Pn)) are identical (in the sense of having the same sequences of

probability measures (Qn,Pn)).

Thus any hardness result for the Wishart spiked matrix model with spike prior (Pn) will

also hold with spike prior (truncβ(Pn)).

We also introduce the following notion of “β-goodness in probability,” which all of the

spike priors we consider will satisfy.

Definition 5.3.4 (Weakly β-good). For β > −1, call a spike prior (Pn) weakly β-good if, under

X ∼ Pn, β‖X‖2 > −1 with high probability.

Indeed, it suffices to have ‖X‖ → 1 in probability to have (Pn) weakly β-good for all β > −1,

and this is usually just a matter of normalization as convergence to some limiting norm

should hold for most spike priors of interest. Under this condition, we have the following.
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Proposition 5.3.5. If (Pn) is weakly β-good, then Pn and truncβ(Pn) may be coupled such

that draws from either are equal with high probability.

We will use these simple facts to argue as follows: suppose Pn is one of the tame pri-

ors with independence structure as in Definitions 5.1.6 and 5.1.9. If (Pn) satisfies all of

the conditions of the reductions of Chapter 2 (Corollaries 2.3.3 and 2.3.4) except for being

β-good, but (Pn) is weakly β-good, then truncβ(Pn) will satisfy all of the conditions, and, as-

suming that better-than-spectral certification is possible for an associated constrained PCA

problem, we can infer that it is possible to distinguish in the Wishart spiked matrix model

with parameters (β, γ, truncβ(Pn)). But this model is identical to the Wishart spiked matrix

model with parameters (β, γ,Pn), so our hardness results concerning Wishart models with

spike prior (Pn) apply. We elide this essentially trivial but somewhat convoluted reasoning

in the proofs below.

Our first result concerns certification in the SK Hamiltonian. This gives rigorous evidence

addressing the question of whether better-than-spectral certification is possible, that was

first raised by Montanari following the publication of [MS16] (for example it is mentioned

more explicitly in [Mon18]), and later repeated in [JKR19].

Corollary 5.3.6 (SK Hamiltonian [BKW20b]). Let X = {±1/
√
n}n. If the extended Conjec-

ture 3.2.3 holds,2 then there exists no algorithm that runs in time O(exp(n1−δ)) for δ > 0

and certifies a bound on MX(W ) that is with high probability at most 2 − ε for ε > 0 when

W ∼ GOE(n). On the other hand, MX(W )→ 2P∗ ≈ 1.526 in probability.

Proof. The final statement is the deep result of [Gue03, Tal06]; see also [Pan13] for a text-

book treatment and [CR02] for numerics justifying the number we give. A simpler upper

bound of 2
√

2/π follows from the Fernique-Sudakov inequality (Corollary 3.12 of [LT13]).

2Really, we only need the conjecture to apply to the particular Wishart spiked matrix model described in
the proof. The same also applies to the remaining results in this section.
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Let π = Unif({1,−1}) ∈ P(R) be the Rademacher distribution. The mean of π is

zero, the variance is 1, and the distribution is bounded, so, by Proposition 5.1.7, (Pπn ) =

(Unif({±1/
√
n}n)) forms a tame spike prior. This spike prior is also β-good for any β > −1,

as x ∼ Pπn has ‖x‖ = 1 almost surely. Lastly, we have x ∈ X = {±1/
√
n}n almost surely

when x ∼ Pπn .

Suppose there exists an algorithm certifying a bound of at most 2 − ε on MX(W ) with

high probability when W ∼ GOE(n) and running in time T(n). Then, by Corollary 2.3.4,

there exist β ∈ (−1,0), γ > 1, and an algorithm that can distinguish (Pn) from (Qn) in the

Wishart spiked matrix model with parameters (β, γ,Pπn ) in time T(n)+O(1). On the other

hand, since β2/γ < 1 for these parameters, by Theorem 5.2.12 we have ‖L≤Dn ‖ = O(1) for

any D = D(n) = o(n) in this model. Therefore, assuming Conjecture 3.2.3 holds, we must

have T(n) Ý exp(n1−δ) for any δ > 0.

Clearly, the argument also goes through unchanged for any X such that there exists some π

satisfying the hypotheses of Proposition 5.1.7 (in the rank-one case) such that when x ∼ π⊗n

then x/
√
n ∈ X with high probability. For example, this treats the constraint set X = {x ∈

Sn−1 : ‖x‖0 ≤ ρn} for any ρ > 0, showing the same result.

Next, we present an example where the additional flexibility of the “planting near X”

reduction in Corollary 2.3.3 is useful. This addresses a question posed by Montanari and

Richard in [MR15] concerning the performance of semidefinite programming relaxations for

non-negative PCA.

Corollary 5.3.7 (Non-negative PCA [BKW20a]). Let X = Rn+ ∩ Sn−1. If the extended Conjec-

ture 3.2.3 holds, then there exists no algorithm that runs in time exp(n1−δ) for δ > 0 and

certifies a bound on MX(W ) that is with high probability at most 2 − ε for ε > 0 when

W ∼ GOE(n). On the other hand, MX(W )→ √2 in probability.

Proof. The final statement is the result of Theorem 2 of [RM14]; the upper bound alone
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follows from a straightforward application of the Fernique-Sudakov inequality.

Fix some ρ ∈ (0,1). Let π ∈ P(R) be the centered Bernoulli distribution, that which

samples x ∼ π as

x =


√

1−ρ
ρ with probability ρ

−
√

ρ
1−ρ with probability 1− ρ

(5.37)

The mean of π is zero, the variance is 1, and the distribution is bounded, so, by Proposi-

tion 5.1.7, (Pπn ) forms a tame spike prior.

Pn is not itself β-good, for any β > −1, since under x ∼ Pn we may have ‖x‖2 = 1−ρ
ρ at

the largest. However, ‖x‖2 is an average of n i.i.d. bounded random variables, and its mean

is 1, so by the law of large numbers ‖x‖2 → 1 in probability and thus Pn is weakly β-good.

For x ∼ Pn, let x′ have entries x′i = 0 ∨ xi ≥ 0. Then, x′ ∈ X = Rn+ almost surely. We

also have 〈x,x′〉 = 1−ρ
ρ · #{i ∈ [n] : xi > 0}/n → 1− ρ in probability. Thus, for any β > −1

and δ > 0, taking ρ = δ/2 above we will have that truncβ(Pπn ) satisfies the hypothesis of

Corollary 2.3.3, with K = 1.

We may then conclude as before: suppose there exists an algorithm certifying a bound

of at most 2 − ε on MX(W ) with high probability when W ∼ GOE(n) and running in

time T(n). Then, by Corollary 2.3.4, there exist β ∈ (−1,0), γ > 1, and an algorithm

that can distinguish (Pn) from (Qn) in the Wishart spiked matrix model with parameters

(β, γ,Pπn ) in time T(n)+O(1). On the other hand, since β2/γ < 1 for these parameters, by

Theorem 5.2.12 we have ‖L≤Dn ‖ = O(1) for any D = D(n) = o(n) in this model (noting that

applying truncβ to the spike prior does not change the spiked Wishart model). Therefore,

assuming Conjecture 3.2.3 holds, we must have T(n) Ý exp(n1−δ) for any δ > 0.

Lastly, we treat an example where both the constrained PCA problem and the associated

Wishart spiked matrix model have rank greater than one. This is the Gaussian analog of the

coloring problem discussed in Section 2.5 (or, more broadly, of the problem of finding the

largest “k-cut” or “k-multisection” in a graph, which is just an improper coloring with the
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number of monochromatic edges minimized), and also is the analog of the SK Hamiltonian

with “Potts spins.” Under the latter interpretation this model is prominent in the statisti-

cal physics literature [ES83, GKS85] (see also [Pan18] for a modern mathematically-rigorous

analysis), and through that connection it has been related to the problem of finding max-

imum multisections in sparse random graphs in the same way that the SK Hamiltonian is

related to maximum cuts [Sen18].

Corollary 5.3.8 (Potts spin glass Hamiltonian [BBK+20]). Let k ≥ 2. Let v1, . . . ,vk ∈ Sk−1

be unit vectors pointing to the vertices of an equilateral simplex, such that ‖vi‖ = 1 and

〈vi,vj〉 = − 1
k−1 whenever i ≠ j. Let X ⊂ Rn×(k−1) be the set of matrices X all of whose rows

equal
√
k−1
n vi for some i ∈ [k]. If the extended Conjecture 3.2.3 holds, then there exists no

algorithm that runs in time O(exp(n1−δ)) for δ > 0 and certifies a bound on MX(W ) that is

with high probability at most 2(k− 1)− ε for ε > 0 when W ∼ GOE(n).

We note that 2(k−1) is indeed the spectral bound, since ‖X‖2
F = k−1 for anyX ∈ X. Also,

the case k = 2 recovers our above result for the SK Hamiltonian. What is more typically

called the “Potts spin glass Hamiltonian” is the function H(σ) = ∑n
i,j=1 1{σ(i) = σ(j)}Wij

over σ ∈ [k]n, but this is merely a rescaling and negligible shift depending only on W of

the quantity optimized by MX(W ). A Parisi formula analogous to the SK Hamiltonian has

been established rigorously in this model by [Pan18], but the numerical value of the ground

state energy does not appear to have been studied extensively.

Proof. The proof is essentially identical to that of Corollary 5.3.6, with suitable higher-rank

notions substituted in as needed. Let π = Unif({√k− 1v1, . . . ,
√
k− 1vk}) ∈ P(Rk−1). The

mean of π is zero, the covariance is k−1
k
∑k
i=1 viv

>
i = Ik−1, and the distribution is bounded,

so, by Proposition 5.1.7, (Pπn ) forms a tame spike prior. This spike prior is also weakly

β-good for any β > −1, as X ∼ Pπn has X>X = k−1
n
∑n
i=1 vσ(i)v

>
σ(i) for σ(i) ∼ Unif([k])

independently, so X>X → (k − 1)Evσ(i)v>σ(i) = Ik−1 in operator norm in probability, and
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thus ‖X‖ → 1 in probability. We also have ‖X‖2
F = k − 1 and X ∈ X almost surely when

X ∼ Pπn .

Suppose there exists an algorithm certifying a bound of at most 2(k− 1)− ε on MX(W )

with high probability when W ∼ GOE(n) and running in time T(n). Then, by Corol-

lary 2.3.4, there exist β ∈ (−1,0), γ > 1, and an algorithm that can distinguish (Pn)

from (Qn) in the Wishart spiked matrix model with parameters (β, γ, truncβ(Pπn )) in time

T(n) + O(1), and so the same holds with parameters (β, γ,Pπn ) by our remarks following

Definition 5.3.4. On the other hand, since β2/γ < 1 for these parameters, by Theorem 5.2.12

we have ‖L≤Dn ‖ = O(1) for any D = D(n) = o(n) in this model. Therefore, assuming Con-

jecture 3.2.3 holds, we must have T(n) Ý exp(n1−δ) for any δ > 0.

5.4 NEF-QVF Models

Finally, we give some ancillary applications of the tools we have developed for working with

low-degree polynomial algorithms in NEF-QVF models. These do not concern certification,

but give new results for related models of general interest.

5.4.1 Stochastic Block Model

First, we show how to use our results for comparing NEF-QVF models (Section 4.3.3) to

recover the well-known Kesten-Stigum computational threshold in the symmetric stochas-

tic block model with k communities (see, e.g., [Abb17, Moo17] for surveys of this model).

We also sharpen previous low-degree lower bounds of [HS17] for this model, showing that

polynomials of degree Ω(n) are required to distinguish Pn from Qn in the conjectural hard

regime, and give a simpler argument based on the general principles from Part I.

Definition 5.4.1 (Stochastic block model). The symmetric stochastic block model with k com-

munities and parameters a,b > 0 is specified by the following null and planted distributions
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over graphs on vertex set [n].

• Under Qn, each edge occurs independently with probability a+b(k−1)
kn .

• Under Pn, assign each vertex i ∈ [n] a random community σ(i) ∼ Unif([k]) inde-

pendently. Then, an edge between vertices i, j ∈ [n] occurs with probability a
n if

σ(i) = σ(j) and with probability b
n if σ(i) ≠ σ(j).

Note that the model is calibrated so that the average degree of any vertex is a+b(k−1)
k under

either the null or planted distribution.

Corollary 5.4.2. If (a−b)2 < k(a+(k−1)b), then there exists a constant c > 0 depending only

on a,b, and k such that, whenever D ≤ cn, then ‖L≤Dn ‖ = O(1) in the symmetric stochastic

block model.

Proof. We may rewrite the null model as making independent observations from Ber(µ)

with µ = a+(k−1)b
kn . For the planted model, as we did for the Potts spin glass, let us write

v1, . . . ,vk ∈ Sk−1 for the unit vectors pointing to the vertices of an equilateral simplex, so

that ‖vi‖ = 1 and 〈vi,vj〉 = − 1
k−1 whenever i ≠ j. Then, we may rewrite the planted model

as making independent observations from Ber(x{i,j}), where

x{i,j} = a+ b(k− 1)
kn︸ ︷︷ ︸
µ

+(k− 1)(a− b)
kn

〈vσ(i),vσ(j)〉. (5.38)

Let us write X ∈ Rn×k for the matrix whose ith row is
√
k−1
n vσ(i). Then, the z-scores are

z{i,j} =
x{i,j} − µ√
µ(1− µ) =

√
n

a− b√
k(a+ (k− 1)b)

1√
1− µ(XX

>)ij. (5.39)

Let us suppose that we also make n further observations, corresponding to the formal

“diagonal” case i = j above, with the same distribution Ber(µ) under Qn, and with x{i,i} =
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2(µ + (k−1)(a−b)
kn ). Clearly including these further observations will only increase ‖L≤Dn ‖ (in

the orthogonal polynomial decomposition of the squared norm, this change will only add

new non-negative terms). With this adjustment, the overlap between the z-scores of two

independent x drawn as above is

Rn := 〈z1,z2〉 = n
2

(a− b)2
k(a+ (k− 1)b)

1
1− µ tr(X1X1>X2X2>), (5.40)

for Xi drawn independently as functions of two draws σ i of the community labels.

We note that the Bernoulli NEF-QVF has v2 = −1, as its variance function is V(µ) =

µ(1 − µ) = −µ2 + µ (recall that v2 is the quadratic coefficient in this polynomial). Then, by

Theorem 4.3.11, we have

‖L≤Dn ‖2 = EφMor
D (Rn;−1) (5.41)

and by the “channel monotonicity” comparison of Theorem 4.3.14 we may bound

≤ EφMor
D (Rn; 0) (5.42)

and we recall that φMor
D (·; 0) = φWig

D since the NEF-QVF with v2 = 0 is the Gaussian Wigner

family, so

= EφWig
D

(
n
2

(a− b)2
k(a+ (k− 1)b)

1
1− µ tr(X1X1>X2X2>)

)
(5.43)

Finally, we note that µ → 0 as n → ∞, so under our assumptions for sufficiently large n

there will be some λ̂ ∈ (0,1) such that

≤ EφWig
D

(
λ̂n
2
· tr(X1X1>X2X2>)

)
. (5.44)
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This is precisely the norm of the LDLR in the Wigner spiked matrix model (Definition 5.2.9)

with a rank-(k − 1) spike prior (Pn) given by the law of Xi and with signal-to-noise ratio

λ =
√
λ̂n. By our discussion in the proof of Corollary 5.3.8 the spike prior (Pn) is tame, so

by Theorem 5.2.10 we have ‖L≤Dn ‖ = O(1) under the stated conditions, as λ̂ < 1.

5.4.2 A Non-Gaussian Matrix PCA Model

Finally, we show how some of the ideas developed for NEF-QVF models can be adapted

to treat a Wigner spiked matrix model with non-Gaussian noise. We treat this model as a

“stress test” of the low-degree method and Conjecture 3.2.3, since, as we will detail below,

it is already known from [PWBM18] that the model we consider has no hard regime. How-

ever, we will see that the low-degree analysis still sheds light on what kinds of tests can or

cannot successfully distinguish these models, and perhaps more broadly on the power and

limitations of low-degree polynomials.

Though we work with a distribution borrowed from an NEF-QVF, we will still be interested

in noise applied additively like in the Gaussian Wigner model, rather than within an NEF-QVF

as for the kin-spiked NEF-QVF model of Definition 4.3.1, so we make the following alternative

definition for this application.

Definition 5.4.3 (Additively-spiked NEF-QVF model). In the same setting as Definition 4.3.1

(the kin-spiked model) but with Pn now a probability measure over RN(n), define:

• Under Qn, draw yi ∼ ρ̃µn,i independently for i ∈ [N(n)].

• Under Pn, first draw x ∼ Pn and zi ∼ ρ̃µn,i independently for i ∈ [N(n)], and observe

yi = xi + zi.

In particular, we will study a model with noise distributed according to ρsech the probabil-
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Figure 5.2: Hyperbolic secant distribution. We plot the density w(x) of the hyperbolic secant
distribution used in Theorem 5.4.7, showing that it is a smoothed variant of the better-known
Laplace density 1

2 exp(−|x|).

ity measure on R which has the following density w(x) with respect to Lebesgue measure:

w(x) := 1
2 cosh(πx/2)

= 1
2

sech(πx/2). (5.45)

This density belongs to the rather obscure class of “generalized hyperbolic secant” NEFs

mentioned in Table 4.2. It may be viewed as a smoothing of the Laplace distribution; see

Figure 5.2.3

We next specify the spiked matrix model we will study. For the sake of convenience

here and in some further discussion of open problems inspired by this model that we give

in Section A.5, we give a definition rather orthogonal to our previous treatment, fixing the

spike distribution and considering varying noise rather than vice-versa.

Definition 5.4.4 (Rademacher-spiked Wigner matrix models). Given a probability measure ρ

over R and λ > 0, the Wigner Rademacher-spiked matrix model with parameters (ρ, λ) is

3This density has some other remarkable mathematical properties: (1) like the Gaussian density, up to
dilation w(x) is its own Fourier transform, and (2) w(x) is the Poisson kernel over the strip {z : Im(z) ∈
[−1,1]} ⊂ C.
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specified by the following probability distributions over R(
[n]
2 ):

• Under Qn, we draw Y{i,j} ∼ ρ independently for all i < j.

• Under Pn, we first draw x ∼ Unif({±1}n) and Y (0){i,j} ∼ ρ independently for all i < j, and

then set Y{i,j} = λ√
nxixj + Y (0){i,j}.

We omit the diagonal observations with i = j for the sake of convenience; it is straightfor-

ward but tedious to adapt the argument to include these, but with this change we would

have Y = λ√
nxx

> +Y (0) as symmetric matrices under Pn.

In Section 2.2 we presented results concerning testing in such a model, partiularly using

the PCA test of thresholding the largest eigenvalue of Y , for the same model with ρ the

standard Gaussian measure. How, if at all, does that picture change for a different noise

distribution? The following characterizes two testing algorithms related to computing the

largest eigenvalue. For Y itself, for sufficiently large λ, the largest eigenvalue undergoes the

same pushout effect as in the Gaussian model under Pn and becomes larger than the typical

largest eigenvalue under Qn. It turns out, however, that it is suboptimal to merely compute

and threshold the largest eigenvalue of Y ; instead, the optimal algorithm is to first apply an

entrywise transformation and only then compute and threshold the largest eigenvalue.

Proposition 5.4.5 (Better-than-BBP testing [CDMF09, PWBM18]). Define λ∗ := 2
√

2/π ≈ 0.9.

In all of the statements below we refer to Pn and Qn in the Wigner Rademacher-spiked matrix

model with parameters (ρsech, λ).

• If λ > 1, then Pn may be distinguished from Qn in polynomial time by the PCA test,

fPCA(Y ) :=


p if 1√

nλmax(Y ) ≥ 1
2(2+ λ+ λ−1),

q otherwise.
(5.46)

• If λ < 1, then fPCA fails to distinguish Pn from Qn.
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• If λ > λ∗, then Pn may be distinguished from Qn in polynomial time by the pre-

transformed PCA test:

f tPCA(Y ) :=


p if 1√

nλmax

(
π
2 tanh

(
π
2Y

))
≥ 1

2(2λ∗ + λ2∗ · λ+ λ−1),

q otherwise.
(5.47)

Here, tanh(·) is applied entrywise to the matrix argument.

• If λ < λ∗, then Pn and Qn are statistically indistinguishable.

The threshold λ∗ is related to the Fisher information in the family of translates of ρsech

as λ∗ = (
∫∞
−∞w′(x)2/w(x)dx)−1/2, and the optimal entrywise transformation is the loga-

rithmic derivative π
2 tanh(π2x) = −w′(x)/w(x); the results of [PWBM18] show that both

relationships hold for optimal tests in non-Gaussian spiked matrix models for a broad class

of noise measures.

Let us consider how these facts interact with low-degree predictions. Heuristically speak-

ing, while low-degree polynomials can approximate the test fPCA via the power method, the

transcendental entrywise tanh(·) transformation used by f tPCA seems rather ill-suited to

low-degree polynomials. We show below that, indeed, if we attempt to carry out the low-

degree prediction for this problem while bounding the entrywise degree of the polynomials

involved—the greatest power with which any given entry of Y can appear—then we obtain

an incorrect threshold. Loosely speaking, this suggests that some analytic computation like

the transcendental tanh(·) operation is in fact necessary to obtain an optimal test.

Definition 5.4.6 (Entrywise degree). For a polynomial p ∈ R[y1, . . . , yN], write degi(p) for

the greatest power with which yi occurs in a monomial having non-zero coefficient in p.
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Theorem 5.4.7. Suppose D ∈ N and 0 < λ < λ∗ + 1
20D . Then,

lim sup
n→∞



maximize EY ∼Pnfn(Y )

subject to fn ∈ R[Y ],

deg{i,j}(fn) ≤ D for all {i, j} ∈
(
[n]
2

)
,

EY ∼Qnfn(Y )2 = 1


< +∞. (5.48)

That is, when we restrict our attention to polynomials of entrywise degree at most D a

constant not growing with n, the apparent computational threshold suggested by the corre-

sponding low-degree calculation shifts by Ω(1/D) from the true value.

This limitation applies, for example, to an approach suggested by [DHS20]. The authors

propose to build tests and estimators for spiked matrix models that remain effective under

heavy-tailed noise distributions by using polynomials that sum over monomials indexed by

self-avoiding walks on the matrix Y . In particular, they show that, for λ > 1—the optimal

“BBP threshold” for Gaussian noise—such polynomials can successfully distinguish Pn from

Qn in Wigner Rademacher-spiked matrix models with parameters (ρ, λ) for a wide variety

of measures ρ, ranging from Gaussian ρ to very heavy-tailed ρ for which fPCA fails severely.

However, our result implies that, since these polynomials have entrywise degree 1 (that

is, they are multilinear), such polynomials (and many generalizations thereof to higher but

bounded entrywise degree) cannot distinguish for all λ > λ∗, and thus are suboptimal for

this model.

To prove Theorem 5.4.7, we will need to develop some analogs for the additively-spiked

model to the tools we developed earlier in Section 4.3.1 for working with the orthogonal

polynomials of NEF-QVFs for the kin-spiked model. We return here to the setting and ter-

minology of Section 4.3. First, we write the precise generating function relation between the

likelihood ratio and the orthogonal polynomials (as given in [Mor82]).
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Proposition 5.4.8 (Generating function). Let µ ∈ Ω and write ψ(η) = Ex∼ρ̃µ[exp(ηx)]. Then,

∑
k≥0

zµ(t)k

k!
p(y ;µ) = exp

(
y(ψ′)−1(t)−ψ((ψ′)−1(t))

)
. (5.49)

Note that here we are “rebasing” the NEF-QVF to have ρ̃µ as the base measure by our defini-

tion of ψ(·). One may view this result as generalizing to NEF-QVFs the generating function

exp(ty − 1
2t

2) for Hermite polynomials (Proposition 4.1.14). The key property of such gen-

erating functions is that y appears linearly in the exponential. (Indeed, as early as 1934,

Meixner had essentially discovered the NEF-QVFs, albeit only recognizing their significance

in terms of this distinctive property of their orthogonal polynomials [Mei34, Lan75].)

This linearity allows us to prove an “addition formula,” expanding the translation oper-

ator in orthogonal polynomials.

Definition 5.4.9 (Translation polynomials). Let τk(y ;µ) ∈ R[y] be defined by the generating

function ∑
k≥0

zµ(t)k

k!
τk(y ;µ) := exp

(
y(ψ′)−1(t)

)
. (5.50)

Also, define the normalized versions

τ̂(y ;µ) := 1

V(µ)k/2
√
ak(v2)

τk(x;µ). (5.51)

Proposition 5.4.10 (Addition formula). For all x,y ∈ R and µ ∈ Ω,

pk(x +y ;µ) =
k∑
`=0

(
k
`

)
τk−`(x;µ)p`(y ;µ). (5.52)

Proof. This follows from expanding the generating function (5.49) at x + y as a product of

two exponential generating functions.

Finally, we obtain the additively-spiked version of Corollary 4.3.6 by taking expectations
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and using the orthogonality of the pk.

Proposition 5.4.11 (Additively-spiked expectation). For all k ∈ N, µ ∈ Ω, and x ∈ R,

E
y∼ρ̃µ

p̂k(x +y ;µ) = τ̂k(x;µ). (5.53)

Proof. This follows from taking expectations on either side of (5.52), observing that the only

non-zero term is for ` = 0 by the orthogonality of the p`, and noting that p0(y ;µ) = 1.

Following the argument of Lemma 4.3.7 for the additively-spiked model and using Propo-

sition 5.4.11 instead of Corollary 4.3.6 gives the following result for the orthogonal polyno-

mial components of the likelihood ratio.

Lemma 5.4.12 (Components under additive spiking). In the additively-spiked NEF-QVF model,

for all k ∈ NN ,

〈Ln, P̂k(·;µn)〉 = E
x∼Pn

 N∏
i=1

τ̂ki(xi;µn,i)

 . (5.54)

We now analyze the translation polynomials τk from Definition 5.4.9 for the NEF gener-

ated by ρsech. First, note that the mean and variance of ρsech are µ = 0 and V(0) = 1, and

more generally the variance function in the generated NEF is V(µ) = µ2 + 1 (per Table 4.2),

where in particular the quadratic coefficient is v2 = 1. Thus the associated normalizing

constants are ak(v2) = (k!)2 and âk(v2) = k!.

Recall that the translation polynomials admit a generating function expressed in terms

of the cumulant generating function of ρsech. We therefore compute

ψ(θ) := E
y∼ρsech

exp(θy) = 1
2

∫∞
−∞

sech
(
πy
2

)
exp(θy)dy = − log(cosθ), (5.55)

ψ′(θ) = tan(θ), (5.56)

whereby the translation polynomials for µ = 0 (the mean of ρsech) have the generating func-
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tion ∑
k≥0

tk

k!
τk(y ; 0) =

∑
k≥0

tkτ̂k(y ; 0) = exp
(
y tan−1(t)

)
. (5.57)

Before proceeding, we also establish some preliminary bounds on the coefficients and

values of these polynomials. We denote by [x`](p(x)) the coefficient of x` in a polynomial

or formal power series p(x).

Proposition 5.4.13. For all k ≥ 1 and ` ≥ 0,

|[x`](τ̂k(x))| ≤ 1{k ≡ ` (mod 2), ` > 0}(2 log(ek))`−1

k`!
. (5.58)

Proof. Expanding the generating function, we have

[x`](τ̂k(x)) = [tkx`](exp(x tan−1(t))) = 1
`!
[tk]((tan−1(t))`). (5.59)

If k ≥ 1 and ` = 0, then this is zero. Since the coefficients in the Taylor series of tanh−1(t)

are [tk](tanh−1(t)) = 1{k ≡ 1 (mod 2)}(−1)(k−1)/2/k, we may bound

|[x`](τ̂k(x))| ≤ 1{k ≡ ` (mod 2), ` > 0} 1
`!

∑
a1,...,a`≥1
a1+···+a`=k

1∏`
i=1 ai︸ ︷︷ ︸

c(k,`)

. (5.60)

We now show that c(k, `) ≤ (2 log(ek))`−1/k by induction on `. Since c(k,1) = 1/k, the

base case holds. We note the bound on harmonic numbers

k∑
a=1

1
a
≤ log(ek) for all k ≥ 1. (5.61)

Supposing the result holds for c(k, ` − 1), we expand c(k, `) according to the value that a`
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takes:

c(k, `) ≤
k−1∑
a=1

1
a
c(k− a, ` − 1)

≤ (2 log(ek))`−2
k−1∑
a=1

1
a
· 1
k− a (inductive hypothesis)

≤ (2 log(ek))`−2

k

k−1∑
a=1

(
1
a
+ 1
k− a

)

≤ (2 log(ek))`−2

k
· 2 log(ek), (by (5.61))

completing the argument.

This yields the following pointwise bound. As we will ultimately be evaluating this on

quantities of order O(n−1/2), what is most important to us is the precision for very small

arguments.

Corollary 5.4.14. For all k ≥ 1 and x > 0,

|τ̂k(x)| ≤


x · 1

k · (ek)2x if k odd,

x2 · 2 log(ek)
k · (ek)2x if k even.

(5.62)

Proof. Write `0 = 1 if k is odd and `0 = 2 if k is even. We bound by Proposition 5.4.13,

|τ̂k(x)| ≤ 1
k

k∑
`=`0

(2 log(ek))`−1

`!
x`

≤ x
`0(2 log(ek))`0−1

k

k∑
`=`0

(2 log(ek)x)`−`0

(` − `0)!

≤ x
`0(2 log(ek))`0−1

k
exp((2 log(ek)x), (5.63)

and the result follows upon rearranging.

We now proceed with the proof of our main result.
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Proof of Theorem 5.4.7. First, applying Lemma 5.4.12 to the hyperbolic secant spiked matrix

model, the coefficients of the likelihood ratio are given by, for any k ∈ N(
[n]
2 ),

〈Ln(Y ), P̂k〉 = E
X∼Pn

 ∏
1≤i<j≤n

τ̂k{i,j}(X{i,j})

 = E
x∼Unif({±1}n)

 ∏
1≤i<j≤n

τ̂k{i,j}
(
λ√
n
xixj

) . (5.64)

First, we observe that our specific choice of x ∈ {±1}n allows an interesting further

simplification: thanks to this choice, we can decouple the dependence of the components of

Ln on λ from the dependence on x. Note that, by the generating function identity (5.57), for

all k ≥ 0 we have that τk(x) contains only monomials of the same parity as k. Therefore,

for all k ∈ N(
[n]
2 ), we have

〈Ln, P̂k〉 =
∏
i<j

τ̂kij
(
λ√
n

)
· E
x

∏
i<j

(xixj)kij
 . (5.65)

Here and in the remainder of the proof, we write kij = k{i,j} and i < j for 1 ≤ i < j ≤ n to

lighten the notation. Let us also write |k|∞ := maxi<j kij .

Next, we note that, since the second factor above is either 0 or 1, we may further bound

|〈Ln, P̂k〉| ≤
∣∣∣∣∣∣∏i<j τ̂kij

(
λ√
n

)∣∣∣∣∣∣ · Ex
∏
i<j

(xixj)kij


When |k|∞ ≤ D, then, by Corollary 5.4.14, we may continue

≤
∏
i<j
kij>0

(eD)
λ√
n

kij
(2 log(ekij))1{kij even}

(
λ√
n

)1+1{kij even}
E
x

∏
i<j

(xixj)kij
 . (5.66)

We now follow our usual strategy from previous examples. Squaring and rewriting this
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as an expectation over two independent x1,x2 ∼ Unif({±1}n) (Proposition 4.1.4), we find

|〈Ln, P̂k〉|2 ≤ E
∏
i<j
kij>0

(eD)2
λ√
n

k2
ij

(2 log(ekij))2 1{kij even}
(
λ√
n

)2(1+1{kij even})
(x1
i x

2
i x

1
jx

2
j )
kij . (5.67)

Summing over |k|∞ ≤ D, we then find

∑
k∈NN|k|∞≤D

|〈Ln, P̂k〉|2

≤ E
x1,x2

∏
i<j

1+ (eD)2 λ√
n
λ2

n

D∑
k=1
k odd

1
k2
(x1
i x

2
i x

1
jx

2
j )
k + (eD)2 λ√

n
λ4

n2

D∑
k=1
k even

4 log(ek)2

k2
(x1
i x

2
i x

1
jx

2
j )
k


and, using that the xai are Rademacher-valued,

= E
x1,x2

∏
1≤i<j≤n

1+ (eD)2 λ√
n
λ2

n
x1
i x

2
i x

1
jx

2
j

D∑
k=1
k odd

1
k2
+ (eD)2 λ√

n
λ4

n2

D∑
k=1
k even

4 log(ek)2

k2



Here, using that
∑
`≥0

1
(2`+1)2 = π2

8 = λ−2∗ and
∑
`≥D/2

1
(2`+1)2 ≥

∫∞
D/2

dx
(2x+1)2 = 1

2D+2 ≥ 1
3D , we

may write

= E
x1,x2

∏
1≤i<j≤n

(
1+ (eD)2 λ√

n
λ2

n
x1
i x

2
i x

1
jx

2
j

(
1

λ2∗
− 1

3D

)
+O

(
1
n2

))

≤ E
x1,x2

exp

(eD)2 λ√
n
λ2

n

(
1

λ2∗
− 1

3D

) ∑
1≤i<j≤n

x1
i x

2
i x

1
jx

2
j +O(1)


= E
x1,x2

exp

(
(eD)2

λ√
n
λ2

2

(
1

λ2∗
− 1

3D

) 〈x1,x2〉2
n

+O(1)
)
,
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where we absorb the diagonal terms from 〈x1,x2〉2/n into the O(1) term. Finally, by our

assumption we have λ < λ∗+ 1
20D . Therefore, λ2 < λ2∗+ 41

400D . So, λ2(λ−2∗ − 1
3D) < 1− 1

6D+ 41
400D <

1− 1
20D , and thus, for sufficiently large n, we will have

≤ E
x1,x2

exp

(
1
2

(
1− 1

20D

) 〈x1,x2〉2
n

+O(1)
)
. (5.68)

The remaining expectation is precisely the quantity arising in the application of the sec-

ond moment method for contiguity to the Wigner Rademacher-spiked matrix model with

Gaussian noise in [PWBM18], where it is shown that this quantity is bounded as n → ∞,

since the factor multiplying 〈x1,x2〉2/n is strictly smaller than 1
2 . Thus we find

lim sup
n→∞

∑
k∈NN|k|∞≤D

|〈Ln, P̂k〉|2 < +∞, (5.69)

as claimed.

Remark 5.4.15 (A general “Rademacher trick”). The first step in the proof above, where we

take advantage of the Rademacher prior to decouple the dependence of the likelihood ratio’s

components on the signal-to-noise ratio λ from that on the actual spike vector x, should apply

in much greater generality. Indeed, we expect a similar property to hold in any additive model

where (1) the spike distribution x ∼ Pn has the property that |xi| = λ(n) for some constant

λ(n) for all i ∈ [N(n)], and (2) the noise distribution is symmetric, whereby the polynomials

playing the role of τ̂k will be even polynomials for even k and odd polynomials for odd k. Thus

a similar analysis is likely possible in a wide range of models with “flat” signals x, reducing

the low-degree analysis to analytic questions about τ̂k.
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Part II

A Geometric Perspective on Sum-of-Squares

Lower Bounds
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6 | Basic Notions and the Gramian

Viewpoint

We will focus in the second part of the thesis on SOS relaxations of the problem of op-

timizing a quadratic form over the hypercube {±1}n. In this initial chapter, we give the

basic definitions that will be common to the following chapters, and also motivate our par-

ticular interest in the “Gramian structure” of pseudomoment matrices (we have also given

a broad overview previously in Chapter 1). This discussion is taken from the introduc-

tions of [BK18, KB20, Kun20b] and informed by numerous books and reviews including

[Lau09, BPT12, BS14, RSS18].

6.1 Sum-of-Squares over the Hypercube

For the sake of notational convenience, here and in the chapters to come we will consider a

rescaled version of the hypercube optimization that we encountered earlier,

M(W ) =M{±1}n(W ) := max
x∈{±1}n

x>Wx = n ·M{±1/
√
n}n(W ). (6.1)

We will study convex relaxations of this problem, which are best viewed from a slightly

different perspective. Namely, this optimization may equivalently be viewed as optimizing
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a linear objective over the following convex set.

Definition 6.1.1 (Cut polytope). The cut polytope is the set

Cn := conv({xx> : x ∈ {±1}n}) ⊂ Rn×nsym . (6.2)

Then, we have

M(W ) = max
M∈Cn

〈M ,W 〉. (6.3)

Though it is convex, this problem is nonetheless difficult to solve exactly (e.g., NP-hard

for W a graph Laplacian, which computes the maximum cut [Kar72]) due to the intricate

discrete geometry of the cut polytope [DL09].

A popular algorithmic choice for approximating M(W ) and estimating its optimizer is

to form relaxations of Cn, larger convex sets admitting simpler descriptions. Often, the re-

laxed sets may be described concisely in terms of positive semidefiniteness (psd) conditions,

which leads to SDP relaxations of M(W ). The most common way to execute this strategy is

to optimize over the elliptope,

En = En2 := {M ∈ Rn×nsym :M � 0,diag(M) = 1n} ⊇ Cn. (6.4)

For example, the well-known approximation algorithms of Goemans-Williamson [GW95] and

Nesterov [Nes98] optimize over En2 and then perform a rounding procedure to recover an

approximately optimal x ∈ {±1}n from M ∈ En2 .

As our notation suggests, En2 is only the first of a sequence of increasingly tighter re-

laxations of Cn, corresponding to sum-of-squares (SOS) relaxations of M(W ). We describe

these relaxations now.

Definition 6.1.2 (Hypercube pseudoexpectation). Let Ẽ : R[x1, . . . , xn]≤2d → R be a linear

operator. We say Ẽ is a degree 2d pseudoexpectation over x ∈ {±1}n, or, more precisely,
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with respect to the constraint polynomials {x2
i − 1}ni=1, if the following conditions hold:

1. Ẽ[1] = 1 (normalization),

2. Ẽ[(x2
i − 1)p(x)] = 0 for all i ∈ [n], p ∈ R[x1, . . . , xn]≤2d−2 (ideal annihilation),

3. Ẽ[p(x)2] ≥ 0 for all p ∈ R[x1, . . . , xn]≤d (positivity),

4. Ẽ[p(−x)] = Ẽ[p(x)] for all p ∈ R[x1, . . . , xn]≤d (symmetry).

Since we always work over the hypercube constraints, we abbreviate and simply call such Ẽ a

degree 2d pseudoexpectation.

Definition 6.1.3 (Generalized elliptopes). The degree 2d generalized elliptope is the set

En2d :=
{
M ∈ Rn×nsym :M = Ẽ[xx>] for some degree 2d pseudoexpectation Ẽ

}
. (6.5)

Definition 6.1.4 (Hypercube SOS relaxation). The degree 2d SOS relaxation of the optimiza-

tion problem M(W ) is the problem

SOS2d(W ) := max
Ẽ degree 2d

pseudoexpectation

Ẽ[x>Wx] = max
M∈En2d

〈W ,M〉. (6.6)

We note that, for our purposes, the assumption of symmetry of pseudoexpectations is with-

out loss of generality, since given a Ẽ satisfying all constraints but symmetry we may de-

fine Ẽ′[p(x)] := Ẽ[p(−x)], which will also satisfy all constraints but symmetry, and take

1
2(Ẽ+ Ẽ′), which will have the same objective value and satisfy symmetry. It is not standard

to include this in the definition of a pseudoexpectation, but we will only be interested in

pseudoexpectations satisfying this extra condition in all of our applications.

The reason for the term “pseudoexpectation” is that these objects are a relaxed version

of a genuine expectation with respect to a probability measure over {±1}n.
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Definition 6.1.5 (Integrality). A pseudoexpectation is integral if there exists µ ∈ P({±1}n)

such that Ẽ[p(x)] = Ex∼µ[p(x)].

Clearly, for any such µ that is symmetric about the origin (to satisfy our extra symmetry

assumption) the associated Ẽ will indeed be a pseudoexpectation.

The positivity condition on a pseudoexpectation is often easiest to work with in linear-

algebraic terms, as follows.

Definition 6.1.6 (Hypercube pseudomoment matrix). A matrix Y ∈ R(
[n]
≤d)×([n]≤d)

sym is a degree 2d

pseudomoment matrix if the following conditions hold:

1. Y∅,∅ = 1.

2. YS,T depends only on S4T .

3. Y � 0.

4. YS,T = 0 if |S4T | is odd.

We have arranged the definitions such that the following equivalence between pseudoexpec-

tations and pseudomoment matrices holds.

Proposition 6.1.7. A linear operator Ẽ : R[x1, . . . , xn]≤2d → R is a degree 2d pseudoexpecta-

tion if and only if the matrix (Ẽ[xSxT ])S,T∈([n]≤d) is a degree 2d pseudomoment matrix. We call

the latter the pseudomoment matrix of Ẽ.

Indeed, the constraints in Definition 6.1.6 and Definition 6.1.2 are equivalent to one another

in the order they are listed.

The above gives an explicit way to write SOS2d(W ) as an SDP over a matrix variable of

size nd/2 × nd/2, which may therefore be solved in time nO(d). (This is not entirely imme-

diate and is subject to various nuances, but it is indeed the case in all situations we will

152



consider; see, e.g., [O’D17] where this point was first raised and [RW17] where our setting is

addressed.)

It is a central and highly non-trivial result that the generalized elliptopes give a sequence

of strictly tightening relaxations of Cn, and that at degree n (up to parity considerations)

they achieve integrality:

En2 ⊋ En4 ⊋ · · · ⊋ Enn+1{n odd} = Cn. (6.7)

See Figure 6.1 for a depiction of these containments in low dimension. The strictness of

the inequalities here is due to Laurent [Lau03b], though really her result rediscovered in

a different guise a slightly earlier result of Grigoriev [Gri01a], while the final equality was

conjectured Laurent but proved only a decade later by [FSP16]. We will discuss the Grigoriev-

Laurent result underlying the strictness of the inequalities at length in Chapter 9, giving a

new proof and clarifying some of the structure of the associated pseudomoments.

In light of these results, optimizing over generalized elliptopes of higher degree may

yield better approximations of M(W ); however, it is also costlier, since the associated SDP

is over ever larger matrices as d grows. It is therefore important to know whether optimiz-

ing over generalized elliptopes of constant (or, from the theoretical point of view, growing

at various rates with n) degree d > 2 actually improves the bounds on M(W ) achieved by

optimizing over En2 on specific classes of optimization problems as n → ∞. There is an

extensive literature relating this question to the Unique Games Conjecture [KV05, Tre12b],

which implies for several problems, most notably maximum cut, that optimizing over gen-

eralized elliptopes of constant degree cannot improve the worst-case approximation ratio

achieved by optimizing over En2 and then rounding (see, e.g., [KKMO07, Rag08]). However,

we will study the average-case rather than worst-case versions of such questions, where

there is not yet such a general theory.

The perspective on SOS optimization given above as a bounded-degree variant of a mo-
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Figure 6.1: Cut polytope and elliptopes in low dimension. We plot the cross-section of C5, E5
2,

and E5
4 by an isotropic random subspace (in the off-diagonal matrix entries) by numerically solving

suitable linear and semidefinite programs. This behaves differently from the projection of these sets
onto such a subspace, for which we observe that E5

4 is very often indistinguishable from C5. (Note
that n = 5 is the lowest dimension where En4 ≠ Cn.)
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ment problem was first developed by Lasserre [Las01, Lau09]. There is also another picture,

dual to this one, that explains the term “sum-of-squares” and was developed around the

same time by Parillo [Par03, BPT12]. The following is the fundamental duality statement

relating these formulations in our setting.

Proposition 6.1.8 (SOS duality). For some m =m(n) = O(nd), for any W ∈ Rn×nsym ,

SOS2d(W ) =



minimize c

subject to c = x>Wx+∑ni=1(x
2
i − 1)ri(x)+

∑m
j=1 sj(x)2

deg(ri) ≤ 2d− 2

deg(sj) ≤ d


. (6.8)

The basic idea is that the polynomial equation on the right-hand side is a simple proof that

x>Wx ≤ c whenever x ∈ {±1}n, and SOS2d(W ) may be viewed as optimizing this upper

bound over all such sum-of-squares proofs. This may again be written as an SDP, which is

dual to the pseudomoment SDP discussed above. This gives rise to a pleasantly ergonomic

way of reasoning about SOS algorithms, sometimes called the proofs-to-algorithms paradigm

[BS14, BS16]: if we, the theorist, can bound a quantity using only simple algebraic manipu-

lations that admit SOS proofs, then the SOS algorithm itself will also be able to implement

our reasoning and achieving a bound at least as strong. We will only occasionally mention

such reasoning, but it has given rise to a rich literature of algorithmic applications of SOS

(see the above surveys for references).

There is also a related literature on the proof complexity of various bounds or refutations

in various restricted proof systems, even those that cannot be automatized efficiently; see

our discussion in Chapter 1. As some of our results will concern certifying bounds on

objective functions with elaborate mathematical treatments (like the SK Hamiltonian), it can

be instructive to view our results as showing that there is no “very elementary” argument
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giving non-trivial bounds on these functions; see Remark 1.3.2.

6.2 The Geometry of Pseudomoments

We now propose a somewhat idiosyncratic perspective on the first, primal interpretation

of SOS discussed above, which we refer to as a “Gramian” perspective. This may be more

broadly applicable, but is especially germane to our hypercube setting thanks to its symme-

tries. The elliptope admits the following elegant geometric or Gramian description:

En2 =
{
M ∈ Rn×nsym :M = Gram(v1, . . . ,vn) for some v1, . . . ,vn ∈ Sr−1, r ≤ n

}
. (6.9)

This description is central to the rounding procedures of [GW95, Nes98] as well as the effi-

cient rank-constrained approximations of [BM03]. It is also a useful conceptual tool, allow-

ing us to think of such a relaxation of, say, the maximum cut problem as optimizing over a

softer notion of a “vector coloring” of the vertices.

We propose two questions inspired by this observation. First, motivated if not by the

mathematical intrigue then at least by the importance of this Gramian description for prac-

tical optimization over En2 , we ask the direct analogous question over the generalized ellip-

topes:

1. Under what conditions does Gram(v1, . . . ,vn) ∈ En2d for 2d > 2?

We will take up this question in Chapter 7 for the case 2d = 4, and find that this perspec-

tive reveals new general structure in En4 as well as interesting classes of examples of Gram

matrices belonging or not belonging to En4 .

We also ask a less specific, perhaps more philosophical question. In proving lower

bounds against the SOS hierarchy, one typically constructs a pseudoexpectation Ẽ, or, equiv-

alently, a pseudomoment matrix Y . Per Definition 6.1.6, this is a large positive semidefi-
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nite matrix with intricate entrywise symmetries. We propose to think of any such positive

semidefinite matrix as a Gram matrix, or, more precisely, as encoding some relative geom-

etry up to orthogonal transformations. For example, En2 may be viewed as the set of all

relative configurations of collections of n unit vectors. Thus we ask:

2. What objects’ relative geometry is encoded in the large pseudomoment matrices pro-

duced in SOS lower bounds? More whimsically, if the vi above are “pretending” to be

the xi, then who is pretending to be the higher-degree monomials xS?

We study this question in Chapters 8 through 11, pursuing a program suggesting that these

objects are (at least approximately) certain multiharmonic polynomials generalizing the fa-

miliar spherical harmonics. While this perspective may not be the most expedient for prov-

ing SOS lower bounds, we hope to convince the reader that it begins to reveal new mathemat-

ical structure in the pseudomoments involved in those lower bounds, especially structure

connecting their entrywise symmetry to their positivity.
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7 | Degree 4 Deterministic Structure

and Examples

We begin our investigation of SOS relaxations over the hypercube and the associated gen-

eralized elliptopes by studying the Gramian structure of the first non-trivial case, En4 . That

is, we know Gram(v1, . . . ,vn) ∈ En2 if and only if the vi ∈ Rr all have unit norm, and now

ask what further constraints on the vi must be satisfied to have Gram(v1, . . . ,vn) ∈ En4 . In

fact, we will be able to give an equivalent condition for membership in En4 in terms of an

ancillary semidefinite program parametrized by the vi, from which we obtain constraints

on possible pseudomoment extensions of a low-rank Gram matrix. We will then use this

to derive examples of Gram matrices both extensible and inextensible to degree 4. Those

examples, while they concern only highly structured combinatorial Gram matrices, will later

guide our constructions for more generic Gram matrices in the chapters to come.

Summary and References This chapter is based on the reference [BK18]. Further applica-

tions of the results on equiangular tight frames to the properties of those frames as well as

to new constructions of few-distance tight frames were developed in [BK19a, BK19b], but we

will not discuss these here to avoid straying too far from our main themes. The following is

a summary of our main results in this chapter.

1. (Theorem 7.1.4) An SDP parametrized by v1, . . . ,vn that determines whether the Gram
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matrix Gram(v1, . . . ,vn) belongs to En4 and which is smaller than the usual feasibility

SDP when r < n.

2. (Theorem 7.2.15) Constraints on the spectrum and rank of a degree 4 pseudomoment

matrix extending Gram(v1, . . . ,vn) when r < n.

3. (Theorem 7.3.3) An equivalence between integrality of degree 4 pseudomoments and

separability of certain associated bipartite quantum states.

4. (Theorem 7.4.5) A complete characterization of when Gram matrices of equiangular

tight frames can be extended to degree 4 pseudomoments, and a closed form for an

extension when such exists.

5. (Theorem 7.5.1) A new class of inequalities certifiable by degree 4 SOS over the hyper-

cube that are not implied by the triangle inequalities.

7.1 Gramian Description of Degree 4 Extensions

We first search for a characterization of Gram(v1, . . . ,vn) ∈ En4 that depends more directly

on the vi than the usual definition of a pseudomoment matrix. We begin with some pre-

liminary definitions. Our approach will be based on observing some symmetries in the

pseudomoment matrix that are clearer if we allow indexing not by sets of indices but by

tuples, introducing some redundancy.

Definition 7.1.1 (Redundant pseudomoment matrix). For s, t ∈ [n]d, write s • t for the

concatenation, and odd(s) ⊆ [n] for the symbols occurring an odd number of times in s.

A matrix Y ∈ R[n]
d×[n]d

sym is a degree 2d redundant pseudomoment matrix if the following

conditions hold:

1. Y(1···1)(1···1) = 1.
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2. Ys,t depends only on odd(s • t).

3. Y � 0.

4. Ys,t = 0 if |odd(s • t)| is odd.

We say that Y extends its upper left n×n block.

It is straightforward to see that such Y is determined by its minor indexed by subsets in(
[n]
≤d
)

in ascending order extended to length d by adding occurrences of 1, and that Y is a

redundant pseudomoment matrix if and only if that minor is an ordinary pseudomoment

matrix (Definition 6.1.6). We give a concrete version of this definition for degree 4, which is

what we will be concerned with here.

Proposition 7.1.2. Let Y ∈ Rn
2×n2

, with the row and column indices of Y identified with

pairs (ij) ∈ [n]2 ordered lexicographically. Then, Y is a degree 4 pseudomoment matrix if

and only if the following conditions hold:

1. Y � 0.

2. Y(ij)(kk) does not depend on the index k.

3. Y(ii)(ii) = 1 for every i ∈ [n].

4. Y(ij)(k`) is invariant under permutations of the indices i, j, k, `.

To state our criterion for Gram(v1, . . . ,vn) ∈ En4 , we will use the following ancillary set

of matrices.

Definition 7.1.3. ForA ∈ Rrn×rn, we writeA[ij] with i, j ∈ [n] for the r ×r block in position

(i, j) when A is viewed as a block matrix. With this notation, let Bn,r ⊂ Rrn×rnsym consist of

matrices A satisfying the following properties:

1. A � 0.
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2. A[ii] = Ir for all i ∈ [n].

3. A[ij] =A>[ij] for all i, j ∈ [n].

In terms of these matrices, En4 admits the following description.

Theorem 7.1.4. Let v1, . . . ,vn ∈ Rr , let M := Gram(v1, . . . ,vn) ∈ Rn×nsym , let V ∈ Rr×n have

v1, . . . ,vn as its columns, and let v := vec(V ) ∈ Rrn be the concatenation of the vi. Then,

M ∈ En4 if and only if ‖v‖2
2 =

∑n
i=1 ‖vi‖2

2 = n and there existsA ∈ Bn,r such that v>Av = n2.

Moreover, if M ∈ En4 and a redundant degree 4 pseudomoment matrix Y ∈ Rn
2×n2

sym extends

M , then there exists A ∈ Bn,r with v>Av = n2 and

Y = (In ⊗V )>A(In ⊗V ), i.e. (7.1)

Y(ij)(k`) = v>i A[jk]v` for all i, j, k, ` ∈ [n]. (7.2)

Conversely, if
∑n
i=1 ‖vi‖2

2 = n and A ∈ Bn,r with v>Av = n2, then Y as defined by (7.1) is a

degree 4 pseudomoment matrix extending M .

We will show below that ‖A‖ ≤ n for allA ∈ Bn,r , so the condition v>Av = n2 is equivalent

to v being a top eigenvector, with eigenvalue n, of A. We think of A as a witness of the fact

that M ∈ En4 , a Gramian alternative to the conventional pseudoexpectation or pseudomo-

ment witness. The second, more detailed part of Theorem 7.1.4 gives one direction of the

equivalence between these two types of witness; the other direction will be described in the

course of the proof below.

Before proceeding to the proof, we establish some preliminary facts about the matrices

of Bn,r .

Proposition 7.1.5. Let A ∈ Bn,r . Then,

1. ‖A[ij]‖ ≤ 1 for all i, j ∈ [n];

161



2. ‖A‖ ≤ n;

3. if Av = nv, and 0 ≠ v ∈ Rrn is the concatenation of vi ∈ Rr , then the norms ‖vi‖2 are

all equal, and A[ij]vj = vi for all i, j ∈ [n].

Proof. Let A ∈ Bn,r . To obtain the spectral bound on the blocks ‖A[ij]‖ ≤ 1, note that the

claim is trivial for i = j, so let us fix i, j ∈ [n] with i ≠ j and denote S := A[ij] ∈ Rr×rsym .

Taking a suitable submatrix of A, we find

 Ir S

S Ir

 � 0. (7.3)

Taking a quadratic form with this matrix, we find that for any v ∈ Rr with ‖v‖2 = 1,

0 ≤

 ±v
v


>  Ir S

S Ir


 ±v
v

 = 2± 2v>Sv, (7.4)

thus |v>Sv| ≤ 1, and the result follows.

From this, the bound ‖A‖ ≤ n follows from a simple case of the “block Gershgorin circle

theorem” [FV62], which may be deduced directly in this case as follows: suppose v ∈ Rrn is

the concatenation of v1, . . . ,vn ∈ Rr , then

v>Av ≤
n∑
i=1

n∑
j=1

|v>i A[ij]vj| ≤
n∑
i=1

n∑
j=1

‖vi‖2‖vj‖2 =
 n∑
i=1

‖vi‖2

2

≤ n
n∑
i=1

‖vi‖2
2 = n‖v‖2

2, (7.5)

giving the result.

For the final statement of the Proposition, ifAv = nv, then all of the inequalities in (7.5)

must be equalities. For the third inequality to be an equality requires all of the ‖vi‖2 to be

equal for i ∈ [n]. For the first inequality to be an equality requires v>i A[ij]vj ≥ 0 for all

i, j ∈ [n]. For the second inequality to be an equality requires A[ij]vj = vi for all i, j ∈ [n],
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completing the proof.

Proposition 7.1.6. Let A ∈ Bn,r . Then, there exists U ∈ Rr
′×rn for some r ≤ r ′ ≤ rn such

that A = U>U , where

U =

 S1 S2 · · · Sn

R1 R2 · · · Rn

 (7.6)

for some Si ∈ Rr×rsym , S1 = Ir , Ri ∈ R(r
′−r)×r , R1 = 0, which satisfy the relations

S2
i +R>i Ri = Ir , (7.7)

SiSj −SjSi +R>i Rj −R>jRi = 0. (7.8)

(The latter relations encode the conditions A[ii] = Ir and A>[ij] =A[ij], respectively.)

Proof. Let A ∈ Bn,r and let r ′ := rank(A). Since A contains Ir as a principal submatrix,

r ′ ≥ r , and since rn is the dimension of A, r ′ ≤ rn. Then, there exists U ∈ Rr
′×rn such

that A = U>U . Let us expand in blocks

U =
[
U1 U2 · · · Un

]
, (7.9)

for Ui ∈ Rr
′×r . Then, U>

i Ui =A[ii] = Ir .

This factorization is unchanged by multiplying U on the left by any matrix of O(r ′).

SinceU1 has orthogonal columns, by choosing a suitable such multiplication we may assume

without loss of generality that the columns of U1 are the first r standard basis vectors

e1, . . . ,er ∈ Rr
′
. Equivalently,

U1 =

 Ir
0

 } r
} r ′ − r

. (7.10)
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Let us expand each Ui in blocks of the same dimensions,

Ui =:

 Si

Ri

 } r
} r ′ − r

, (7.11)

then S1 = Ir and R1 = 0. We first show that the Si are all symmetric. Expanding the block

A[1i], we have

A[1i] = U>
1 Ui = S>1 Si +R>1Ri = Si, (7.12)

and since A[1i] is symmetric, Si is symmetric as well.

It remains to show the relations (7.7) and (7.8). For the former, we expand A[ii]:

Ir =A[ii] = U>
i Ui = S2

i +R>i Ri. (7.13)

For the latter, we expand A[ij] and A[ji]:

0 =A[ij] −A[ji] = U>
i Uj −U>

j Ui = SiSj −SjSi +R>i Rj −R>jRi, (7.14)

completing the proof.

We now proceed to the main proof of this section. The basic idea of the proof is that the

Ui that appear above as the factors of Bn,r encode the Gram vectors of the larger degree 4

pseudomoment matrix Y as various isometric embeddings of the vectors v1, . . . ,vn ∈ Rr of

M . The Gram witnessA ∈ Bn,r is one step further removed, describing the relative orthog-

onal transformations relating these isometric embeddings. The proof is long but straight-

forward, and amounts simply to checking that the stated conditions on the Gram witness

enforce sufficient “rigidity” in these Gram vectors that the various symmetries required of a

degree 4 pseudomoment matrix are satisfied.
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Proof of Theorem 7.1.4. We give the proof in two parts, first showing how to construct the

Gram witness A from a pseudomoment witness Y , and then vice-versa.

Part 1: Gram witness to pseudomoment witness Let Y ∈ Rn
2×n2

be a degree 4 re-

dundant pseudomoment matrix extending M ∈ Rn×n, where for some v1, . . . ,vn ∈ Rr ,

M = Gram(v1, . . . ,vn). Let V ∈ Rr×n have the vi as its columns, and let v = vec(V ) ∈ Rrn

be the concatenation of v1, . . . ,vn. We will then show that there exists A ∈ Bn,r with

v>Av = n2 and

Y = (In ⊗V )>A(In ⊗V ). (7.15)

We first analyze the special case r = rank(M), then extend to the general case.

Case 1: r = rank(M). We build A based on a suitable factorization of Y . Let r ′ :=

rank(Y ) ≥ r , then there exists A ∈ Rr
′×n2

such that Y =A>A. Let us expand in blocks

A =
[
A1 A2 · · · An

]
, (7.16)

for Ai ∈ Rr
′×n. Since A>1A1 = Y[11] = M = V >V , there exists Z ∈ Rr

′×r such that

A1 = ZV and Z>Z = Ir . By adding extra columns, we may extend Z to an orthogonal

matrix Z̃ ∈ O(r ′). The factorization Y = A>A is unchanged by multiplying A on the left

by any element of O(r ′). By performing this transformation with Z̃, we may assume without

loss of generality that A is chosen such that

A1 =

 V
0

 } r
} r ′ − r

(7.17)

where the numbers following the braces show the dimensionality of the matrix blocks.

Now, since A>i Ai = Y[ii] =M =A>1A1 for every i ∈ [n] (since, by the degree 4 pseudo-
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moment conditions, Y(ik)(i`) = Y(ii)(k`) = Y(11)(k`) = Mk`), there must exist Ir ′ =Q1, . . . ,Qn ∈

O(r ′) such that Ai =QiA1. Let us expand Qi in blocks,

Qi =
[
Ui︸︷︷︸
r

U ′
i︸︷︷︸

r ′−r

]
. (7.18)

We then have

Ai =QiA1 = UiV . (7.19)

(The extra variable U ′
i will not be used in the argument.) Therefore, the blocks of Y are

given by

Y[ij] =A>i Aj = V >U>
i UjV . (7.20)

By the permutation symmetry of Y , every such block is symmetric. Since V has full rank,

V V > is invertible, and therefore the matrix (V V >)−1V Y[ij]V >(V V >)−1 = U>
i Uj is also

symmetric.

We now define A blockwise by

A[ij] := U>
i Uj. (7.21)

Then A � 0 by construction, A[ii] = Ir since this is the upper left block of Q>i Qi = Ir ′ , and

A[ij] is symmetric by the preceding derivation. Thus, A ∈ Bn,r . By (7.20), we also have

Y = (In ⊗V )>A(In ⊗V ). (7.22)

It remains only to check that v>Av = n2:

v>Av =
n∑
i=1

n∑
j=1

v>i A[ij]vj =
n∑
i=1

n∑
j=1

(V >U>
i UjV )ij =

n∑
i=1

n∑
j=1

Y(ii)(jj) = n2, (7.23)

completing the proof of the first case.

166



Case 2: r > rank(M). We will reduce this case to the previous case. Let r0 = rank(M) < r .

Fix Gram vectors v1, . . . ,vn ∈ Rr0 such that M = Gram(v1, . . . ,vn), and, by the previous

argument, choose A ∈ Bn,r0 having v>Av = n2.

Suppose that v′1, . . . ,v′n ∈ Rr such that M = Gram(v′1, . . . ,v′n). Let v′ be the concatena-

tion of v′1, . . . ,v′n. Since the Gram matrices of v1, . . . ,vn and v′1, . . . ,v′n are equal, there must

exist Z ∈ Rr×r0 with Zvi = v′i for each i ∈ [n] and Z>Z = Ir0 . Define A′ ∈ Rrn×rn to have

blocks

A′[ij] :=


ZA[ij]Z> : i ≠ j,

Ir : i = j.
(7.24)

Equivalently,

A′ = (In ⊗Z)A(In ⊗Z)> + In ⊗ (Ir −ZZ>). (7.25)

Since ZZ> � Ir (the left-hand side is a projection matrix), A′ � 0, and by construction

A′[ii] = Ir and A′[ij] is symmetric. Thus, A′ ∈ Bn,r .

We also have

v′
>
A′v′ =

n∑
i=1

‖v′i‖2
2 +

∑
1≤i,j≤n
i≠j

v′
>
i A

′
[ij]v

′
j = n+

∑
1≤i,j≤n
i≠j

v>i A[ij]vj = n2. (7.26)

Lastly, we check the formula for the entries of Y , distinguishing the cases i = j and i ≠ j:

Y(ii)(k`) = Mk` = 〈v′k,v′`〉 = v′
>
k A

′
[ii]v

′
`, (7.27)

Y(ij)(k`) = v>kA[ij]v`

= v′>k ZA[ij]Z>v′`
= v′>k A′[ij]v′` (for i ≠ j), (7.28)

completing the proof.
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Part 2: Pseudomoment witness to Gram witness. We now show how to construct

the Gram witness A from the pseudomoment witness Y . Suppose that we have M =

Gram(v1, . . . ,vn) ∈ Rn×n for some vi ∈ Rr having
∑n
i=1 ‖vi‖2

2 = n. Let v be the concate-

nation of v1, . . . ,vn. Suppose also that A ∈ Bn,r with v>Av = n2. We will show that

Y ∈ Rn
2×n2

defined by

Y(ij)(k`) = v>i A[jk]v` (7.29)

is a degree 4 redundant pseudomoment matrix. Recall that this requires the following prop-

erties to hold:

1. Y � 0.

2. Y(ij)(kk) does not depend on the index k.

3. Y(ii)(ii) = 1 for every i ∈ [n].

4. Y(ij)(k`) is invariant under permutations of the indices i, j, k, `.

(That the upper left n × n block of Y is M follows from Property 4 and that A[ii] = Ir .)

We will obtain these one by one below. This essentially just entails reversing the derivation

of the previous part; however, verifying some of the properties of Y will require a more

detailed understanding of the factorization of A that we used.

The simplest is Property 1: since A � 0, there exist some U1, . . . ,Un ∈ Rr
′×r for some

r ′ ≥ 1 such that A[jk] = U>
j Uk. Thus,

Y(ij)(k`) = v>i U>
j Ukv` = 〈Ujvi,Ukv`〉, (7.30)

so Y = Gram(U1v1, . . . ,Unvn) � 0.

For Properties 2 and 3, we will use Proposition 7.1.5. From Claim 2 in the Proposition,

since ‖v‖2
2 = tr(M) = n, then if v>Av = n2 we must have Av = nv. Therefore, by Claim 3,
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‖vi‖2 = 1 for each i ∈ [n]. Also by Claim 3, we have

Y(ij)(kk) = v>i A[jk]vk = 〈vi,vj〉. (7.31)

This gives Property 2, and taking i = j = k gives Property 3 since ‖vi‖2 = 1.

Property 4 is more subtle to establish. First, for a moment treating i, j, k, ` as merely

four distinct symbols, note that the symmetric group on {i, j, k, `} is generated by the three

transpositions (ij), (jk), and (k`). Therefore, to establish Property 4 it suffices to show the

three equalities

Y(ij)(k`) = Y(ji)(k`) = Y(ij)(`k) = Y(ik)(j`) (7.32)

for all i, j, k, ` ∈ [n]. One equality follows directly from both A[jk] and A being symmetric,

whereby A[jk] =A[kj]:

Y(ij)(k`) = v>i A[jk]v` = v>i A[kj]v` = Y(ik)(j`). (7.33)

For the others, combining Proposition 7.1.5’s Claim 3 and Proposition 7.1.6, we find that,

following the notation for the factorization of Proposition 7.1.6 in matrices Si and Ri,

vi =A[i1]v1 = Siv1, (7.34)

v1 =A[1i]vi = Sivi. (7.35)

We expand the entries of Y in terms of the matrices Si and Ri and the single vector v1:

Y(ij)(k`) = v>i A[jk]v`

= v>1Si(SjSk +R>jRk)S`v1

= v>1SiSjSkS`v1 + v>1SiR>jRkS`v1. (7.36)
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To show the first two equalities of (7.32), it then suffices to show that for any i, j ∈ [n], we

have

SiSjv1
?= SjSiv1, (7.37)

RiSjv1
?=RjSiv1. (7.38)

Observe first that, by (7.34) and (7.35), we have

S2
i v1 = v1. (7.39)

Taking (7.7) as a quadratic form with v1, we find

1 = ‖v1‖2
2 = v>1S2

i v1 + ‖Riv1‖2
2 = 1+ ‖Riv1‖2

2, (7.40)

hence Riv1 = 0 for all i ∈ [n]. Then, multiplying (7.8) on the right by v1 establishes (7.37).

Next, taking (7.7) as a quadratic form with vi = Siv1, we find

1 = ‖vi‖2
2 = ‖Sivi‖2

2 + ‖Rivi‖2
2 = 1+ ‖Rivi‖2

2, (7.41)

so RiSiv1 = Rivi = 0 for each i ∈ [n] as well. Also, evaluating (7.7) as a quadratic form

with vj = Sjv1, we have

1 = ‖vj‖2
2 = ‖SiSjv1‖2

2 + ‖RiSjv1‖2
2. (7.42)

Taking (7.7) as a bilinear form with Siv1 and Sjv1 and using the preceding observations
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gives

0 = v>1Sj(SiSj −SjSi +R>i Rj −R>jRi)Siv1

= ‖SiSjv1‖2
2 − 1+ 〈RiSjv1,RjSiv1〉

= −‖RiSjv1‖2
2 + 〈RiSjv1,RjSiv1〉. (7.43)

The same holds with indices i and j exchanged, so we find

〈RiSjv1,RjSiv1〉 = ‖RiSjv1‖2
2 = ‖RjSiv1‖2

2 = ‖RiSjv1‖2‖RjSiv1‖2. (7.44)

Thus the Cauchy-Schwarz inequality holds tightly between the vectors RiSjv1 and RjSiv1,

so RiSjv1 =RjSiv1, establishing (7.38) and completing the proof.

7.2 Constraints on Pseudomoment Extensions

Through Theorem 7.1.4, we will next connect the structure of degree 4 pseudomoment ex-

tensions of M ∈ En2 and the local geometry of En2 near M . Theorem 7.1.4 describes the

membership of Gram(v1, . . . ,vn) in En4 in terms of a semidefinite program, whose variable is

A ∈ Bn,r , as follows.

Definition 7.2.1. Given v1, . . . ,vn ∈ Rr and v ∈ Rrn their concatenation, define the following

two semidefinite programs parametrized by the vi:

GramSDP(v1, . . . ,vn) :=



maximize 〈vv>,A〉

subject to A � 0,

A[ii] = Ir ,

A[ij] =A>[ij] for i ≠ j.


, (7.45)
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GramSDP∗(v1, . . . ,vn) :=


minimize tr(D)

subject to D � vv>,

D[ij] = −D>
[ij] for i ≠ j.


. (7.46)

It is easy to verify that these two SDPs are each other’s duals, which we will exploit in the

argument below.

Remark 7.2.2 (Orthogonal cut SDP). The variant of our primal GramSDP without the lat-

ter constraint of blockwise symmetry, A[ij] = A>[ij], was previously considered in [NRV13,

BRS15, BKS16] as a natural semidefinite programming relaxation of “orthogonal cut” prob-

lems, where one seeks to maximize
∑n
i,j=1 tr(Q>i C[i,j]Qj) over Qi ∈ O(r) for some matrix

coefficients C[i,j] ∈ Rr×r . This is a natural matrix-valued generalization of the ordinary max-

imum cut problem which can encode problems such as optimally aligning point clouds (a

so-called “Procrustes problem”).

We also observe that the following operation on block matrices is clearly intimately con-

nected to constraints of these SDPs.

Definition 7.2.3 (Partial transpose). For A ∈ Rrn×rn divided into n × n many r × r blocks,

let the partial transpose A
L

denote1 the matrix where each r × r block is transposed:

A
L

:=
[
A>[ij]

]n
i,j=1

∈∈ Rrn×rn. (7.47)

Partial transposition is of great importance in quantum information theory, where it yields a

basic technique for detecting entanglement. We will return to this connection in Section 7.3.

For now, we recall some elementary but perhaps not widely known facts of linear algebra

1The notation comes from
L

being “half” of the transpose symbol >.
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that originate in applications to quantum information theory. We include proofs for the sake

of completeness. The first is the following, a rewriting of the singular value decomposition.

Proposition 7.2.4 (Schmidt Decomposition, Section 2.2.2 of [AS17]). Let r ≤ n, V ∈ Rr×n

having singular value decomposition V = ∑ri=1σiyiz
>
i , where the yi ∈ Rr and zi ∈ Rn each

form orthonormal sets and σi ≥ 0. Then,

vec(V ) =
r∑
i=1

σizi ⊗ yi. (7.48)

Proof. This result is simply a matter of applying the vectorization operation vec to the sin-

gular value decomposition: if V = ∑r
i=1σiyiz

>
i for yi ∈ Rr and zi ∈ Rn, then, noting that

vec(yiz>i ) = zi ⊗ yi and vec : Rr×n → Rrn is linear, the result follows.

This representation makes it convenient to work with the partial transpose; in particular,

using the Schmidt decomposition, it is possible to diagonalize the partial transpose of a

rank one matrix explicitly, as follows. (This result appears to be folkloric in the quantum

information literature; the references we give are unlikely to be the earliest.)

Proposition 7.2.5 (Lemma III.3 of [Hil07]; Lemma 1 of [JP18]). Let V ∈ Rr×n with r ≤ n

and V = ∑r
i=1σiyiz

>
i where yi ∈ Rr and zi ∈ Rn form orthonormal sets and σi ≥ 0. Let

v = vec(V ). Then,

(vv>)
L =

r∑
i=1

σ 2
i did

>
i +

∑
1≤i<j≤r

σiσjsijs>ij −
∑

1≤i<j≤r
σiσjaija>ij (7.49)

where

di = zi ⊗ yi, (7.50)

sij =
(
zi ⊗ yj + zj ⊗ yi

)
/
√

2, (7.51)

aij =
(
zi ⊗ yj − zj ⊗ yi

)
/
√

2. (7.52)
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The r 2 vectors di,sij,aij moreover have unit norm and are mutually orthogonal, so (7.49) is

a spectral decomposition (ignoring terms whose coefficient is zero if V is not full rank).

Proof. Note that V = ∑r
i=1σiyiz

>
i is a singular value decomposition. By Proposition 7.2.4,

we may write

vv> =
 r∑
i=1

σizi ⊗ yi
 r∑

i=1

σizi ⊗ yi
>

=
r∑
i=1

r∑
j=1

σiσj(ziz>j )⊗ (yiy>j ). (7.53)

Therefore, the partial transpose is

(vv>)
L =

r∑
i=1

r∑
j=1

σiσj(ziz>j )⊗ (yjy>i )

=
r∑
i=1

r∑
j=1

σiσj(zi ⊗ yj)⊗ (zj ⊗ yi)>

=
r∑
i=1

σ 2
i (zi ⊗ yi)(zi ⊗ yi)>

+
∑

1≤i<j≤r
σiσj

(
(zi ⊗ yj)(zj ⊗ yi)> + (zj ⊗ yi)(zi ⊗ yj)>

)
, (7.54)

and the result follows by diagonalizing the rank-two matrices in the second sum.

Finally, we introduce the following related result characterizing the subspace on which

a certain matrix inequality involving the partial transpose is tight, which appears to be

original.

Proposition 7.2.6. Let V ∈ Rr×n with r ≤ n have full rank, and let v = vec(V ). Then,

In ⊗ (V V >) � (vv>)L

. (7.55)
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The subspace on which this inequality is tight is given by

ker
(
In ⊗ (V V >)− (vv>)L

)
=
{

vec(SV ) : S ∈ Rr×rsym

}
=: Vsym. (7.56)

Letting V = ∑ri=1σiyiz
>
i for yi ∈ Rr an orthonormal basis, zi ∈ Rn an orthonormal set, and

σi > 0 be the singular decomposition, an orthonormal basis for Vsym is given by the r(r+1)
2

vectors

zi ⊗ yi for 1 ≤ i ≤ n, (7.57)

1√
σ 2
i + σ 2

j

(
σizi ⊗ yj + σjzj ⊗ yi

)
for 1 ≤ i < j ≤ n. (7.58)

Proof. Let us extend z1, . . . ,zr with zr+1, . . . ,zn to a full orthonormal basis. Since V V > =∑r
i=1σ

2
i yiy

>
i , we may expand

In ⊗ (V V >) =
 n∑
i=1

ziz
>
i

⊗
 r∑
j=1

σ 2
j yjy

>
j

 = n∑
i=1

r∑
j=1

σ 2
j (zi ⊗ yj)(zi ⊗ yj)>. (7.59)

Dividing this sum into those summands with i ≤ r and those with i > r and subtracting

(7.54), we may write

In ⊗ (V V >)− (vv>)L =
∑

1≤i<j≤r

(
1
2
σ 2
i (zj ⊗ yi)(zj ⊗ yi)> +

1
2
σ 2
j (zi ⊗ yj)(zi ⊗ yj)>

− σiσj(zi ⊗ yj)(zj ⊗ yi)> − σiσj(zj ⊗ yi)(zi ⊗ yj)>
)

+
n∑

i=r+1

r∑
j=1

σ 2
j (zi ⊗ yj)(zi ⊗ yj)>

= 1
2

∑
1≤i<j≤r

(
σizj ⊗ yi − σjzi ⊗ yj

) (
σizj ⊗ yi − σjzi ⊗ yj

)>
+

n∑
i=r+1

r∑
j=1

σ 2
j (zi ⊗ yj)(zi ⊗ yj)>. (7.60)
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One may show more directly that In⊗(V V >)−(vv>)L � 0 with a Cauchy-Schwarz argument,

but the benefit of this approach is that it allows us to read off the subspace we are interested

in directly: note that up to rescaling the expression (7.60) is a spectral decomposition, and

thus

ker
(
In ⊗ (V V >)− (vv>)L

)⊥

= span


 1√
σ 2
i + σ 2

j

(
σizj ⊗ yi − σjzi ⊗ yj

)
1≤i<j≤r

∪ {zi ⊗ yj}i∈[n]\[r],j∈[r]

 , (7.61)

ker
(
In ⊗ (V V >)− (vv>)L

)

= span


 1√
σ 2
i + σ 2

j

(
σizj ⊗ yi + σjzi ⊗ yj

)
1≤i<j≤r

∪ {zi ⊗ yi}i∈[r]

 , (7.62)

where the first equality follows from (7.60) and the second may be checked by counting

dimensions and verifying mutual orthogonalities. It is also straightforward to verify that

the vectors enumerated in (7.62) are orthonormal, and thus give an orthonormal basis for

ker(In ⊗ (V V >)− (vv>)L

).

The only remaining task is to check the alternate description

ker
(
In ⊗ (V V >)− (vv>)L

)
?=
{

vec(SV ) : S ∈ Rr×rsym

}
=: Vsym. (7.63)

We have dim(ker(In ⊗ (V V >) − (vv>)L

)) = r(r+1)
2 by (7.62). Since vi are a spanning set,

if vec(SV ) = 0 then S = 0, so the map S , vec(SV ) is injective and thus dim(Vsym) =

dim(Rr×rsym ) = r(r+1)
2 as well. Therefore, to show (7.63) it suffices to show one inclusion.
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Suppose that S ∈ Rr×rsym , then

((In ⊗ (V V >)− (vv>)L

)vec(SV ))[i] = (V V >)Svi −
n∑
j=1

vjv
>
i Svj

=
n∑
j=1

vjv
>
j Svi −

n∑
j=1

vjv
>
i Svj

= 0, (7.64)

where in the last step we use that S is symmetric. Thus, vec(SV ) ∈ ker(In ⊗ (V V >) −

(vv>)
L

), so Vsym ⊆ ker(In ⊗ (V V >) − (vv>)L

), which completes the proof by the previous

dimension counting argument.

Using these results to study the duality and complementary slackness of the semidef-

inite programs from Definition 7.2.1, we find that any optimal A in GramSDP is highly

constrained, as follows.

Lemma 7.2.7. Let v1, . . . ,vn ∈ Sr−1 be a spanning set, let V ∈ Rr×n have the vi as its columns,

let v := vec(V ) ∈ Rrn be the concatenation of v1, . . . ,vn, let M := Gram(v1, . . . ,vn) ∈ En2 ,

and let A? ∈ Bn,r be such that v>A?v = n2. Then, all eigenvectors of A? with nonzero

eigenvalue belong to the subspace

Vsym :=
{

vec(SV ) : S ∈ Rr×rsym

}
⊂ Rrn. (7.65)

Additionally, v is an eigenvector of A? with eigenvalue n, and all eigenvectors of A? with

nonzero eigenvalue that are orthogonal to v belong to the subspace

V ′sym :=
{

vec(SV ) : S ∈ Rr×rsym ,v
>
i Svi = 0 for i ∈ [n]

}
⊂ Rrn. (7.66)

Proof of Lemma 7.2.7. Suppose thatM = Gram(v1, . . . ,vn) ∈ En4 for some v1, . . . ,vn ∈ Sr−1,
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v is the concatenation of the vi, and v>A?v = n2 for some A? ∈ Bn,r . Then, A? is

an optimizer for GramSDP(v1, . . . ,vn), as defined in Definition 7.2.1 We next apply basic

convex optimization results to this SDP. Background on these general facts may be found in

[BTN01, BV04]. First, the dual SDP is GramSDP∗ from Definition 7.2.1. Next, it is simple to

verify that the Slater condition holds, implying strong duality between these SDPs, whereby

GramSDP(v1, . . . ,vn) = GramSDP∗(v1, . . . ,vn) = n2. Finally, if A? and D? are primal and

dual variables achieving the optimal values of GramSDP and GramSDP∗ respectively, then

complementary slackness must hold between them, A?(D? − vv>) = 0.

The key to the proof is that, while constructing A? achieving a value of n2 in GramSDP

from v1, . . . ,vn (when their Gram matrix belongs to En4 ) is difficult (by the more detailed part

of Theorem 7.1.4 it is equivalent to constructing the degree 4 pseudomoments themselves),

constructing D? achieving a value of n2 in GramSDP∗ turns out to be straightforward.

The construction uses the partial transpose operation from Definition 7.2.3. Namely, we

define D? as

D? := vv> − (vv>)L + In ⊗ (V V >). (7.67)

We have tr(D?) = tr(In ⊗ (V V >)) = n2, and for i ≠ j, D?
[ij] = viv

>
j − vjv>i , which

is antisymmetric as required. The final feasibility condition D? � vv> is equivalent to

(vv>)
L � In ⊗ (V V >), which follows from Proposition 7.2.6. Thus D? is indeed feasible

and optimal for GramSDP∗. By complementary slackness, any A? optimal for GramSDP

must have positive eigenvectors in ker(D? − vv>) = ker(In ⊗ (V V >) − (vv>)L

) = Vsym by

the other result of Proposition 7.2.6.

For the second part of the statement, first note that if v>A?v = n2 then by Proposi-

tion 7.1.5 A?v = nv, so A? = vv> + A′ for some A′ � 0. Suppose that w ∈ Rrn is

an eigenvector of A′ with eigenvalue λ > 0. Then, w ∈ Vsym by the above reasoning, so
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w = vec(SV ) for some S ∈ Rr×rsym . Also,

Ir =A?[ii] � (vv> + λww>)[ii] = viv>i + λSviv>i S, (7.68)

and taking this as a quadratic form with vi shows that v>i Svi = 0. Since this holds for each

i ∈ [n], we obtain the conclusion, that

w ∈ V ′sym :=
{

vec(SV ) : S ∈ Rr×rsym ,v
>
i Svi = 0 for i ∈ [n]

}
, (7.69)

completing the proof.

We next apply (7.1) from Theorem 7.1.4, which shows how a spectral decomposition of

A? gives an expression for the associated pseudomoment matrix Y as a sum of rank(A?)

(not necessarily orthogonal) rank one matrices, which are constrained by Lemma 7.2.7. It

turns out that these latter constraints are similar to those appearing in results of [LT94,

LP96] connecting the smallest face of En2 containing M to span({viv>i }ni=1), which lets us

describe the constraints on Y concisely in terms of the local geometry of En2 near M .

Because of these connections, let us review the basic notions of convex geometry that

will be involved before proceeding. In what follows, let K ⊆ Rd be a compact convex set.

Definition 7.2.8. The dimension of K is the dimension of the affine hull of K, denoted dim(K).

Definition 7.2.9. A convex subset F ⊆ K is a face of K if whenever θX + (1− θ)Y ∈ F with

θ ∈ (0,1) and X ,Y ∈ K, then X ,Y ∈ F .

Definition 7.2.10. X ∈ K is an extreme point of K if {X} is a face of K (of dimension zero).

Definition 7.2.11. The intersection of all faces of K containing X ∈ K is the unique smallest

face of K containing X , denoted faceK(X).
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Definition 7.2.12. The perturbation of X in K is the subspace

pertK(X) :=
{
A ∈ Rd :X ± tA ∈ K for all t > 0 sufficiently small

}
. (7.70)

The perturbation will come up naturally in our results, so we present the following useful

fact giving its connection to the more intuitive objects from facial geometry.

Proposition 7.2.13. Let X ∈ K. Then,

faceK(X) = K ∩
(
X + pertK(X)

)
. (7.71)

In particular, the affine hull of faceK(X) is X + pertK(X), and therefore

dim(faceK(X)) = dim(pertK(X)) (7.72)

(in which there is a harmless reuse of notation between the dimension of a convex set and the

dimension of a subspace).

Proof. Let G := K ∩ (X + pertK(X)). It is simple to check that Y ∈ G if and only if there

exists Y ′ ∈ K and θ ∈ (0,1] with X = θY + (1− θ)Y ′ (and if θ < 1 then Y ′ ∈ G as well).

Then, if F is any face of K containing X , and Y ∈ G, there exists Y ′ ∈ K and θ ∈ (0,1]

such that X = θY + (1 − θ)Y ′. If θ = 1, then Y = X ∈ F . Otherwise, Y ∈ F by the

definition of a face. Thus, in any case Y ∈ F , so G ⊆ F . Since this holds for any face F

containing X , in fact G ⊆ faceK(X).

It then suffices to show that G is a face of K. Suppose Y ∈ G, and Y1,Y2 ∈ K and

θ ∈ (0,1) with Y = θY1 + (1− θ)Y2. Since Y ∈ G, there exists Z ∈ K and φ ∈ (0,1] such
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that

X = φY + (1−φ)Z

= φ(θY1 + (1− θ)Y2
)+ (1−φ)Z

= φθY1 +φ(1− θ)Y2 + (1−φ)Z. (7.73)

This is a convex combination of three points where the coefficients of Y1 and Y2 are strictly

positive, so by the previous characterization we have Y1,Y2 ∈ G, completing the proof.

The following result is the particular application of these definitions to the elliptope that

relates to our result.

Proposition 7.2.14 (Theorem 1(a) of [LT94]). LetM = Gram(v1, . . . ,vn) ∈ En2 for v1, . . . ,vn ∈

Sr−1 having rank(M) = r , and let V ∈ Rr×n have the vi as its columns, so that M = V >V .

Then,

pertEn2 (M) =
{
V >SV : S ∈ Rr×rsym

}
∩ {A ∈ Rn×n : diag(A) = 0} (7.74)

=
{
V >SV : S ∈ Rr×rsym ,v

>
i Svi = 0 for i ∈ [n]

}
. (7.75)

Theorem 7.2.15. Suppose M ∈ En4 and Y is a degree 4 redundant pseudomoment matrix

extending M . Then, Y � vec(M)vec(M)>, and all eigenvectors of Y − vec(M)vec(M)>

with nonzero eigenvalue belong to the subspace vec(pertEn2 (M)). Consequently,

rank(Y ) ≤ dim
(

pertEn2 (M)
)
+ 1 (7.76)

= rank(M)(rank(M)+ 1)
2

− rank(M ◦2)+ 1 (7.77)

≤ rank(M)(rank(M)+ 1)
2

, (7.78)

where M ◦2 =M ◦M is the entrywise square of M . In particular, if M is an extreme point
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of En2 and is extensible to a degree 4 pseudomoment matrix Y , then rank(Y ) = rank(M) = 1,

and M = xx> and Y = (x⊗x)(x⊗x)> for some x ∈ {±1}n.

The equality (7.77) is the result Proposition 7.2.14 of [LT94, LP96]. We recall also that

pertEn2 (M) as a subspace has the same dimension as faceEn2 (M) as a convex set. The fi-

nal claim then gives a strong, albeit non-quantitative, suggestion that En4 is a substantially

tighter relaxation of Cn than En2 : it implies that no “spurious” extreme points of En2 that are

not already extreme points of Cn persist after constraining to En4 .

The bounds (7.77) and (7.78) are similar in form to the Pataki bound on the rank of

extreme points of feasible sets of general SDPs [Pat98]. Because of the very large number

of linear constraints in SDPs arising from SOS optimization, however, the Pataki bound is

less effective in this setting; it also only applies to extreme points of the set of degree 4

pseudomoment matrices. It is simple to check, for example, that the Pataki bound is far

inferior to ours when rank(M) ≤ δn for n large and δ a small constant.

Remark 7.2.16 (Pseudocovariance matrix). The matrix Y − vec(M)vec(M)> is quite natu-

ral in the pseudomoment framework: entry (ij)(k`) of this matrix contains the difference

Ẽ[xixjxkx`] − Ẽ[xixj]Ẽ[xkx`]. It is natural to think of this quantity as the pseudocovari-

ance of xixj and xkx`, and it is then not surprising that the SOS constraints imply that the

pseudocovariance matrix is psd. We are not aware, however, of previous results on SOS op-

timization that make direct use of the pseudocovariance matrix. It would be interesting to

understand what role higher “pseudocumulants” might play in SOS reasoning. The combi-

natorics of the “sum-of-forests pseudomoments” we construct later in Chapter 10 will suggest

that these quantities might be useful to consider in that context; see Remark 10.1.14.

Proof of Theorem 7.2.15. Suppose M ∈ En4 with M = Gram(v1, . . . ,vn), and vi ∈ Rr with

r = rank(M). Then if V ∈ Rr×n has the vi as its columns, V is full-rank. If Y ∈

Rn
2×n2

is any degree 4 pseudomoment matrix extending M , then there is A ∈ Bn,r with
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v>Av = n2. Suppose r ′ = rank(A), then let us write the spectral decomposition A =

vv> +∑r ′−1
m=1 λmwmw>m for some λm > 0.

By Lemma 7.2.7, wm ∈ V ′sym. Therefore, wm = vec(SmV ) for some Sm ∈ Rr×rsym with

v>i Smvi = 0 for all i ∈ [n],m ∈ [r ′ − 1]. By (7.1) from Theorem 7.1.4, we may therefore

expand

Y = ṽṽ> +
r ′−1∑
m=1

λmw̃mw̃
>
m, (7.79)

(ṽ)(ij) = 〈vi,vj〉, (7.80)

(w̃m)(ij) = 〈Smvi,vj〉. (7.81)

Thus, we simply have ṽ = vec(M) and w̃m = vec(V >SmV ).

Using Proposition 7.2.14, we find that for each m ∈ [r ′ − 1], w̃m = vec(Wm) for some

Wm ∈ pertEn2 (M). Hence, every eigenvector of Y − vec(M)vec(M)> having nonzero eigen-

value must lie in vec(pertEn2 (M)), establishing the first part of the result.

The second part of the result controls rank(Y ) ≤ r ′. By the first part of the result,

r ′ ≤ dim
(

pertEn2 (M)
)
+ 1, (7.82)

so it suffices to compute the right-hand side. Since V is full-rank, the map S , V >SV is

injective, so this may be computed as

dim
(

pertEn2 (M)
)
= dim

(
span

({viv>i }ni=1

)⊥) = r(r + 1)
2

− dim
(
span

({viv>i }ni=1

))
. (7.83)

Since Gram(v1v
>
1 , . . . ,vnv>n) =M ◦2, we equivalently have

dim
(

pertEn2 (M)
)
= r(r + 1)

2
− rank(M ◦2), (7.84)
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a previously known corollary of Proposition 7.2.14 used in [LT94, LP96].

The final part of the result concerns the special case where M ∈ En2 is an extreme point,

whereby dim(pertEn2 (M)) = 0. Then, if Y is a degree 4 pseudomoment matrix extending M

we have rank(Y ) = r ′ = 1, so rank(M) = 1 as well since M is a principal submatrix of Y .

SinceM ∈ En2 , in factM = xx> for some x ∈ {±1}n, and it is simple to check that the only

possible degree 4 extension of rank one is then Y = (x⊗x)(x⊗x)>.

7.3 Integrality and Separability

We next make a small detour to investigate more deeply the role of ideas from quantum

information theory in our description of En4 , which we first glimpsed in the role of the

partial transpose operation above. Since En4 may be seen as a relaxation of the cut polytope

Cn, one expects that the description of En4 in terms of an SDP over the matrices of Bn,r , as

stated in Theorem 7.1.4, should itself relax a description of Cn in terms of a similar SDP

with additional non-convex constraints. In this section, we show that the most naive such

description one might expect is in fact incorrect, and give the correct description, which is

related to separability and entanglement of quantum states.

Naively, by analogy with the fact that if M ∈ En2 with rank(M) = 1 then M = xx> for

x ∈ {±1}n, one might expect that constraining the rank of A ∈ Bn,r in Theorem 7.1.4 to be

as small as possible, namely to equal r , would give a description of Cn. Unfortunately, as the

following result shows, this only holds in one direction: if the Gram witness A has rank r

then the associatedM ∈ Cn, but there existM ∈ Cn with rank(M) = r whose membership

in En4 does not admit a Gram witness A with rank(A) = r .

Proposition 7.3.1. Let v1, . . . ,vn ∈ Rr , let M = Gram(v1, . . . ,vn), and let v ∈ Rrn be the

concatenation of v1, . . . ,vn. Then, if
∑n
i=1 ‖vi‖2

2 = n and there existsA ∈ Bn,r with rank(A) =

r and v>Av = n2, then M ∈ Cn. On the other hand, if n ∉ {1,2} and n is not divisible by
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4, then In ∈ Cn with In = Gram(e1, . . . ,en), but letting v be the concatenation of e1, . . . ,en,

there does not exist A ∈ Bn,n with v>Av = n2 and rank(M) = n.

The unusual arithmetic condition on n in the negative result is probably superfluous if

one searches for counterexamples other than the identity; the question is related to the

relationship between the rank of a matrix in Cn and the minimum number of cut matrices

to whose convex hull it belongs. The latter quantity is similar to the notions of completely-

positive rank and non-negative rank, and appears to behave counterintuitively sometimes;

see [FP16, Liu] for some discussion.

Proof. For the positive direction, suppose v1, . . . ,vn ∈ Rr , M = Gram(v1, . . . ,vn), v ∈ Rrn

is the concatenation of v1, . . . ,vn,
∑n
i=1 ‖vi‖2

2 = n, and A ∈ Bn,n with rank(A) = r and

v>Av = n2. By Proposition 7.1.5, ‖vi‖2 = 1 for each i ∈ [n] and A[ij]vj = vi for each

i, j ∈ [n].

Since A � 0 and rank(A) = r , there exist Qi ∈ Rr×r such that A[ij] = Q>i Qj . Moreover,

since Q>i Qi =A[ii] = Ir , Qi ∈ O(r) for each i ∈ [n]. The above factorization is unchanged

by multiplying each Qi on the left by an orthogonal matrix, so we may assume without loss

of generality that Q1 = Ir .

Thus,A[1i] =Q>1Qi =Qi, which must be symmetric, soQi is symmetric for each i ∈ [n].

And, A[ij] = QiQj is also symmetric, so Q1, . . . ,Qn are a commuting family of symmetric

orthogonal matrices. Therefore, there exists some Q ∈ O(r) and 1r = d1, . . . ,dn ∈ {±1}r

such that Qi =QDiQ> where Di = diag(di).

We have vi =A[i1]v1 =Qiv1 =QDiQ>v1 for each i ∈ [n]. Thus,

Mij = 〈vi,vj〉 = 〈DiQ
>v1,DjQ

>v1〉 = 〈DiDj,Q>v1v
>
1Q〉. (7.85)

Let ρ = diag(Q>v1v
>
1Q), then since Q>v1v

>
1Q � 0, ρ ≥ 0, and

∑r
i=1 ρi = tr(Q>v1v

>
1Q) = 1.
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Therefore, letting d̃k := ((di)k)nk=1 ∈ {±1}n, (7.85) is

Mij =
r∑
k=1

ρk(di)k(dj)k, (7.86)

M =
r∑
k=1

ρkd̃kd̃>k ∈ Cn, (7.87)

completing the proof.

For the negative direction, take M = In. We have In ∈ Cn since In = 1
2n
∑
x∈{±1}n xx>,

as each off-diagonal entry occurs an equal number of times with a positive sign as with a

negative sign in the summation. We will view In = Gram(e1, . . . ,en), let v = ∑n
i=1 ei ⊗ ei

be the concatenation of the ei, and will show that if A ∈ Bn,n with v>Av = n2, then

rank(A) > n when n ∉ {1,2} ∪ 4N.

Suppose otherwise. Then, as in the argument above, A ∈ Bn,n has A[ij] = QiQj for

some Qi ∈ O(n)∩Rn×nsym , with Q1 = In, and where Q1, . . . ,Qn commute. We may then write

Qi = QDiQ> for Q ∈ O(n) and Di = diag(di) for di ∈ {±1}n. Let us also write q1, . . . ,qn

for the rows of Q, which form an orthonormal basis of Rn.

We have

n2 = v>Av =
n∑
i=1

n∑
j=1

(ei ⊗ ei)>A(ej ⊗ ej) =
n∑
i=1

n∑
j=1

(A[ij])ij. (7.88)

SinceA � 0 and diag(A) = 1n2 , all entries ofA are at most 1, so each term in this sum must

equal 1, i.e. (A[ij])ij = 1 for all i, j ∈ [n]. We then have, for any i, j,

1 = (A[ij])ij = e>i QDiDjQ
>ej = 〈Diqi,Djqj〉, (7.89)

whereby Diqi = Djqj for all i, j. In other words, there exists some q ∈ Rn with ‖q‖2 = 1

such that Diqi = q, or qi =Diq. Thus, the qi are sign flips of a fixed vector.

On the other hand, the qi are the rows of Q ∈ O(n), whose columns must also form an

orthonormal basis. Therefore, every entry of q must have the same norm, so each entry of
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Q also has equal norm; in other words, Q is, up to a scaling depending on definitions, a

Hadamard matrix with real entries [CD06]. A real-valued Hadamard matrix of order n can

only exist when n ∈ {1,2} ∪ 4N, so this is a contradiction.

The correct way to “repair” this first attempt is quite surprising: the key condition on the

Gram witness A ∈ Bn,r that is equivalent to M ∈ Cn is not minimal rank, but separability,

another notion from quantum information theory. The full extent of this connection remains

unclear and is an intriguing subject for future work. We note that the language we use below

for our real-valued objects is used in the physics literature almost exclusively to describe

similar settings over complex numbers.

Definition 7.3.2. A matrix A ∈ Rrn×rn with tr(A) = 1 is separable if there exist a1, . . . ,am ∈

Rn with ‖ai‖2 = 1, b1, . . . ,bm ∈ Rr with ‖bi‖2 = 1, and ρ1, . . . , ρm ≥ 0 with
∑
i ρi = 1 such

that

A =
m∑
i=1

ρi(ai ⊗ bi)(ai ⊗ bi)>. (7.90)

If it is not possible to write A in this way, A is entangled. (More properly, A is the density

matrix representing, with respect to a particular choice of basis, a bipartite quantum state,

and it is the state that is entangled or separable.) We write Bn,rsep ⊆ Bn,r for the matrices

A ∈ Bn,r such that 1
rnA is separable.

Theorem 7.3.3. Let v1, . . . ,vn ∈ Rr , let M = Gram(v1, . . . ,vn), and let v ∈ Rrn be the

concatenation of v1, . . . ,vn. Then, M ∈ Cn if and only if
∑n
i=1 ‖vi‖2

2 = n and there exists

A ∈ Bn,rsep such that v>Av = n2.

By corollary, if M ∈ En4 \ Cn, then any Gram witness A (suitably scaled) must be the den-

sity matrix of an entangled state which, by the definition of Bn,r , has the positive partial

transpose (PPT) property that its partial transpose remains psd (indeed, A = AL � 0). If

the partial transpose of a density matrix of a state fails to be psd, it follows that the state
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is entangled, but the converse does not hold in general [Per96, HHH96]. The structure

of states for which this test does not prove entanglement but which are nonetheless en-

tangled has received considerable attention in the quantum information literature (see e.g.

[LKCH00, SBŻ06, LMS10, CD12], as well as [Jae07, BŻ17, AS17] for more general discussion).

It is therefore striking that these objects are, per our results, rather commonplace in SOS

optimization—for every hypercube optimization problem for which degree 4 SOS is not tight

(i.e. for which the optimizer M? ∈ En4 \ Cn), there is an underlying entangled PPT state that

may be recovered from M?.

Proof of Theorem 7.3.3. Suppose first that M = Gram(v1, . . . ,vn) for some vi ∈ Rr with∑n
i=1 ‖vi‖2

2 = n, andA ∈ Bn,rsep such that v>Av = n2. By Proposition 7.1.5, ‖vi‖2 = 1 for each

i ∈ [n]. By absorbing constants and rearranging tensor products, the condition A ∈ Bn,rsep

may be rewritten as

A =
m∑
i=1

Ai ⊗ (bib>i ) (7.91)

for some Ai ∈ Rn×nsym with Ai � 0 and such that, letting ai = diag(Ai),

m∑
i=1

(ai)jbib>i = Ir (7.92)

for each j ∈ [n].

Let V ∈ Rr×n have the vi as its columns. Then,

v>Av =
m∑
i=1

n∑
j=1

n∑
k=1

(Ai)jk〈bi,vj〉〈bi,vk〉 =
m∑
i=1

b>i V AiV
>bi. (7.93)

We now bound b>i V AiV
>bi by applying a simple matrix inequality; the rather complicated

formulation below is only to handle carefully the possibility of certain diagonal entries ofAi

equaling zero. Let Ãi be the maximal strictly positive definite principal submatrix of Ai, of

dimension ni, and let wi be the restriction of V >bi to the same indices. Then, diag(Ãi) > 0.
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Let πi : [ni] → [n] map the indices of this submatrix to the original indices, and let us

define a diagonal matrix Di ∈ Rni×ni by

(Di)jj :=
 ni∑
j′=1

√
(Ãi)j′j′ · |〈bi,vπi(j′)〉|

 |〈bi,vπi(j)〉|√
(Ãi)jj

. (7.94)

Then, we claim Di � wiw>i . This is a matter of applying a weighted Cauchy-Schwarz in-

equality: for x ∈ Rn, we have

x>wiw>i x =
 ni∑
j=1

xj〈bi,vπi(j)〉
2

≤
 ni∑
j′=1

√
(Ãi)j′j′ · |〈bi,vπi(j′)〉|

 n∑
j=1

|〈bi,vπi(j)〉|√
(Ãi)jj

x2
j


=

n∑
j=1

(Di)jjx2
j . (7.95)

Therefore,

b>i V AiV
>bi =w>i Ãiwi

≤ 〈Di,Ãi〉

=
 ni∑
j=1

√
(Ãi)jj · |〈bi,vπi(j)〉|

2

=
 n∑
j=1

√
(ai)j · |〈bi,vj〉|

2

. (7.96)

Now, combining (7.96) with (7.92) and (7.93) and using the Cauchy-Schwarz inequality,

we find

v>Av ≤ n
m∑
i=1

n∑
j=1

(ai)j〈bi,vj〉2 = n
n∑
j=1

‖vj‖2
2 = n2. (7.97)

Thus, the Cauchy-Schwarz inequality in (7.97) must be tight, whereby there exist κi ≥ 0 with

189



∑m
i=1 κi = 1 such that

(ai)j〈bi,vj〉2 = κi (7.98)

for every i ∈ [m] and j ∈ [n]. Note in particular that if κi > 0 for some i ∈ [m], then

〈bi,vj〉 ≠ 0 for all j ∈ [n]. We may then define vectors βjk ∈ Rm by

(βjk)i :=


√
κi
〈bi,vj〉
〈bi,vk〉 : κi > 0,

0 : κi = 0.
(7.99)

Then,

‖βjk‖2
2 =

∑
i:κi>0

κi
〈bi,vj〉2
〈bi,vk〉2

=
∑
i:κi>0

(ai)k〈bi,vj〉2

≤
m∑
i=1

(ai)k〈bi,vj〉2

= 1, (by (7.92))

〈βjk,βkj〉 =
∑
i:κi>0

κi = 1. (7.100)

Thus, in fact ‖βjk‖2 = 1 and βjk = βkj for all j, k ∈ [n]. This implies first that whenever κi >

0 then 〈bi,vj〉2 does not depend on j, and second that whenever κi = 0 then (ai)k〈bi,vj〉2 =

0 for all j, k ∈ [n]. We may assume without loss of generality that Ai ≠ 0, so ai ≠ 0, and

thus the latter implies that whenever κi = 0, then 〈bi,vj〉2 = 0 for all j ∈ [n]. Therefore, in

all cases, 〈bi,vj〉2 does not depend on j.

Let us write ηi := 〈bi,vj〉2. For i where ηi ≠ 0, by (7.98) (ai)j does not depend on j

either. For these i, let us write φi := (ai)j . Evaluating (7.92) as a bilinear form on vj and vk,
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we then find

Mjk = 〈vj,vk〉 =
∑
i:ηi≠0

φi〈bi,vj〉〈bi,vk〉 =
∑
i:ηi≠0

φiηi sgn(〈bi,vj〉) sgn(〈bi,vk〉). (7.101)

When ηi ≠ 0, then φiηi = κi, and when ηi = 0 then κi = 0. Therefore, we have in fact

Mjk =
m∑
i=1

κi sgn(〈bi,vj〉) sgn(〈bi,vk〉), (7.102)

showing M ∈ Cn.

The converse is simpler: suppose that M ∈ Cn and M = Gram(v1, . . . ,vn) ∈ Cn for

v1, . . . ,vn ∈ Rr . Let v ∈ Rrn be the concatenation of the v1, . . . ,vn. We will build A ∈

Bn,rsep by essentially reversing the process described in the proof of Proposition 7.3.1. Let

ρ1, . . . , ρm ≥ 0 with
∑m
i=1 ρi = 1 and d̃1, . . . , d̃m ∈ {±1}n be such that

M =
m∑
k=1

ρkd̃kd̃>k . (7.103)

We may assume without loss of generality that m ≥ r , by adding extra terms with zero

coefficient to this expression. Then, writing di := ((d̃k)i)mk=1 ∈ Rm, R = diag(ρ), and v′i =

R1/2di, (7.103) implies that M = Gram(v′1, . . . ,v′n). There then exists Z ∈ Rm×r such that

Zvi = v′i and Z>Z = Ir .

We let Di := diag(di), and define A ∈ Rrn×rn to have blocks

A[ij] := Z>DiDjZ = (DiZ)>(DjZ). (7.104)

The last expression gives A as a Gram matrix, so A � 0. Since D2
i = Ir for each i ∈ [n],

A[ii] = Ir , and since D1, . . . ,Dn commute, A[ij] is symmetric. Thus, A ∈ Bn,r . We also
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have

v>Av =
n∑
i=1

n∑
j=1

v′
>
i DiDjv

′>
j =

n∑
i=1

n∑
j=1

d>i R
1/2DiDjR

1/2dj =
n∑
i=1

n∑
j=1

m∑
k=1

ρk = n2. (7.105)

It only remains to check that A is separable. To do this, let z1, . . . ,zm ∈ Rr be the rows of

Z, then by rewriting (7.104) we have A =∑mi=1(d̃i ⊗ zi)(d̃i ⊗ zi)>.

7.4 Examples from Equiangular Tight Frames

We next use the tools developed above to analyze the highly-structured special case of ex-

tending Gram matrices of equiangular tight frames, where the constraints of the previous

section successfully guide the search for a degree 4 pseudomoment matrix extending a given

degree 2 pseudomoment matrix.

We first review some definitions of special types of frames in finite dimension, which

are overcomplete collections of vectors with certain favorable geometric properties. A more

thorough introduction, in particular for the more typical applications of these definitions

in signal processing and harmonic analysis, may be found in [CK12]. In what follows, as

before, let v1, . . . ,vn ∈ Rr be unit vectors and let M := Gram(v1, . . . ,vn).

Definition 7.4.1. The vectors vi form a unit norm tight frame (UNTF) if any of the following

equivalent conditions hold:

1.
∑n
i=1 viv

>
i = n

r Ir .

2. The eigenvalues of M all equal either zero or n
r .

3.
∑n
i=1

∑n
j=1〈vi,vj〉2 = n2

r .

(The equivalence of the final condition is elementary but less obvious; the quantity on its

left-hand side is sometimes called the frame potential [BF03].)
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Definition 7.4.2. The vi form an equiangular tight frame (ETF) if they form a UNTF, and there

exists α ∈ [0,1], called the coherence of the ETF, such that whenever i ≠ j then |Mij| = α.

The following remarkable result shows that ETFs are extremal among UNTFs in the sense of

worst-case coherence. Moreover, when an ETF exists, α is determined by n and r .

Proposition 7.4.3 (Welch Bound [Wel74]). If v1, . . . ,vn ∈ Rr with ‖vi‖2 = 1, then

max
substack1≤i,j≤ni≠j

|〈vi,vj〉| ≥
√

n− r
r(n− 1)

, (7.106)

with equality if and only if v1, . . . ,vn form an ETF.

ETFs usually arise from combinatorial constructions and should generally be understood as

rigid and highly structured objects. For instance, there remain many open problems about

the pairs of dimensions (n, r) for which ETFs do or do not exist. More comprehensive

references on these aspects of the theory of ETFs include [STDHJ07, CRT08, FM15].

We also recall a classical result bounding the number of equiangular lines (not necessarily

forming a tight frame) that may occur in a given dimension. We also include its elegant

proof, since similar ideas will be involved in our arguments.

Proposition 7.4.4 (Gerzon Bound [LSG91]). If v1, . . . ,vn ∈ Sr−1 and |〈vi,vj〉| = α < 1 for all

i, j ∈ [n] with i ≠ j, then n ≤ r(r+1)
2 .

Proof. For all i ≠ j, 〈viv>i ,vjv>j 〉 = α2. Thus,

Gram(v1v
>
1 , . . . ,vnv>n) = (1−α2)In +α21n1

>
n, (7.107)

which is non-singular. The viv
>
i are there linearly independent symmetric matrices, so n ≤

dim(Rr×rsym ) = r(r+1)
2 .
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The main reason that it is convenient to work with ETFs is that, when M is the Gram

matrix of an ETF, then |Mij| takes only two values, 1 when i = j and some α ∈ [0,1]

otherwise. Therefore, in particular, the matrix M ◦2 (occurring in the proof above as well as

our earlier results) is very simple,

M ◦2 = (1−α2)In +α21n1
>
n. (7.108)

As we have seen in Theorem 7.2.15, M ◦2 is intimately related to pertEn2 (M) and therefore

to the possible degree 4 pseudomoment extensions of M . In the case of ETFs, its sim-

ple structure makes it possible to compute an explicit (albeit naive) guess for a degree 4

pseudomoment extension, which rather surprisingly turns out to be correct.

By such reasoning, we obtain a complete characterization of membership in En4 for ETF

Gram matrices M , which is quite simple in that it depends only on the dimension and rank

of M . This result is as follows.

Theorem 7.4.5. Let v1, . . . ,vn ∈ Rr form an ETF, and let M := Gram(v1, . . . ,vn). Then,

M ∈ En4 if and only if n < r(r+1)
2 or r = 1. If r = 1, then M = xx> for x ∈ {±1}n, and a

degree 4 redundant pseudomoment matrix Y extendingM is given by Y = (x⊗x)(x⊗x)>.

If r > 1 and n < r(r+1)
2 , then, letting Pvec(pertEn2

(M)) be the orthogonal projection matrix to

vec(pertEn2 (M)) ⊂ Rn
2
, a degree 4 redundant pseudomoment matrix Y extendingM is given

by

Y = vec(M)vec(M)> + n
2(1− 1

r )
r(r+1)

2 −nPvec(pertEn2
(M)), i.e. (7.109)

Y(ij)(k`) =
r(r−1)

2
r(r+1)

2 −n(MijMk` +MikMj` +Mi`Mjk)−
r 2
(
1− 1

n

)
r(r+1)

2 −n
n∑
a=1

MiaMjaMkaM`a. (7.110)

The maximal ETFs with n = r(r+1)
2 are notoriously elusive combinatorial objects; for in-

stance, they are known to exist for only four values of n, and the question of their existence
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is open for infinitely many values of n [FM15]. Our result invokes another regard in which

these ETFs are extremal, which was in fact present but perhaps unnoticed in existing results

(in particular in the proof of the Gerzon bound given above): maximal ETF Gram matrices

are the only ETF Gram matrices that are extreme points of En2 ; thus, by Theorem 7.2.15,

these Gram matrices cannot belong to En4 .

In our argument it will become clear that the case of ETFs (those non-maximal ones that

do belong to En4 ) is perhaps the simplest possible situation for degree 4 pseudomoments

over the hypercube: as shown in (7.109), the degree 4 pseudomoment matrix Y will have

only two distinct positive eigenvalues, and will equal of the sum of the rank one matrix

vec(M)vec(M)>, which contributes the “naive” pseudomoment value MijMk`, with a con-

stant multiple of the projection matrix onto the subspace vec(pertEn2 (M)), which contributes

the remaining “symmetrization” term appearing in (7.110).

In the proof, we will essentially show that A ∈ Bn,r the Gram witness of membership

in En4 may be constructed from the orthogonal projection matrix to V ′sym from Lemma 7.2.7.

Thus we compute this projection in advance below. Recall that we have

V ′sym =
{

vec(SV ) : S ∈ Rr×rsym ,v
>
i Svi = 0 for i ∈ [n]

}
. (7.111)

Proposition 7.4.6. Suppose that the matrices viv
>
i are linearly independent, or equivalently

that the matrix M ◦2 is non-singular, and that the vi form a UNTF. Let PV ′sym
denote the

orthogonal projection to V ′sym. Then, the blocks of PV ′sym
are given by

(PV ′sym
)[ij] = rn

1
2
〈vi,vj〉Ir + 1

2
vjv

>
i −

n∑
k=1

n∑
`=1

((M ◦2)−1)k`MikMj`vkv>`

 . (7.112)

Proof. Suppose we are computing PV ′sym
y for some y ∈ Rrn. We consider the associated
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optimization over S:

obj(S;y) := 1
2

n∑
i=1

∥∥Svi − yi∥∥2

= 1
2
‖y‖2

2 +
n
2r

tr(S2)−
〈
S,

n∑
i=1

viy
>
i + yiv>i

2

〉
, (7.113)

S?(y) = arg min
S∈Rr×rsym

v>i Svi=0 for i∈[n]

obj(S;y), (7.114)

where we have used the tight frame property to simplify the quadratic term.2

We introduce the Lagrangian

L(S,γ;y) := obj(S;y)−
〈
S,

n∑
i=1

γiviv>i

〉
(7.115)

and write the first-order condition ∂L
∂S (S

?,γ;y) = 0, which gives

S? = S?(y) = r
n

 n∑
j=1

vjy
>
j + yjv>j

2
+

n∑
j=1

γjvjv>j

 . (7.116)

The other first-order condition ∂L
∂γ (S

?,γ;y) = 0 is equivalent to the constraints, 〈S?,viv>i 〉 =

0 for all i ∈ [n], which yields the system of linear equations for γ,

n∑
j=1

(M ◦2)ijγj = −
n∑
j=1

Mij〈vi,yj〉 for i ∈ [n]. (7.117)

Since M ◦2 is invertible by assumption, this admits a unique solution which is given by

γj = −
n∑
k=1

n∑
`=1

((M ◦2)−1)jkMk`〈vk,y`〉. (7.118)

2 Without the tight frame assumption, the matrix V V > would appear and, upon differentiating with
respect to S, we would find a so-called continuous matrix Lyapunov equation giving (V V >)S?+S?(V V >).
Such an equation in principle admits an analytic solution by reducing to a linear equation in vec(S?) (see,
e.g., [Kuč74]), but this would further complicate the calculations.
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Substituting into (7.116), we find

S? = r
n

 n∑
j=1

vjy
>
j + yjv>j

2
−

n∑
j=1

n∑
k=1

n∑
`=1

((M ◦2)−1)jkMk`〈vk,y`〉vjv>j
 . (7.119)

We then recover the blocks we are interested in,

(PV ′sym
y)[i] = (vec(S?V ))[i]

= S?vi

= r
n

 n∑
j=1

〈vi,yj〉vj + 〈vi,vj〉yj
2

−
n∑
j=1

n∑
k=1

n∑
`=1

((M ◦2)−1)jkMijMk`〈vk,y`〉vj


=
n∑
j=1

r
n

1
2
〈vi,vj〉Ir + 1

2
vjv

>
i −

n∑
k=1

n∑
`=1

((M ◦2)−1)k`MikMj`vkv>`

yj, (7.120)

and the result follows.

Corollary 7.4.7. Suppose that v1, . . . ,vn form an ETF with r > 1. Then, the blocks of PV ′sym

are given by

(PV ′sym
)[ij] = n− r

n(r − 1)
viv

>
j +

r
2n
vjv

>
i +

r
2n
〈vi,vj〉Ir − r

2(n− 1)
n2(r − 1)

n∑
k=1

MikMjkvkv>k . (7.121)

Proof. By Proposition 7.4.4, the conditions of Proposition 7.4.6 are satisfied, so it suffices

to compute (M ◦2)−1. The off-diagonal entries of M all equal the coherence α, which by

Proposition 7.4.3 is given by

α =
√

n− r
r(n− 1)

. (7.122)

Thus, we have

M ◦2 = (1−α2)In +α21n1
>
n =

n(r − 1)
r(n− 1)

In + n− r
r(n− 1)

1n1
>
n. (7.123)
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This matrix may be inverted by the Sherman-Morrison formula, giving

(M ◦2)−1 = r(n− 1)
n(r − 1)

In − r(n− r)n2(r − 1)
1n1

>
n. (7.124)

Thus, the entries are

(M ◦2)−1
ij =


a := r((n−1)2+r−1)

n2(r−1) : i = j,

b := − r(n−r)
n2(r−1) : i ≠ j.

(7.125)

Substituting into the expression from Proposition 7.4.6, we find

n∑
k=1

n∑
`=1

((M ◦2)−1)k`〈vi,vk〉〈vj,v`〉vkv>`

= (a− b)
n∑
k=1

〈vi,vk〉〈vj,vk〉vkv>k + b
n∑
k=1

n∑
`=1

〈vi,vk〉〈vj,v`〉vkv>`

= (a− b)
n∑
k=1

〈vi,vk〉〈vj,vk〉vkv>k + b(V V >vi)(V V >vj)>

= r(n− 1)
n(r − 1)

n∑
k=1

〈vi,vk〉〈vj,vk〉vkv>k −
n− r
r(r − 1)

viv
>
j . (7.126)

Combining with the full result of Proposition 7.4.6 then gives the claim.

Proof of Theorem 7.4.5. Let v1, . . . ,vn ∈ Rr form an ETF, let V ∈ Rr×n have the vi as

its columns, let v = vec(V ) be the concatenation of v1, . . . ,vn, and let M = V >V =

Gram(v1, . . . ,vn). Then, our result is that M ∈ En4 if and only if n < r(r+1)
2 or r = 1. If

r = 1, then each vi is a scalar equal to ±1, so M ∈ Cn. Thus, it suffices to restrict our

attention to r > 1.

By Theorem 7.2.15, the negative direction immediately follows: if n = r(r+1)
2 , then the

viv
>
i span Rr×rsym , so by Proposition 7.2.14 M is an extreme point of En2 , thus M cannot

belong to En4 unless rank(M) = 1, which is a contradiction if r > 1.

The positive direction with r > 1 is the more difficult part of the result. We proceed

by explicitly constructing A ∈ Bn,r with v>Av = n2. The construction is optimistic: we
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consider the simplest possible choice for A respecting the constraint of Lemma 7.2.7. The

Lemma forces M = vv> +A′ where A′ � 0 with all of its eigenvectors with positive eigen-

value lying in the subspace V ′sym. We then simply choose A′ to equal a constant multiple of

PV ′sym
. Choosing the constant factor such that tr(A) = rn, we obtain the candidate

A := vv> + (r − 1)n
r(r+1)

2 −nPV
′
sym
. (7.127)

If we could show that A[ii] = Ir and A>[ij] =A[ij] for all i, j ∈ [n], then the proof would be

complete.

Surprisingly, the naive construction (7.127) does satisfy these properties, as may be veri-

fied by substituting in the explicit formulae for the blocks of PV ′sym
from Corollary 7.4.7, with

which it is straightforward to check that A ∈ Bn,r .

Finally, using the relation (7.2) between the blocks of A and the degree 4 pseudomo-

ments, we recover the formula for the degree 4 pseudomoments:

Y(ij)(k`) =
r(r−1)

2
r(r+1)

2 −n(MijMk`+MikMj`+Mi`Mjk)−
r 2
(
1− 1

n

)
r(r+1)

2 −n
n∑
m=1

MimMjmMkmM`m, (7.128)

concluding the proof.

This derivation at this point appears to be a rather egregious instance of “bookkeeping

for a miracle” [Cla09], and it certainly remains an open question to provide an intuitive

explanation for why any ETF Gram matrices ought to belong to En4 at all—we first discovered

this fact in numerical experiments. We will, however, give a more principled account of the

remarkably symmetric formula (7.128) in Chapters 8, 9, and 10.
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7.5 New Inequalities Certifiable at Degree 4

Finally, to close this chapter, we consider the dual question to that of the previous section.

While there we found structured deterministic examples of Gram matrices extensible to

degree 4 pseudomoments, here we ask: can we use structured deterministic examples to

find new inequalities certified by degree 4 SOS over the hypercube?

Let us first motivate this question. There are many results in combinatorial optimization

enumerating linear inequalities satisfied by Cn (see, e.g., [DL09]). The practical purpose of

this pursuit is that such linear inequalities may be included in LP relaxations of Cn, which

are typically more efficient than the SDP relaxations we work with here. The putative con-

venience of SDP relaxations is that they do not require their user to know specifically which

inequalities will be relevant for a given problem; the psd constraint captures many relevant

inequalities at once. For theoretical understanding, however, it is again important to know

which specific inequalities over Cn are satisfied at which degrees of SOS relaxation, since

those inequalities may then be used as analytical tools in proving that SOS succeeds in vari-

ous tasks. Given a specific valid inequality, the least degree of SOS at which that inequality

is certified is also an intrinsically interesting measure of that inequality’s “complexity.”

Yet, to the best of our knowledge, very few inequalities over Cn are known to be satisfied

in En4 but not En2 ; indeed, it appears that the only infinite such family known before this

work was the triangle inequalities,

− sisjMij − sjskMjk − siskMik ≤ 1 for M ∈ En4 ,s ∈ {±1}n. (7.129)

Guided by the results from the previous section, we find a new family of similar but inde-

pendent inequalities. First, from the negative result of Theorem 7.4.5, we obtain concrete

examples of matrices M ∈ En2 \ En4 , namely the Gram matrices of ETFs with n = r(r+1)
2 .
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As mentioned before, these are only known to exist for four specific dimensions, namely

r ∈ {2,3,7,23}. By convex duality, there must exist certificates that these matrices do not

belong to En4 , taking the form of linear inequalities that hold over En4 but fail to hold for

these matrices. Indeed, for the smallest two examples r ∈ {2,3}, a triangle inequality is a

valid certificate of infeasibility.

For r = 7, on the other hand, the absolute value of the off-diagonal entries of the Gram

matrix is α = 1
3 , so the triangle inequalities are satisfied, and the certificates of infeasibility

must be new inequalities which cannot be obtained as linear combinations of triangle in-

equalities. We compute these certificates numerically and identify the constants that arise

by hand to allow the certificates to be validated by symbolic computation (this amounts to

checking that a certain n2 ×n2 matrix is psd, where in this case n2 = 282 = 784).

For r = 23 the same appears to occur numerically and a similar argument shows that yet

another independent family of inequalities must arise as the certificates of infeasibility, but

the symbolic verification of such a certificate is a much larger problem which a naive soft-

ware implementation does not solve in a reasonable time. We thus only present the verified

result for r = 7 here as a proof of concept, leaving both further computational verification

of exact inequalities and further theoretical analysis of these certificates to future work.

Theorem 7.5.1. Let Z be the Gram matrix of an ETF of 28 vectors in R7. Then, for any

M ∈ En4 and any π : [28]→ [n] injective,

∑
1≤i<j≤28

sgn(Zij)Mπ(i)π(j) ≤ 112, (7.130)

and this inequality cannot be obtained as a linear combination of the triangle inequalities

− sisjMij − sjskMjk − siskMik ≤ 1 for s ∈ {±1}n. (7.131)
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As a point of comparison, since Z ∈ En2 , the half-space parallel to that defined by (7.130)

most tightly bounding En2 must have the right-hand side at least

∑
1≤i<j≤28

sgn(Zij)Zij =
∑

1≤i<j≤28

|Zij| = 28(28− 1)
2

· 1
3
= 126 > 112. (7.132)

Thus, these inequalities describe directions in the vector space of symmetric matrices along

which En4 is strictly “narrower” than En2 .

To better understand the structure of these inequalities, we refer to a general corre-

spondence between ETFs and strongly regular graphs (SRGs) [FW15]. (In fact, there are two

distinct correspondences between ETFs and SRGs: the one we will use applies to arbitrary

ETFs and is described in [FW15], while the other applies only to ETFs with a certain additional

symmetry and is described in [FJM+16].)

Definition 7.5.2. A graph G = (V , E) is a strongly regular graph with parameters (v, k, λ, µ),

abbreviated srg(v, k, λ, µ), if |V | = v , G is k-regular, every x,y ∈ V that are adjacent have

λ common neighbors, and every x,y ∈ V that are not adjacent have µ common neighbors.

Proposition 7.5.3 (Theorem 3.1 of [FW15]). Let v1, . . . ,vn ∈ Rr form an ETF with n > r ,

suppose that for all i ∈ [n] \ {1} we have 〈v1,vi〉 > 0, and let M = Gram(v1, . . . ,vn). Define

the graph G on vertices in [n] \ {1} where i and j are adjacent if and only if 〈vi,vj〉 > 0.

Then, G is an srg(v, k, λ, µ) with parameters

v = n− 1, (7.133)

k = n
2
− 1+

(
n
2r
− 1

)√
r(n− 1)
n− r , (7.134)

µ = k
2
, (7.135)

λ = 3k− v − 1
2

. (7.136)
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Note that the assumption that 〈v1,vi〉 > 0 for all i ≠ 1 is not a substantial restriction, since

any vector in an ETF may be negated to produce another, essentially equivalent, ETF.

In our case, an ETF on 28 vectors in R7 corresponds to an srg(27,16,10,8). By the result

of [Sei91], this graph is unique. Consequently, putting the ETF into the “canonical” form

where 〈v1,vi〉 > 0 for all i ≠ 1, we obtain the following uniqueness result.

Proposition 7.5.4. Let v1, . . . ,v28 and w1, . . . ,w28 be two ETFs in R7. Then, there exist signs

1 = s1, s2, . . . , s28 ∈ {±1} and Q ∈ O(7) such that wi = siQvi for each i ∈ [28].

The associated graph G is called the Schläfli graph, a remarkably symmetrical 16-regular

graph on 27 vertices that describes, among other structures, the incidences of the 27 lines

on a cubic surface. See, e.g., [Cam80, CS05] for further examples of its structure and signifi-

cance in combinatorics. We thus propose referring to these inequalities as Schläfli inequali-

ties.

We now describe the computer-assisted verification of the degree 4 SOS proof of these

inequalities. As above, let v1, . . . ,v28 ∈ R7 form an ETF with 〈v1,vi〉 > 0 for all i ≠ 1, and let

Z = Gram(v1, . . . ,v28). Such Z is unique by the above. Since if M ∈ En4 then DMD ∈ En4

for any D = diag(d) with d ∈ {±1}n, it suffices to fix this single ETF of 28 vectors in R7

and check (7.130), and the result will follow for all ETFs of the same dimensions. Let G be

the graph on [28] where i and j are adjacent if 〈vi,vj〉 > 0, so that G is the Schläfli graph

with one extra vertex added that is attached to every other vertex. We will write G|S for the

subgraph induced by G on the set of vertices S.

We show (7.130) by producing a 0 � A ∈ R282×282
such that, for any Y a degree 4

redundant pseudomoment matrix extending some M a degree 2 pseudomoment matrix,

0 ≤ 〈A,Y 〉 = 112−
∑

1≤i<j≤28

sgn(Zij)Xij. (7.137)

The construction of A is based on studying the results of numerical experiments. We iden-
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tify the constants appearing in A as

γ1 := 1
126

, (7.138)

γ2 := 1
36
, (7.139)

κ1 := 2
9
, (7.140)

κ2 := 1
28
. (7.141)

With this, we define

A(ij)(k`) :=



0 : |{i, j, k, `}| = 4,

− sgn(Zk`)γ1 : i = j, k ≠ `,

γ2 : i = k, j ≠ `, |E(G|{i,j,`})| = 0,

γ2 : i = k, j ≠ `, |E(G|{i,j,`})| = 2, i ∼ j, i ∼ `,

−γ2 : i = k, j ≠ `, |E(G|{i,j,`})| = 2, j ∼ `,

0 : i = k, j ≠ `, |E(G|{i,j,`})| ∈ {1,3},

− sgn(Zi`)γ1 : i = j = k, i ≠ `,

κ1 : i = k, j = `, i ≠ j,

κ2 : i = j, k = `.

(7.142)

A(i1i2)(i3i4) = A(iπ(1)iπ(2))(iπ(3)iπ(4)) for i ∈ [28]4, π ∈ Sym(4). (7.143)

We then perform a computer verification thatA � 0 using the SageMath software package

for symbolic calculation of a Cholesky decomposition (more precisely, we first compute the

row space symbolically, reduce to this space which has the effect of removing the kernel

of A, and then verify strict positivity with a Cholesky decomposition). Verifying that the

equality of (7.137) holds is straightforward by counting the occurrences of various terms

in 〈A,Y 〉. Of course, this proof technique is rather unsatisfying, and it is an open prob-
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lem to provide a more principled description of A and a conceptual proof of its positive

semidefiniteness (both for this specific case and for the general case of maximal ETFs for

any dimensions they may exist in).

205



8 | Spectral Pseudomoment Extensions

In the previous chapter, we obtained constraints on the spectrum of a degree 4 pseudo-

moment extension of a low-rank degree 2 pseudomoment matrix, and found that the Gram

matrices of ETFs admit extensions by essentially the simplest possible construction that

respects these spectral constraints. We now consider how these results might inform pseu-

domoment constructions for other Gram matrices and for higher degrees of SOS. To do this,

we will give another justification for the construction we obtained for ETFs by more gen-

eral probabilistic reasoning, constructing pseudomoments by introducing surrogate random

tensors that behave like the “pseudo-random variable” tensors x⊗d that pseudoexpectations

evaluate. This will recover the degree 4 extension that the ETF examples suggest, and will

also give an abstract description of a reasonable higher-degree construction. We derive that

abstract description in this chapter, then digress to work through a deterministic example

where it applies directly in Chapter 9, and finally apply a further heuristic argument to

derive a concrete construction that we will apply to random problems in Chapter 10.

Summary and References This chapter describes a reinterpretation of the degree 4 con-

struction suggested in the previous chapter’s Theorem 7.4.5 that is presented in Section 4.2

of [KB20], and the generalization to higher degrees first proposed in Section 5 of the same.

We also present part of the further elaboration of these ideas from [Kun20b]; in particular,

while [KB20] proposed a construction in terms of symmetric tensors, [Kun20b] translated
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it to the language of homogeneous polynomials and their Hilbert space structure under the

apolar inner product, and showed how that construction relates to ideal-harmonic decom-

positions. The main results of this chapter are a construction summarized in two equivalent

ways in Lemma 8.3.11 and Corollary 8.3.13.

8.1 Notations and Assumptions

We first introduce some notations for and assumptions on the degree 2 pseudomoment

matrix that we will make in discussing our proposed pseudomoment extensions. These

assumptions will also be in force (either approximately or exactly) in our applications in

later chapters.

Suppose M ∈ Rn×nsym with M � 0 and Mii = 1 for all i ∈ [n]. We will be seeking to

build pseudoexpectations Ẽ with Ẽ[xx>] =M . Since M � 0, we may further suppose that,

for some V ∈ Rr×n with r ≤ n and having full row rank, M = V >V . In particular then,

rank(M) = r . Since this number will come up repeatedly, we denote the ratio between the

rank of M and the ambient dimension by

δ := r
n
. (8.1)

Writing v1, . . . ,vn ∈ Rr for the columns of V , we see that M = Gram(v1, . . . ,vn), and, since

diag(M) = 1n, ‖vi‖ = 1 for all i ∈ [n].

We now formulate our key assumptions on M . For the purposes of our derivations in

this section, it will suffice to leave the “approximate” statements below vague.

Assumption 8.1.1 (Informal). The following spectral conditions on M hold:

1. All non-zero eigenvalues of M , of which there are r , are approximately equal (to

tr(M)/r = n/r = δ−1).
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2. M is approximately equal to a projection matrix to an r -dimensional subspace of Rn,

multiplied by δ−1.

3. V V > ≈ δ−1Ir .

4. The vectors v1, . . . ,vn approximately form a unit-norm tight frame (Definition 7.4.1).

(Note that, per our earlier discussion surrounding Definition 7.4.1, if we require that these

conditions hold exactly, then they are all equivalent.)

Assumption 8.1.2 (Informal). The following entrywise condition on M holds:

5. For any i ≠ j, |Mij| ≈
√
(δ−1 − 1)/r .

We will see that, to derive a pseudomoment extension of M , we may reason as if the ap-

proximate equalities are exact and obtain a sound result.

In light of Condition 3 above, it will be useful to define a normalized version of V , whose

rows have approximately unit norm: we let V̂ := δ1/2V , so that V̂ V̂ > ≈ Ir . We note that this

matrix can therefore be extended, by adding rows, to an orthogonal matrix (this is equivalent

to the Naimark complement construction in frame theory; see Section 2.8 of [Wal18]).

8.2 Gaussian Conditioning Interpretation at Degree 4

Recall that, in Section 7.4 and its Theorem 7.4.5, we showed that the Gram matrices of

most ETFs admit an extension to degree 4 pseudomoment matrices. Matrices M satisfying

Assumptions 8.1.1 and 8.1.2 are “approximate ETF Gram matrices,” in the sense that they are

close to constant multiples of projection matrices and their off-diagonal entries are close to

equal in magnitude. Therefore, taking the pseudomoment extension of Theorem 7.4.5 and

simplifying its coefficients when r = δn and n→∞ with δ fixed, we obtain the prediction

“ Ẽ[xixjxkx`] = MijMk` +MikMj` +Mi`Mjk − 2
n∑
a=1

MiaMjaMkaM`a. ” (8.2)
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We note in passing that the construction has “tuned” the coefficient −2 of the second

term to produce a cancellation that is required for Ẽ to satisfy Ẽ[1] = 1 and Ẽ[(x2
i −

1)p(x)] = 0. Namely, if i = j = k = `, then only the term a = i contributes in the lat-

ter sum, so the value is Ẽ[x4
i ] ≈ 3 − 2 = 1, as needed. On the other hand, if i = j and

k = ` but these two values are not equal, then the first term is 1, while all other terms are of

sub-constant order, so Ẽ[x2
i x

2
k] ≈ 1 as well. We will discuss a broad generalization of these

circumstances in Chapter 10.

This expression in hand, we could proceed to prove degree 4 lower bounds—this is what

is done for the Grigoriev-Laurent pseudomoments (see Chapter 9) in [BK18], and no further

insight is needed to reproduce the argument of [KB20] either. However, it seems difficult to

generalize this idea to find pseudomoment constructions at higher degrees, since the con-

straints on pseudomoment extensions do not appear strong enough to immediately yield

extensions of arbitrary ETFs in closed form. Thus below we give another, perhaps more

principled argument through which we arrive at the same prediction of degree 4 pseudo-

moments. The remainder of this chapter will then be dedicated to showing that this lat-

ter construction in fact does generalize sensibly to higher degrees. Our discussion will be

slightly redundant as the present derivation is a special case of the higher-degree deriva-

tion to come, but, as we will see, the degree 4 case is actually exceptionally simple and it is

instructive to perform it with “bare hands” before introducing more machinery.

Let us suppose that the spectral constraints of Assumption 8.1.1 hold exactly; that is,

M is exactly the Gram matrix of a UNTF, soM = δ−1P for P a projection matrix satisfying

diag(P ) = δ1n. Note also that in this case P = V̂ >V̂ . The key idea is to view the pseu-

domoments Ẽ[xixjxkx`] as being given by the actual moments of the entries of an n × n

Gaussian random matrix G. That is, while x is only a “pseudo–random variable,” we pro-

pose that xx> may be identified with a genuine random matrix, albeit one of rank greater
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than one:

“xx> =G. ” (8.3)

To write such claims precisely in terms of pseudoexpectations, it is convenient to introduce

a weakened notion.

Definition 8.2.1 (Bilinear pseudoexpectation). For a bilinear operator Ẽ : R[x1, . . . , xn]≤d ×

R[x1, . . . , xn]≤d → R, we denote its action with parentheses, Ẽ(p(x), q(x)). For a linear

operator Ẽ : R[x1, . . . , xn]≤2d → R, we denote its action with brackets, Ẽ[p(x)]. We call a

symmetric bilinear operator as above a bilinear pseudoexpectation if it satisfies the following

properties:

1. Ẽ(1,1) = 1;

2. Ẽ((x2
i − 1)p(x), q(x)) = 0 for all p ∈ R[x1, . . . , xn]≤d−2, q ∈ R[x1, . . . , xn]≤d, and

i ∈ [n];

3. Ẽ(p(x), p(x)) ≥ 0 for all p ∈ R[x1, . . . , xn]≤d.

We say a bilinear pseudoexpectation factors through multiplication if Ẽ(p(x), q(x)) depends

only on the product p(x)q(x).

In terms of a pseudomoment matrix, factoring through multiplication is equivalent to form-

ing a Hankel matrix (or a multidimensional generalization thereof); however, we adopt this

language to emphasize the underlying algebraic property. Clearly, a bilinear pseudoexpec-

tation that factors through multiplication in fact yields a true pseudoexpectation (Defini-

tion 6.1.2). However, it will be useful for us to work with bilinear pseudoexpectations that

do not necessarily have this property.

Returning to our construction, given some G ∈ Rn×n with random jointly Gaussian
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entries, we propose a bilinear pseudoexpectation

Ẽ(xixj, xkx`) := E[GijGk`]. (8.4)

(To be fully precise, we also let Ẽ(xi, xj) = Ẽ(1, xixj) = Mij as an extension of M must

satisfy, Ẽ(1,1) = 1, and extend by linearity.) We then design G so that Ẽ automatically

satisfies the constraints of Definition 8.2.1, not including factoring through multiplication.

We will have no reason to expect a priori that Ẽ should factor through multiplication and

yield a true pseudoexpectation, but, remarkably, this will still happen. In exchange for the

difficulty of ensuring that Ẽ factors through multiplication, it will be easy to ensure that the

other constraints are satisfied. Most importantly, a pseudoexpectation of the above form is,

by construction, positive semidefinite.

To specify the law ofG, we first note that takingG to be symmetric at least ensures that

Ẽ will in fact be a well-defined operator on homogeneous degree 2 polynomials. We then be-

gin with a matrix G(0) having a canonical Gaussian distribution for symmetric matrices, the

GOE, suitably rescaled to allow us a normalizing degree of freedom later: G(0)ii ∼ N (0,2σ 2)

and G(0)ij = G(0)ji ∼ N (0, σ 2). Next, we take G to have the distribution of G(0), conditional

on the following two properties:

1. (In −P )G = 0.

2. Gii = 1 for all i ∈ [n].

Property 2 ensures that the second condition of Definition 8.2.1 holds, Ẽ(x2
i − 1, xkx`) = 0.

Property 1 ensures that the similar condition Ẽ(((In − P )x)ixj, xkx`) = 0 holds as well.

Intuitively, this corresponds to the constraint that x lies in the row space of P (which equals

that of M ), which is reasonable recalling that we seek to achieve Ẽ[xx>] =M . Formally,

any Ẽ that factors through multiplication and (switching to linear operator notation) with
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Ẽ[xx>] =M must satisfy this property, since the matrix F (k,`) = (Ẽ[xixjxkx`])ni,j=1 formed

by “freezing” one index pair (k, `) and letting the other two indices vary must, by positivity

of Ẽ, satisfy  M F (k,`)

F (k,`) M

 � 0, (8.5)

as this is a submatrix of the degree 4 redundant pseudomoment matrix. Thus the row space

of F (k,`) is contained in that of M .

What is the law of the resulting Gaussian matrix G? Conditioning on Property 1 yields

the law of PG(0)P = V̂ (V̂ >G(0)V̂ )V̂ >. By rotational invariance of the GOE, the inner

matrix V̂ >G(0)V̂ =:G(1) ∈ Rr×rsym has the same law as the upper left r × r block of G(0), i.e.,

a smaller GOE matrix with the same variance scaling of σ 2.

Next, we condition on Property 2, or equivalently condition G(1) on having v>i G
(1)vi =

〈viv>i ,G(1)〉 = 1. To work with these conditions, it is useful to define an isometry between

Rr×rsym endowed with the Frobenius inner product and Rr(r+1)/2 endowed with the ordinary

Euclidean inner product.

Definition 8.2.2 (Isometric vectorization). Define isovec : Rr×rsym → Rr(r+1)/2 by

isovec(A) :=

 diag(A)
√

2 · offdiag(A)

 . (8.6)

This indeed satisfies 〈isovec(A), isovec(B)〉 = 〈A,B〉 = tr(AB). Then, G(1) has the law of

isovec−1(g) for a Gaussian vector g ∼ N (0,2σ 2Ir(r+1)/2). Since isovec is an isometry, we

may equivalently condition g on 〈g, isovec(viv>i )〉 = 1 for each i ∈ [n]. By basic properties

of Gaussian conditioning, the resulting law is

N
 n∑
i=1

((P ◦2)−11n)i isovec(viv>i ),2σ
2(I − P̃ )

 , (8.7)
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where P ◦2 is the Gram matrix of the isovec(viv>i ) or equivalently the entrywise square of P ,

and P̃ is the orthogonal projector to the span of the isovec(viv>i ). Let G(2) be a matrix with

the law of isovec−1 applied to the law in (8.7).

Having finished the conditioning calculations, we may now obtain the statistics of G.

Recall that Gij = v>i G(2)vj = 〈1
2(viv

>
j + vjv>i ),G(2)〉. Applying isovec to each matrix and

using the expression derived above, we find the mean and covariance

E[Gij] =
n∑
a=1

((P ◦2)−11n)kPiaPja, (8.8)

Cov[Gij, Gk`] = σ
2

2
isovec(viv>j + vjv>i )>(I − P̃ ) isovec(vkv>` + v`v>k ). (8.9)

Next, we make two simplifying approximations. For the means, we approximate

P ◦2 ≈ δI + δ
r
1n1

>
n, (8.10)

which gives

E[Aij] ≈ δ−1Pij = Mij. (8.11)

For the covariances, since under our assumptions we have ‖isovec(viv>i )‖2 = ‖viv>i ‖F =

‖vi‖2
2 = δ, we approximate

P̃ ≈ δ−2
n∑
i=1

isovec(viv>i )isovec(viv>i )
>, (8.12)

which gives

Cov[Aij, Ak`] ≈ σ 2

PikPj` + Pi`Pjk − 2δ−2
n∑
a=1

PiaPjaPkaP`a

 . (8.13)

Finally, to recover what this prediction implies for the pseudoexpectation values, we
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compute

Ẽ(xixj, xkx`) = E[GijGk`]

= E[Gij]E[Gk`]+ Cov[Gij, Gk`]

= MijMk` + σ 2

PikPj` + Pi`Pjk − 2δ−2
n∑
a=1

PiaPjaPkaP`a

 . (8.14)

We can then choose σ 2 either such that Ẽ(x2
i , x

2
i ) = 1 or such that Ẽ factors through mul-

tiplication, which turn out to be the same choice σ 2 = δ−2. Thus, writing Ẽ[xixjxkx`] =

Ẽ(xixj, xkx`) and restricting to i ≠ j and k ≠ `, we recover the same formula as (8.2):

“ Ẽ[xixjxkx`] = MijMk` +MikMj` +Mi`Mjk − 2
n∑
a=1

MiaMjaMkaM`a. ” (8.15)

Remark 8.2.3. It is worth noting the intriguing geometric interpretation of the random matrix

G we have constructed: we have EG =M , diag(G) = 1n deterministically, and G fluctuates

in the linear subspace pertEn2 (M) (as may be verified from the covariance formula (8.9) and is

intuitive by analogy with the ETF case of Chapter 7; recall Definition 7.2.12 and the following

results). Thus, G behaves, roughly speaking, like a random element of En2 , which lies on the

same face of En2 as M and fluctuates as an isotropic Gaussian centered at M along this

face (but is allowed to fluctuate “off the edges” of the face). In this regard our construction

is an enhanced version of the naive attempt Ẽ[xixjxkx`] = MijMk`, which of course does

not satisfy the necessary symmetries. Instead of merely extending a single feasible point M

in this way, we instead extend a random ensemble fluctuating along the same face; if M is

optimal for some degree 2 SOS relaxation, then the other elements of its face should also be

optimal, so this is a case of making pseudomoment constructions “as random as possible,” to

borrow the phrase of [BHK+19].
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8.3 Generalizing to Higher Degree

Now, motivated by the second derivation of the degree 4 extension in the previous section,

we propose a generalization to higher degrees. This is performed by replacing the random

symmetric matrix G above with a random symmetric tensor of higher order. Thus before

proceeding we review some background on symmetric tensors and the canonical Gaussian

distributions they admit. We will also find it useful to take advantage of the equivalence

between symmetric tensors and homogeneous polynomials, so we review this below as well.

The material on symmetric tensors is standard and may be found in references such as

[BS84, KM89]. The Hilbert space structure for homogeneous polynomials that we discuss is

apparently a more obscure topic, to which the reader may wish to pay particular attention;

we will give some references below.

8.3.1 Symmetric Tensors and Homogeneous Polynomials

The vector space of symmetric d-tensors Symd(Rn) ⊂ (Rn)⊗d is the subspace of d-tensors

whose entries are invariant under permutations of the indices. The vector space of homoge-

neous degree d polynomials R[y1, . . . , yn]hom
d is the subspace of degree d polynomials whose

monomials all have total degree d. Having the same dimension
(
n+d−1
d

)
, these two vector

spaces are isomorphic; a natural correspondence Φ : Symd(Rn)→ R[y1, . . . , yn]hom
d is

Φ(A) =A[y, . . . ,y] =
∑

s∈[n]d
Asys, (8.16)

Φ−1(p(y))s =
(

d
freq(s)

)−1

· [ys](p), (8.17)

where freq(s) is the sequence of integers giving the number of times different indices oc-

cur in s (sometimes called the derived partition) and [ys](p) denotes the extraction of the
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coefficient of ys from a polynomial.

The map sym : (Rn)⊗d → Symd(Rn) is given by averaging the entries over permutations:

sym(A)s := 1
d!

∑
π∈Sd

Asπ(1)···sπ(d) . (8.18)

The symmetric product is defined by composing the tensor product with symmetrization:

A�B := sym(A⊗B). (8.19)

This is easily seen to coincide with multiplication of polynomials through Φ,

Φ(A�B) = Φ(A)Φ(B) (8.20)

The general d-tensors (Rn)⊗d may be made into a Hilbert space by equipping them with

the Frobenius inner product,

〈A,B〉 :=
∑

s∈[n]d
AsBs. (8.21)

The symmetric d-tensors inherit this inner product. To account for the permutation sym-

metry, it is useful to introduce the following notation for multisets.

Definition 8.3.1 (Multisets). For a set S, let M(S) be the set of multisets with elements in

S (equivalently, a function S → N), Md(S) the multisets of size exactly d, and M≤d(S) the

multisets of size at most d.

Then, when A,B ∈ Symd(Rn), the Frobenius inner product may be written

〈A,B〉 =
∑

S∈Md([n])

(
d

freq(S)

)
ASBS , (8.22)

Perhaps less well-known1 is the inner product induced on homogeneous degree d poly-

1[ER93] write: “...the notion of apolarity has remained sealed in the well of oblivion.”
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nomials by the Frobenius inner product pulled back through the mapping Φ, which is called

the apolar inner product [ER93, Rez96, Veg00].2 For the sake of clarity, we distinguish this

inner product with a special notation:

〈p,q〉◦ := 〈Φ−1(p),Φ−1(q)〉 =
∑

S∈Md([n])

(
d

freq(S)

)−1

· [yS](p) · [yS](q). (8.23)

In the sequel we also follow the standard terminology of saying that “p and q are apolar”

when 〈p,q〉◦ = 0; we also use this term more generally to refer to orthogonality under the

apolar inner product, speaking of apolar subspaces, apolar projections, and so forth.

The most important property of the apolar inner product that we will use is that mul-

tiplication and differentiation are adjoint to one another. We follow here the expository

note [Rez96], which presents applications of this idea to PDEs, a theme we will develop

further below. The basic underlying fact is the following. For q ∈ R[y1, . . . , yn], write

q(∂) = q(∂y1 , . . . , ∂yn) for the associated differential operator.3

Proposition 8.3.2 (Theorem 2.11 of [Rez96]). Suppose p,q, r ∈ R[y1, . . . , yn]hom, with de-

grees deg(p) = a,deg(q) = b, and deg(r) = a+ b. Then,

〈pq, r〉◦ = a!
(a+ b)!〈p,q(∂)r〉◦. (8.24)

In particular, if deg(p) = deg(q) = a, then 〈p,q〉◦ = p(∂)q/a!.

In fact, it will later be useful for us to define the following rescaled version of the apolar

inner product that omits the constant factor above.

Definition 8.3.3. For p,q ∈ R[y1, . . . , yn]hom with deg(p) = deg(q), let 〈p,q〉∂ := p(∂)q.

2Other names used in the literature for this inner product include the Bombieri, Bombieri-Weyl, Fischer,
or Sylvester inner product. The term apolar itself refers to polarity in the sense of classical projective
geometry; see [ER93] for a historical overview in the context of invariant theory.

3If, for instance, q(y) = y2
1y2 +y3

3 , then q(∂)f = ∂3f
∂y2

1 ∂y2
+ ∂3f
∂y3

3
.
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Using the preceding formula, we also obtain the following second important property,

that of invariance under orthogonal changes of monomial basis.

Proposition 8.3.4. Suppose p,q ∈ R[y1, . . . , yn]hom
d and Q ∈ O(n). Then,

〈p(y), q(y)〉◦ = 〈p(Qy), q(Qy)〉◦. (8.25)

Associated to these two Hilbert space structures, we may then define isotropic Gaussian

“vectors” (tensors or polynomials).

Definition 8.3.5. For σ > 0, Gtens
d (n,σ 2) is the unique centered Gaussian measure over

Symd(Rn) such that, when G ∼ Gtens
d (n,σ 2), then for any A,B ∈ Symd(Rn),

E[〈A,G〉〈B,G〉] = σ 2〈A,B〉. (8.26)

Equivalently, the entries of G have laws Gs ∼ N (0, σ 2/
(

d
freq(s)

)
) and are independent up to

equality under permutations. Equivalently again, letting G(0) ∈ (Rn)⊗d have i.i.d. entries

distributed asN (0, σ 2), G = sym(G(0)).

For example, the Gaussian orthogonal ensemble with the scaling we have used previously is

GOE(n) = Gtens
2 (n,2/n). The tensor ensembles have also been used by [RM14] and subse-

quent works on tensor PCA under the name “symmetric standard normal” tensors.

Definition 8.3.6. For σ > 0, Gpoly
d (n,σ 2) is the unique measure on polynomials with centered

Gaussian coefficients in R[y1, . . . , yn]hom
d such that, when g ∼ Gpoly

d (n,σ 2), then for any

p,q ∈ R[y1, . . . , yn]hom
d ,

E[〈p,g〉◦〈q,g〉◦] = σ 2〈p,q〉◦. (8.27)

Equivalently, the coefficients of g are independent with laws [ys](g) ∼N (0, σ 2
(

d
freq(s)

)
).
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See [Kos02] for references to numerous works and results on this distribution over poly-

nomials, and justification for why it is “the most natural random polynomial.” Perhaps

the main reason is that, as a corollary of Proposition 8.3.4, this polynomial is orthogonally

invariant (unlike, say, a superficially simpler-looking random polynomial with i.i.d. coeffi-

cients).

Proposition 8.3.7. If g ∼ Gpoly
d (n,σ 2) and Q ∈ O(n), then g (d)= g ◦Q.

(Likewise, though we will not use it, Gtens
d (n,σ 2) is invariant under contraction of each index

with the same orthogonal matrix, generalizing the orthogonal invariance of the GOE.)

Finally, by the isotropy properties and the isometry of apolar and Frobenius inner prod-

ucts under Φ, we deduce that these two Gaussian laws are each other’s pullbacks under

those correspondences.

Proposition 8.3.8. If G ∼ Gtens
d (n,σ 2), then Φ(G) has the law Gpoly

d (n,σ 2). Conversely, if

g ∼ Gpoly
d (n,σ 2), then Φ−1(g) has the law Gtens

d (n,σ 2).

8.3.2 Surrogate Random Tensor Construction

We now proceed to generalize our degree 4 construction to higher degrees. As for degree 4,

the initial idea is to build pseudoexpectation values as second moments of the entries of

a Gaussian random symmetric tensor. That is, for degree 2d, we build Ẽ using a random

G(d) ∈ Symd(Rn) and taking, for multisets of indices S, T ∈Md([n]),

“ Ẽ(xS ,xT ) := E
[
G(d)S G

(d)
T

]
. ” (8.28)

Again, at an intuitive level, if x has the pseudodistribution encoded by Ẽ, then one should

think of identifying

“G(d) = x⊗d. ” (8.29)
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The key point is that, while we cannot model the values of Ẽ as being the moments of an

actual random vector x, we can model them as being the moments of the tensors G(d),

which are surrogates for the tensor powers of x.

Forcing G(d) to be a symmetric tensor, as we have indicated above, makes Ẽ above a

well-defined bilinear pseudoexpectation (Definition 8.2.1). We will again begin with G(d) ∼

Gtens
d (n,σ 2

d) for some degree of freedom σd > 0 to be chosen later, and condition on con-

straints analogous to those given earlier for degree 4. To express these, we introduce the

“slicing notation” (or “MATLAB notation”) that, for S′ ∈ Md−1([n]) and A ∈ Symd(Rn),

A[S′, :] := (AS′+{i})ni=1 ∈ Rn. Then, our construction is as follows.

Pseudoexpectation Prediction (Tensors) Let w1, . . . ,wn−r be a basis of ker(M). De-

fine a jointly Gaussian collection of tensors G(d) ∈ Symd(Rn) as follows.

1. G(0) ∈ Sym0(Rn) is a scalar, with one entry G(0)∅ = 1.

2. For d ≥ 1, G(d) has the law of Gtens
d (n,σ 2

d), conditional on the following two prop-

erties:

(a) If d ≥ 2, then for all S′ ∈Md−2([n]) and i ∈ [n], G(d)S′+{i,i} = G(d−2)
S′ .

(b) For all S′ ∈Md−1([n]) and i ∈ [n− r], 〈wi,G(d)[S′, :]〉 = 0.

Then, for S, T ∈Md([n]), set

Ẽ(xS ,xT ) := E
[
G(d)S G

(d)
T

]
. (8.30)

The choice of G(0)∅ was implicit in our discussion of degree 4 where we did not explicitly

introduce a scalar corresponding to degree 0. The first Property (a) we condition on is

the suitable generalization of Gii = 1 to higher-order surrogate tensors, and the second

Property (b) is the same generalization of (I − P )G = 0. If it is possible to choose σ 2
d
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such that this Ẽ factors through multiplication, then Ẽ is a degree 2d pseudoexpectation

extending M .

However, when we try to actually carry out the computation of the law of G(d) after

performing this conditioning, matters are subtler once d > 2 (corresponding to total SOS

degree 2d > 4). Recall that, before, this amounted to computing the projection to the span

of the matrices viv
>
i ∈ Rr×rsym , which arose from Property (a) fixing G(2)ii . Once d > 2, Prop-

erty (a) will instead fix G(d)S for any S containing a repeated index. Thus the corresponding

projection will be to the subspace

span
({vi � vi � vj1 � · · · � vjd−2 : i, j1, . . . , jd−2 ∈ [n]}

) ⊆ Symd(Rr ). (8.31)

While for d = 2 there was a convenient basis vi�vi of this subspace, here the above spanning

set is linearly dependent (since v1, . . . ,vn have many linear dependences), and there does

not appear to be a convenient adjustment of this set to a basis retaining the symmetries

of the d = 2 case. We therefore turn to the reinterpretation in terms of homogeneous

polynomials: in that language, this unusual subspace is nothing but an ideal, and we may at

least obtain an intrinsic description of our construction using a connection between ideals

and multiharmonic polynomials under the apolar inner product, which we review next.

8.3.3 Homogeneous Ideals and Multiharmonic Polynomials

We return to homogeneous polynomials and the apolar inner product, and describe a crucial

consequence of Proposition 8.3.2. Namely, for any homogeneous ideal, any polynomial

uniquely decomposes into one part belonging to the ideal, and another part, apolar to the

first, that is “multiharmonic” in that it satisfies a certain system of PDEs associated to the

ideal.4

4We will use “harmonic” to abbreviate but “multiharmonic” when we wish to explicitly distinguish our
case from the case of harmonic polynomials satisfying the single Laplace equation ∆q = 0. Unfortunately,
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Proposition 8.3.9. Let p1, . . . , pm ∈ R[y1, . . . , yn]hom and d ≥ maxmi=1 deg(pi). Define two

subspaces of R[y1, . . . , yn]hom
d :

VI :=

m∑
i=1

piqi : qi ∈ R[y1, . . . , yn]hom
d−degpi

 , the “ideal subspace,” and (8.32)

VH := {q : pi(∂)q = 0 for all i ∈ [m]} , the “harmonic subspace.” (8.33)

Then, VI and VH are orthogonal complements under the apolar inner product. Consequently,

R[y1, . . . , yn]hom
d = VI ⊕ VH .

Perhaps the most familiar example is the special case of harmonic polynomials, for which

this result applies as follows.

Example 8.3.10. Suppose m = 1, and p1(y) = ‖y‖2
2 = y2

1 + · · · + y2
n. Then, p1(∂) = ∆, so

Proposition 8.3.9 implies that any q ∈ R[y1, . . . , yn]hom
d may be written uniquely as p(y) =

qd(y)+ ‖y‖2
2qd−2(y) where qd is harmonic, deg(qd) = d, and deg(qd−2) = d− 2. Repeating

this inductively, we obtain the well-known fact from harmonic analysis that we may in fact

expand

p(y) =
bd/2c∑
a=0

‖y‖2a
2 qd−2a(y) (8.34)

where each qi is harmonic with deg(qi) = i and the qi are uniquely determined by p.

This is sometimes called the “Fischer decomposition;” see also the “Expansion Theorem” in

[Rez96] for a generalization of this type of decomposition.

8.3.4 Conditioning by Translating to Homogeneous Polynomials

Equipped with these concepts, we proceed with our conditioning computation, after translat-

ing the construction to homogeneous polynomials. Passing each G(d) through the isometry

the term multiharmonic function is also sometimes used to refer to what is usually called a pluriharmonic
function, the real or imaginary part of a holomorphic function of several variables, or to what is usually
called a polyharmonic function, one that satisfies ∆mq = 0 for some m ∈ N.
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between Symd(Rn) and R[y1, . . . , yn]hom
d described in Section 8.3.1, we find an equivalent

construction in terms of random polynomials g(d) ∈ R[y1, . . . , yn]hom
d . Though this may

seem unnatural at the surface level—bizarrely, we will be defining Ẽ for each degree in

terms of the correlations of various coefficients of a random polynomial—we recall that we

expect viewing the extraction of coefficients in terms of the apolar inner product to bring

forth a connection to multiharmonic polynomials per the previous section, allowing us to

use a variant of the ideas there to complete the calculation.

Pseudoexpectation Prediction (Polynomials) Letw1, . . . ,wn−r be a basis of ker(M).

Define a jointly Gaussian collection of polynomials g(d) ∈ R[y1, . . . , yn]hom
d as follows.

1. g(0)(y) = 1.

2. For d ≥ 1, g(d) has the law of Gpoly
d (n,σ 2

d), conditional on the following two proper-

ties:

(a) If d ≥ 2, then for all i ∈ [n] and S′ ∈Md−2([n]), 〈g(d),yS′y2
i 〉◦ = 〈g(d−2),yS′〉◦.

(b) For all S′ ∈Md−1([n]) and i ∈ [n− r], 〈g(d),yS′〈wi,y〉〉◦ = 0.

Then, for S, T ∈Md([n]), set

Ẽ(xS ,xT ) := E
[
〈g(d),yS〉◦ 〈g(d),yT 〉◦

]
. (8.35)

The most immediate advantage of reframing our prediction in this way is that it gives us ac-

cess to the clarifying concepts of “divisibility” and “differentiation,” whose role is obscured

by the previous symmetric tensor language. Moreover, these are nicely compatible with the

apolar inner product per Proposition 8.3.2.

Let us briefly outline the computation before giving a careful justification. Roughly

speaking, conditioning on Property (b) above projects g(d) to the subspace of polynomi-
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als depending only on V̂ y. On the other hand, by Proposition 8.3.7, g(d) is invariant under

compositions with orthogonal matrices, and by our assumptions on V̂ , it is the upper r ×n

block of some orthogonal matrix. From this, if g(d)1 has the law of Gpoly
d (n,σ 2

d) conditional

on Property (b), then the collection of coefficients (〈g(d)1 ,yS〉◦)S∈Md([n]) has the same law as

(〈h(d), (V̂ >z)S〉◦)S∈Md([n]) for h(d)(z) ∼ Gpoly
d (r ,σ 2

d). (We use y = (y1, . . . , yn) for formal

variables of dimension n and z = (z1, . . . , zr ) for formal variables of dimension r .) Thus

conditioning on Property (b) is merely a dimensionality reduction of the canonical Gaussian

polynomial, in a suitable basis.

Conditioning h(d) as above on Property (a) brings in the ideal and harmonic subspaces

discussed in Section 8.3.3. Let us define

VI :=

n∑
i=1

〈vi,z〉2qi(z) : qi ∈ R[z1, . . . , zr ]hom
d−2

 , (8.36)

VH :=
{
q ∈ R[z1, . . . , zr ]hom

d : 〈vi,∂〉2q = 0 for all i ∈ [n]
}
, (8.37)

instantiations of the subspaces of Proposition 8.3.9 for the specific collection of polynomials

{〈vi,z〉2}ni=1. Conditioning on Property (a) fixes the component of h belonging to VI , leaving

a fluctuating part equal to the apolar projection of h(d) to VH . This reasoning yields the

following recursion. We give a more careful proof, and then give a closed version of these

formulae.

Lemma 8.3.11 (Pseudoexpectation recursion). Suppose the conditions of Assumption 8.1.1

hold exactly. Let PI and PH be the apolar projections to VI and VH , respectively. For each

S ∈Md([n]), let rS ∈ R[x1, . . . , xn]hom
d be a polynomial having

PI[(V >z)S] = rS(V >z), (8.38)

rS(x) =
n∑
i=1

x2di
i rS,i(x) for di ≥ 1, rS,i ∈ R[x1, . . . , xn]hom

d−2di , (8.39)
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and further define

r ↓S (x) =
n∑
i=1

rS,i(x) ∈ R[x1, . . . , xn]≤d−2, (8.40)

where we emphasize that r ↓S is not necessarily homogeneous. Set hS(x) := xS − rS(x),

whereby PH [(V >z)S] = hS(V >z). Then, the right-hand side of (8.35) is

Ẽ(xS ,xT ) = Ẽ(r ↓S (x), r
↓
T (x))︸ ︷︷ ︸

“ideal” term

+σ 2
dδ

d · 〈hS(V >z), hT (V >z)〉◦︸ ︷︷ ︸
“harmonic” term

. (8.41)

Proof. We must compute the distribution of g(d)(y) ∼ Gpoly
d (n,σ 2

d), given g(0)(y) = 1, con-

ditional on (a) having, if d ≥ 2, for all i ∈ [n] and S′ ∈ Md−2([n]) that 〈g(d),yS′y2
i 〉◦ =

〈g(d−2),yS′〉◦, and (b) having for all S′ ∈Md−1([n]) and i ∈ [n−r] that 〈g(d),yS′〈wi,y〉◦ = 0.

Working first with Property (a), we see after extending by linearity that it is equiva-

lent to 〈g(d), q(y)y2
i 〉◦ = 〈g(d−2), q(y)〉◦ for all i ∈ [n] and q ∈ R[y1, . . . , yn]hom

d−2. On the

other hand, by the adjointness property from Proposition 8.3.2, we have 〈g(d), q(y)y2
i 〉◦ =

1
d(d−1)〈∂2

yig
(d), q(y)〉◦, and thus Property (a) is equivalent to the simpler property:

(a′) If d ≥ 2, then for all i ∈ [n], ∂2
yig

(d)(y) = d(d− 1) · g(d−2)(y).

Similarly, we see after extending Property (b) by linearity that it is equivalent to having

〈g(d), q(y)〈w,y〉〉◦ = 0 for all q ∈ R[y1, . . . , yn]hom
d−1 and w ∈ ker(M). Again by Proposi-

tion 8.3.2, 〈g(d), q(y)〈w,y〉〉◦ = d〈〈w,∂〉g(d), q(y)〉◦, so Property (b) is equivalent to:

(b′) For all w ∈ ker(M), 〈w,∂〉g(d)(y) = 0.

Polynomials p ∈ R[y1, . . . , yn]hom
d with 〈w,∂〉p = 0 for all w ∈ ker(M) form a linear sub-

space, which admits the following simple description. Changing monomial basis to one

which extends zi = (V̂ y)i for i ∈ [r] and invoking Proposition 8.3.4, we may define

VB :=
{
p ∈ R[y1, . . . , yn]hom

d : p(y) = q(V̂ y) for some q ∈ R[z1, . . . , zr ]hom
d

}
, (8.42)
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and with this definition Property (b) is equivalent to:

(b′′) g(d) ∈ VB.

Now, letQ ∈ O(n) be an orthogonal matrix formed by adding rows to V̂ (see Section 8.1

for why this is possible under our assumptions on M ). Letting aS ∼ N (0, σ 2
d

(
d

freq(S)

)
) for

each S ∈ Md([n]) independently, we set g(d)0 (y) := ∑S∈Md([n]) aS · (Qy)S ; then, the law of

g(d)0 is Gpoly
d (n,σ 2

d) by Proposition 8.3.7. Thus we may form the law of g(d) by conditioning

g(d)0 on Properties (a′) and (b′′).

Conveniently, conditioning g(d)0 on Property (b′′) amounts to merely setting those aS with

S ∩ {r + 1, . . . , n} ≠∅ to equal zero. Denoting the resulting random polynomial by g(d)1 , we

see that g(d)1 (y) =∑S∈Md([r]) aS · (Qy)S =
∑
S∈Md([r]) aS · (V̂ y)S . To extract the coefficients

of g(d)1 in the standard monomial basis, we compute

〈g(d)1 ,yS〉◦ =
∑

T∈Md([r])
aT 〈(V̂ y)T ,yS〉◦

=
∑

T∈Md([r])
aT 〈yT , (Q>y)S〉◦ (Proposition 8.3.4)

and noting that no term involving yr+1, . . . , yn will contribute, we may define the truncation

z = (y1, . . . , yr ) and continue

=
∑

T∈Md([r])
aT 〈zT , (V̂ >z)S〉◦

=
〈 ∑
T∈Md([r])

aTzT , (V̂ >z)S
〉
◦
. (8.43)

Letting h(d)0 (z) :=∑T∈Md([r]) aTzT , we see that the law of h(d)0 is Gpoly
d (r ,σ 2

d).

Thus we may rewrite the result of the remaining conditioning on Property (a′) by letting

h(d) have the law of h(d)0 conditioned on 〈vi,∂〉2h(d)(z) = δ−1d(d − 1) · h(d−2)(z) for all
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i ∈ [n]. Then,

Ẽ(xS ,xT ) = E
[
〈h(d), (V̂ >z)S〉◦ 〈h(d), (V̂ >z)T 〉◦

]
= δd · E

[
〈h(d), (V >z)S〉◦ 〈h(d), (V >z)T 〉◦

]
(8.44)

The result of this remaining conditioning is simple to write down in a more explicit

form, since now we have just a single family of linear constraints to condition on and h(d)0

is isotropic with respect to the apolar inner product (per Definition 8.3.6). We recall that

PI and PH are the orthogonal projections to the ideal and harmonic subspaces VI and VH ,

respectively, with respect to the polynomials 〈vi,z〉2. We also define the “least-squares

raising” operator LI by

LI[h] := argmin
{
‖f‖2

◦ : f ∈ VI , 〈vi,∂〉2f = h for all i ∈ [n]
}
, (8.45)

for all h such that 〈vi,δ〉2h does not depend on i.

We then obtain that the law of h(d) is

h(d) (d)= δ−1d(d− 1) · LI[h(d−2)]+ PH [h(d)0 ], (8.46)

where we view h(d)0 as independent of h(d′) for all d′ < d. Note that the first summand above

belongs to VI and the second to VH , so this is also an ideal-harmonic decomposition for h(d)

precisely of the kind provided by Proposition 8.3.9.

Now, we work towards substituting this into (8.44). To do that, we must compute inner

products of the form 〈h(d), (V >z)S〉◦. We introduce a few further observations to do this:

for each S, the projection of (V >z)S to VI is a linear combination of multiples of the 〈vi,z〉2.

Moreover, the 〈vi,z〉 are an overcomplete system of linear polynomials, so any polynomial

in z may be written as a polynomial in these variables instead. Combining these facts, we
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see that there exists a polynomial rS ∈ R[x1, . . . , xn]hom
d such that

PI[(V >z)S] = rS(V >z), (8.47)

rS(x) =
n∑
i=1

x2di
i rS,i(x) for di ≥ 1, rS,i ∈ R[x1, . . . , xn]hom

d−2di . (8.48)

The polynomial rS(x) is not unique, since the vectors vi and therefore the polynomials

〈vi,z〉 are linearly dependent. Nor is the decomposition of rS into the x2di
i rS,i unique, since

for instance if some di ≥ 2 then we may move a factor of x2
i into rS,i. However, any choice

of rS satisfying (8.47) and rS,i satisfying (8.48) suffices for our purposes. Note also that we

reuse the pseudodistribution variables x = (x1, . . . , xn) intentionally here because of the

role rS(x) will play below.

With this definition, we compute

〈h(d), (V >z)S〉◦ = δ−1d(d− 1) · 〈LI[h(d−2)], PI[(V >z)S]〉◦ + 〈PH [h(d)0 ], (V >z)S〉◦

= δ−1d(d− 1)
n∑
i=1

〈LI[h(d−2)], 〈vi,z〉2dirS,i(V >z)〉◦ + 〈h(d)0 , PH [(V >z)S]〉◦

= δ−1

〈
h(d−2),

n∑
i=1

〈vi,z〉2di−2rS,i(V >z)
〉
◦
+ 〈h(d)0 , PH [(V >z)S]〉◦ (8.49)

We note that h(d−2) and h(d)0 are independent, and h(d)0 is isotropic with variance σ 2
d . There-

fore, we may finally substitute into (8.44), obtaining

Ẽ(xS ,xT )

= δd · E
[
〈h(d), (V >z)S〉◦〈h(d), (V >z)T 〉◦

]
= δd−2 · E

〈h(d−2),
n∑
i=1

〈vi,z〉2di−2rS,i(V >z)
〉
◦

〈
h(d−2),

n∑
i=1

〈vi,z〉2di−2rT ,i(V >z)
〉
◦


+ δd · E

[
〈h(d)0 , PH [(V >z)S]〉◦〈h(d)0 , PH [(V >z)T ]〉◦

]
.
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While this expression appears complicated, each term simplifies substantially: the first term

is an evaluation of Ẽ at degree 2d − 4, per (8.44), while the second term, by the isotropy of

h(d)0 , is an apolar inner product:

= Ẽ

 n∑
i=1

x2di−2
i rS,i(x),

n∑
i=1

x2di−2
i rT ,i(x)

+ σ 2
dδ

d ·
〈
PH [(V >z)S], PH [(V >z)T ]

〉
◦ .

Lastly, we note that the factors x2di−2
i are irrelevant in the evaluation of Ẽ (by the pseudoex-

pectation ideal property from Definition 6.1.2 at degree 2d− 4), so we obtain

= Ẽ

 n∑
i=1

rS,i(x),
n∑
i=1

rT ,i(x)

+ σ 2
dδ

d ·
〈
PH [(V >z)S], PH [(V >z)T ]

〉
◦ , (8.50)

which is the result in the statement.

Thus our prediction for the degree 2d pseudoexpectation values decomposes according to

the ideal-harmonic decomposition of the input; the ideal term depends only on the pseudo-

expectation values of strictly lower degree, while the harmonic term is a new contribution

that is, in a suitable spectral sense, orthogonal to the ideal term. In this way, one may think

of building up the spectral structure of the pseudomoment matrices of Ẽ by repeatedly

“raising” the pseudomoment matrix two degrees lower into a higher-dimensional domain,

and then adding a new component orthogonal to the existing one.

Remark 8.3.12 (Multiharmonic basis and block diagonalization). We also mention a different

way to view this result that will be more directly useful in our proofs later in Chapter 10.

Defining h↓S(x) := xS − r ↓S (x), note that we have, in the setting of Lemma 8.3.11 where

Assumption 8.1.1 is exactly satisfied, Ẽ(h↓S(x), r
↓
S (x)) = Ẽ(hS(x), rS(x)) = 0 since the ideal

and harmonic subspaces are apolar. Thus, we also have

Ẽ(h↓S(x), h
↓
T (x)) = σ 2

dδ
d · 〈hS(V >z), hT (V >z)

〉
◦ . (8.51)
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The h↓S(x) are a basis modulo the ideal generated by the constraint polynomials x2
i −1, which

we call the multiharmonic basis. Since the inner product on the right-hand side is zero unless

|S| = |T |, this basis achieves a block diagonalization of the pseudomoment matrix. This idea

turns out to be easier to use to give a proof of positivity of Ẽ than the full recursion of (8.41).

Finally, we also give a concrete closed form of the above recursion. This is in terms of

a Fischer-like decomposition analogous to that given for harmonic polynomials in Exam-

ple 8.3.10 above.

Corollary 8.3.13 (Pseudoexpectation closed form). Suppose that the conditions of Assump-

tion 8.1.1 hold exactly. Let hS,T ∈ V (|S|−2|T |)
H be such that

(V >z)S =
b|S|/2c∑
k=0

∑
T∈Mk([n])

((V >z)T )2hS,T (V >z), (8.52)

which may be obtained by repeatedly expanding the ideal-harmonic decompositions of the

rS,i from Lemma 8.3.11. Define

hS,k(x) :=
∑

T∈M(|S|−k)/2([n])
hS,T (x) ∈ R[x1, . . . , xn]hom

k (8.53)

if k ≤ |S| and k and |S| are of equal parity, and pS,k = 0 otherwise. Then, the right-hand side

of (8.35) is

Ẽ(xS ,xT ) =
|S|∧|T |∑
d=0

σ 2
dδ

d · 〈hS,d(V >z), hT ,d(V >z)〉◦. (8.54)

We will not use this representation much, as it seems difficult to understand what transpires

in the large summations of polynomials made to form hS,d, but we present it to emphasize

that, at least in principle, our construction proposes an explicit Gram matrix description of

the pseudomoment matrix of Ẽ. In one situation in the next chapter we will also be able

to make use of this directly, since we will be studying a very structured deterministic case

where the hS,d can be adequately understood.
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9 | Grigoriev-Laurent Lower Bound

While we proposed in the previous chapter a construction of pseudomoments with pleas-

ant spectral properties and connections to the geometry of polynomials, the major mys-

tery of why what we defined, a priori still only a bilinear pseudoexpectation, should factor

through multiplication and define a true pseudoexpectation, still remains. Before we show

a generic further derivation that will justify this, however, here we digress to consider one

very special case—the simplest non-trivial one of the Gram matrices of ETFs we studied in

Chapter 7—where this prediction in fact gives an exact description of a previously studied

pseudomoment matrix.

That pseudomoment matrix was used by Laurent [Lau03b] to show the result we cited

earlier in Chapter 6, that En2d ⊋ Cn if 2d < n. Essentially the same construction appeared

in a different guise less related to our results in a result of Grigoriev [Gri01a]. We mention

Grigoriev’s result to respect the chronology of these results, but we will focus on Laurent’s

formulation as it is much closer to our setting. In this chapter, we will give a new proof of

this lower bound—though similar ideas to ours are already implicit in another alternative

proof—and use some further reasoning suggested by our spectral extensions to establish a

conjecture of Laurent’s on the eigenvalues of the associated pseudomoment matrix.

Summary and References This chapter is based on a forthcoming note, a joint work with

Jess Banks and Cristopher Moore. The following is a summary of our main results in this
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chapter.

1. (Section 9.3) An alternative representation-theoretic proof of the positivity of the pseu-

domoments considered by Laurent, which we state in Theorem 9.1.1.

2. (Theorem 9.4.1) A recursive structure obeyed by the eigenvalues of this pseudomo-

ment matrix, conjectured by Laurent in [Lau03b].

We also mention the following representation-theoretic result, perhaps of independent in-

terest.

3. (Proposition 9.2.11) An intrinsic description of the irreducible representations of Sn

corresponding to Young diagrams with two rows as certain spaces of multiharmonic

polynomials associated to an equilateral simplex.

This is essentially equivalent to the well-known description as a Specht module, but our

description gives a rather more natural definition not requiring an explicit basis.

Prior Work At least three other proofs (besides the original) of the result of Grigoriev

and Laurent have appeared in the literature [KLM16, BGP16, Pot17]. However, Laurent’s

conjecture on the pseudomoment eigenvalues has remained, to the best of our knowledge,

unverified since its observation in [Lau03b]. The general, if somewhat vague, question of

finding “synthetic” descriptions of the irreducible representations of the symmetric group

(in particular, basis-free descriptions) remains interesting. This is mentioned and discussed

explicitly in, e.g., [Dia88]: “What one wants is a set of objects on which Sn acts that are

comprehensible...as far as I know, a ‘concrete’ determination of the representations of Sn is

an open problem” (p. 136). There is a rich literature on these matters applying much more

sophisticated algebraic machinery than we do here (see the other discussion in Chapter 7B

of the above reference as well as the more recent Okounkov-Vershik approach [OV96]), but

we are not aware of any descriptions of the same flavor as we propose.
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9.1 Pseudomoment Construction

The pseudomoment construction we will study is as follows.

Theorem 9.1.1 (Theorem 6 of [Lau03b]). Let n ≥ 1 be odd. Let Ẽ : R[x1, . . . , xn]≤n−1 → R

have values on multilinear monomials given by

Ẽ

∏
i∈S
xi

 = 1{|S| even} · (−1)|S|/2
|S|/2−1∏
i=0

2i+ 1
n− 2i− 1

=: α|S|, (9.1)

and extend to a linear operator satisfying Ẽ[x2
i p(x)] = Ẽ[p(x)] whenever deg(p) ≤ n − 3.

Then, Ẽ is a degree (n− 1) pseudoexpectation, and satisfies Ẽ[(
∑n
i=1xi)2] = 0.

Since n is odd, for any x ∈ Cn we have (
∑n
i=1xi)2 ≥ 1 by parity considerations. Therefore,

the result shows that SOS requires degree n+1 to certify this simple-looking inequality, and

in particular it follows that Enn−1 ⊋ Cn, showing which was Laurent’s purpose in proving this

result. We also note that the degree 2 pseudomoment matrix is

Ẽ[xx>] =



1 − 1
n−1 · · · − 1

n−1

− 1
n−1 1 · · · − 1

n−1

...
...

. . .
...

− 1
n−1 − 1

n−1 · · · 1


= n
n− 1

In − 1
n− 1

1n1
>
n ∈ Rn×nsym , (9.2)

which is the Gram matrix of the simplex ETF of n unit vectors in Rn−1 pointing to the ver-

tices of an equilateral simplex. In particular, our Theorem 7.4.5 immediately gives degree 4

pseudomoments achieving Laurent’s result. Here, however, we will go much further and

give an alternate proof of the full statement.

It is not difficult to arrive at the values of the αk defining the pseudomoments: we assume

by symmetry that Ẽ[xS] depends only on |S|; by symmetrizing Ẽ′[p(x)] = 1
2(Ẽ[p(x)] +
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Ẽ[p(−x)] we may assume that Ẽ[xS] = 0 whenever |S| is odd; and we assume that not

only does Ẽ[(
∑n
i=1xi)2] = 0, but moreover Ẽ[(

∑n
i=1xi)p(x)] = 0 whenever deg(p) ≤ n − 2

(sometimes called Ẽ’s “strongly satisfying” the constraint
∑n
i=1xi = 0). Then, we must have

0 = Ẽ[(
∑n
i=1xi)xS] = |S|α|S|−1 + (n − |S|)α|S|+1, and starting with Ẽ[1] = 1 the values in

(9.1) follow recursively. We also note that it is impossible to continue this construction

past |S| = (n− 1)/2 while retaining these properties, as solving the recursion will call for a

division by zero.

The content of the theorem is the positivity of Ẽ; clearly Ẽ satisfies the remaining con-

ditions of Definition 6.1.2 by construction. Let us spell this out in terms of a concrete

pseudomoment matrix, as we will return to the spectral properties of this matrix below. We

set

dmax = dmax(n) :=
⌊
n
2

⌋
. (9.3)

(This is denoted “k” in [Lau03b].) Let Y (n) ∈ R(
[n]
≤dmax)×(

[n]
≤dmax) have entries

Y (n)S,T = Ẽ[xSxT ]. (9.4)

Then, the content of the theorem is that Y (n) � 0. Actually, Y (n) decomposes as the direct

sum of two principal submatrices, those indexed by
(
[n]
d

)
with d even and odd respectively,

which Laurent considered separately, but it will be more natural in our calculations to avoid

this decomposition.

Adjusting for this minor change, Laurent’s proof may be seen as identifying a
(

n
≤dmax−1

)
-

dimensional kernel of Y (n), and proving that the principal submatrix Z(n) of Y (n) indexed

by
(
[n−1]
dmax

)
∪
(
[n−1]
dmax−1

)
, which has total dimension

(
n
dmax

)
, is positive definite. While identify-

ing the kernel is straightforward, for the second part Laurent uses that each block of Z(n)

belongs to the Johnson association scheme, and applies formulae for the eigenvalues of

the matrices spanning the Johnson scheme’s Bose-Mesner algebra. In concrete terms, this
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expresses the eigenvalues of Z(n) as certain combinatorial sums involving binomial coeffi-

cients and having alternating signs. To establish positivity, Laurent appeals to general iden-

tities for transforming hypergeometric series [PWZ96], which yield different expressions for

the eigenvalues of Z(n) as sums of positive terms.

Both Laurent’s result and proof are similar to those of [Gri01a] that appeared earlier and

concerned the same statement over x ∈ {0,1}n in the context of the knapsack problem. At

least three other, conceptually different, proofs of Laurent’s result (that we know of) have

since appeared. First, [KLM16] showed that, for highly symmetric problems over subsets of

the hypercube, the positivity of the “natural” pseudoexpectation constructed from symme-

try considerations reduces to a small number of univariate polynomial inequalities. In the

case of Laurent’s result, these inequalities simplify algebraically and yield a proof, while in

other cases this machinery calls for analytic arguments. Second, [BGP16] produced an ele-

gant proof of a stronger result, showing that the function (
∑n
i=1xi)2−1 is not even a sum of

squares of rational functions of degree at most dmax. Their proof works in the dual setting,

describing the decomposition of the space of functions on the hypercube into irreducible

representations of the symmetric group and considering how a hypothetical sum of squares

expression decomposes into associated components in these subspaces. We will present

this decomposition below and apply it at the beginning of our computations. Lastly, [Pot17]

showed that the result, in Grigoriev’s form concerning knapsack, follows from another gen-

eral representation-theoretic reduction of positivity conditions to a lower-dimensional space

of polynomials.

Laurent also made several further empirical observations about Y (n) and its “quite re-

markable structural properties” in the appendix of [Lau03b]. Most notably, as n increases,

the spectrum of Y (n) appears to “grow” in a recursive fashion, with the eigenvalues of

Y (n+2) equaling those of Y (n) multiplied by n+2
n+1 , along with a new largest eigenvalue. Unfor-

tunately, the proof outlined above does not make use of this elegant structure and does not
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give any indication of why it should hold. Our reasoning below will prove this observation

and show how it fits into a representation-theoretic perspective on the Grigoriev-Laurent

pseudomoments.1

9.2 Representation Theory of the Symmetric Group

We will use standard tools such as Schur’s lemma, character orthogonality, and characteri-

zations of and formulae for characters of irreducible representations (henceforth irreps) of

the symmetric group. See, e.g., the standard reference [FH04] or [Dia88] for more a explicit

combinatorial perspective.

We briefly recall some standard aspects of this theory. A partition τ = (τ1, . . . , τm) of

n ∈ N+ is an ordered sequence τ1 ≥ · · · ≥ τm > 0 such that
∑m
i=1 τi = n. We write Part(n)

for the set of partitions of n (note that previously we wrote Part(S) for the partitions of a

set S, while Part(n) here denotes the partitions of the number n). The associated Young

diagram is an array of left-aligned boxes, where the kth row contains τk boxes. A Young

tableau of shape τ is an assignment of the numbers from [n] to these boxes (possibly with

repetitions). A tableau is standard if the rows and columns are strictly increasing (left to

right and top to bottom, respectively), and semistandard if the rows are non-decreasing but

the columns are strictly increasing. We give a concrete and perhaps old-fashioned treatment

of the topics below, since these constructions in terms of polynomials will be directly useful

for us.

Definition 9.2.1 (Combinatorial representation). The combinatorial representation associ-

1Laurent also observed that it appears plausible to prove Y (n) � 0 by repeatedly taking Schur com-

plements with respect to blocks indexed by subsets of fixed size
(
[n]
d

)
, in the order d = 0,1, . . . , dmax.

This would give a perhaps more conceptually-satisfying proof than the original one relying on eigenvalue
interlacing—which offers no direct insight into the spectrum of Y (n) itself—but appears too technical to
carry out by hand. Our reasoning showing that the Grigoriev-Laurent pseudomoments are a special case of
spectral extension will also implicitly verify that such an approach is tenable.
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ated to τ ∈ Part(n), which we denote Uτ , is the module of polynomials in R[x1, . . . , xn]

where, for each k ∈ [m], exactly τk of the xi appear raised to the power (k − 1) in each

monomial (thus these polynomials are homogeneous of degree
∑m
k=1(k− 1)τk).

Definition 9.2.2 (Specht module). The Specht module associated to τ ∈ Part(n), which we de-

noteW τ , is the module of polynomials in R[x1, . . . , xn] spanned by, over all standard tableaux

T of shape τ , ∏
C

∏
i,j∈C
i<j

(xi − xj), (9.5)

where the product is over columns C of T . We write χτ for the character of W τ , and identify

χ(n,0) := χ(n) for the sake of convenience.

The key and classical fact concerning the Specht modules is that, over τ ∈ Part(n), they are

all non-isomorphic and enumerate all irreps of Sn. The main extra fact we will use is the

following, showing how to decompose a combinatorial representation in these irreps.

Proposition 9.2.3 (Young’s rule). For τ, µ ∈ Part(n), the multiplicity of Wµ in Uτ is the

number of semistandard Young tableaux of shape µ in which k occurs τk times for each

k = 1, . . . ,m.

Finally, we will use the following decomposition of the representation consisting of poly-

nomials over the hypercube {±1}n given in a recent work. We correct a small typo present

in the published version in the limits of the second direct sum below.

Proposition 9.2.4 (Theorem 3.2 of [BGP16]). Let R[{±1}n] := R[x1, . . . , xn]/I , where I is the

ideal generated by {x2
i − 1}ni=1. Then,

R[{±1}n] =
dmax⊕
d=0

n−2d⊕
k=0

 n∑
i=1

xi

kW (n−d,d). (9.6)

237



(Note that this is not merely a statement of the isomorphism type of the irreps occurring in

R[{±1}n], but an actual direct sum decomposition of the space of polynomials, where the

W (n−d,d) are meant as specific subspaces of polynomials, per Definition 9.2.2.)

9.2.1 Combinatorial Interpretations of Characters

As we will be computing extensively with χ(n−d,d) below, it will be useful to establish a

concrete combinatorial description of the values of these characters.

Definition 9.2.5. For each 0 ≤ d ≤ n, let

cd(π) := #

{
A ∈

(
[n]
a

)
: π(A) = A

}
. (9.7)

Proposition 9.2.6. For all 1 ≤ d ≤ n, χ(n−d,d) = cd − cd−1, and χ(n) = c0 = 1.

We give two proofs, one using the Frobenius formula for irrep characters and another using

combinatorial representations.

Proof 1. The Frobenius formula implies that, for π having cycles C1, . . . , Ck,

χ(n−d,d)(π) = [xd]
(1− x)

k∏
i=1

(1+ x|Ci|)
 . (9.8)

Since a subset fixed by π is a disjoint union of cycles, the product term is the generating

function of the numbers of fixed subsets of all sizes:

k∏
i=1

(1+ x|Ci|) =
n∑
d=0

cd(π)xd. (9.9)

The result follows since multiplication by (1−x)makes the coefficients precisely the claimed

differences.
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Proof 2. The combinatorial representation U (n−d,d) is the subspace of multilinear polynomi-

als in R[x1, . . . , xn]hom
d . By Young’s rule, U (n−d,d) =⊕d

i=0W (n−i,i). On the other hand, clearly

the character of U (n−d,d) is cd. Thus,
∑d
i=0 χ(n−d,d) = cd, and the result follows by inverting

this relation.

9.2.2 Combinatorial Class Functions

We will need to compute inner products of various functions on conjugacy classes of Sn

(henceforth class functions) with χ(n−d,d). We compute several such inner products in ad-

vance below.

Definition 9.2.7. For π ∈ Sn, 0 ≤ a,b ≤ n, and 0 ≤ k, ` ≤ a∧ b, we define

fa,k(π) := #

{
A ∈

(
[n]
a

)
: |π(A)∩A| = k

}
, (9.10)

ga,b,k,`(π) := #

{
A ∈

(
[n]
a

)
, B ∈

(
[n]
b

)
: |A∩ B| = k, |π(A)∩ B| = `

}
. (9.11)

We will ultimately be interested in inner products with the ga,b,k,`, but the following

shows that these reduce to linear combinations of the fa,k.

Proposition 9.2.8. For all 0 ≤ k, ` ≤ a∧ b,

gb,a,k,` = ga,b,k,` = ga,b,`,k =
a∑
j=0

 j∑
i=0

(
j
i

)(
a− j
k− i

)(
a− j
` − i

)(
n− 2a+ j
b − k− ` + i

)fa,j (9.12)

Proof. The first equality holds since |π(A)∩ B| = |A∩π−1(B)|, and so since inversion does

not change the conjugacy class of π , we have ga,b,k,`(π) = gb,a,k,`(π−1) = gb,a,k,`(π).

SupposeA ∈
(
[n]
a

)
with |A∩π(A)| = j. Then, B ∈

(
[n]
b

)
with |A∩B| = k and |π(A)∩B| = `

consists of some 0 ≤ i ≤ j elements of A∩π(A), k− i elements of A \π(A), `− i elements
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of π(A) \A, and b − i− (k− i)− (` − i) = b − k− ` + i elements of [n] \A \π(A). Thus,

ga,b,k,`(π)

=
∑

A∈([n]a )
#

{
B ∈

(
[n]
b

)
: |A∩ B| = k, |π(A)∩ B| = `

}

=
∑

A∈([n]a )

|A∩π(A)|∑
i=0

(
|A∩π(A)|

i

)(
a− |A∩π(A)|

k− i

)(
a− |A∩π(A)|

` − i

)(
n− 2a+ |A∩π(A)|

b − k− ` + i

)

=
a∑
j=0

#

{
A ∈

(
[n]
a

)
: |A∩π(A)| = j

} j∑
i=0

(
j
i

)(
a− j
k− i

)(
a− j
` − i

)(
n− 2a+ j
b − k− ` + i

)
, (9.13)

and the remaining cardinality is by definition fa,j(π).

The following is our key combinatorial lemma, computing the inner product of χ(n−d,d)

with the ga,b,k,` so long as one of a and b is at most d.

Lemma 9.2.9. For all 0 ≤ a ≤ d ≤ n/2, a ≤ b ≤ n, and 0 ≤ k, ` ≤ a∧ b,

1
n!

∑
π∈Sn

χ(n−d,d)(π)ga,b,k,`(π) =


0 if a < d,

(−1)k+`
(
d
k

)(
d
`

)(
n−2d
b−d

)
if a = d.

(9.14)

Proof. We first compute the inner products with the fa,k. To this end, we introduce the

functions

Fa,j :=
a∑
k=j

(
k
j

)
fa,k. (9.15)
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Then, we have

Fa,j(π) =
∑

A∈([n]a )

(
|A∩π(A)|

j

)

=
∑

A∈([n]a )

∑
C∈(Aj)

1{π(C) ⊆ A}

=
∑

C∈([n]j )

∑
B∈([n]\Ca−j )

1{π(C) ⊆ C ∪ B}

=
∑

C∈([n]j )

(
n− 2j + |π(C)∩ C|
a− 2j + |π(C)∩ C|

)

=
j∑
i=0

(
n− 2j + i
a− 2j + i

)
fj,i(π). (9.16)

On the other hand, we may invert the relation (9.15) (this “inversion of Pascal’s triangle”

follows from the binomial coefficients giving the coefficients of the polynomial transfor-

mation p(x) , p(x + 1), whereby the inverse gives the coefficients of the transformation

p(x), p(x−1); it is also sometimes called the Euler transform) to obtain the closed recur-

sion

fa,k =
a∑
j=k
(−1)j+k

(
j
k

)
Fa,j =

a∑
j=k
(−1)j+k

(
j
k

) j∑
i=0

(
n− 2j + i
a− 2j + i

)
fj,i. (9.17)

In particular, the only non-zero term with j = a is (−1)a+k
(
a
k

)
fa,a. We know that

fa,a = ca =
a∑
d=0

χ(n−d,d). (9.18)

Thus, by induction it follows that, in the character expansion of fa,k, χ(n−d,d) appears only

if a ≥ d, and when a = d it appears with coefficient (−1)d+k
(
d
k

)
. Thus we have

1
n!

∑
π∈Sn

χ(n−d,d)(π)fa,k(π) =


0 if a < d,

(−1)d+k
(
d
k

)
if a = d.

(9.19)
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The first case of our claim, with a < d, now follows immediately from Proposition 9.2.8.

For the second case, with a = d, we proceed by induction on n. First, making a general

manipulation, again by Proposition 9.2.8 we have

1
n!

∑
π∈Sn

χ(n−d,d)(π)ga,b,k,`(π)

=
d∑
j=0

j∑
i=0

(
j
i

)(
d− j
k− i

)(
d− j
` − i

)(
n− 2d+ j
b − k− ` + i

)
1
n!

∑
π∈Sn

χ(n−d,d)(π)fd,j(π)

=
d∑
j=0

(−1)d+j
(
d
j

) j∑
i=0

(
j
i

)(
d− j
k− i

)(
d− j
` − i

)(
n− 2d+ j
b − k− ` + i

)

We start to treat the remaining sum using that
∑d
j=0(−1)j

(
d
j

)
f(j) gives the dth finite differ-

ence of the function f . In particular, for f a polynomial of degree smaller than d, any such

sum is zero. Furthermore,
∑d
j=0(−1)j

(
d
j

)
jd = (−1)dd!. Therefore, we may continue, always

applying the differencing ∆ transformation to functions of the variable j,

=
d∑
i=0

∑
w+x+y+z=d

(
d

w,x,y, z

)
∆wji ·∆x(d− j)k−i ·∆y(d− j)`−i ·∆z(n− 2d+ j)b−k−`+i ∣∣j=0

i!(k− i)!(` − i)!(b − k− ` + i)! (9.20)

Here, in all cases the first factor, ∆wji
∣∣
j=0, will only be nonzero when w = i.

Let us now first specialize to the base case n = 2d. In this case, the last factor, ∆z(n −

2d + j)b−k−`+i ∣∣j=0, will likewise only be nonzero when b − k − ` +w = z. In that case, we

must have x+y = k+ `− 2w +d−b. Since in all nonzero terms x ≤ k−w and y ≤ `−w,

and d ≤ b, we will only have a nonzero result if d = b,x = k −w, and y = ` −w. In this
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case, we have

1
n!

∑
π∈Sn

χ(n−d,d)(π)gd,d,k,`(π) = (−1)k+`
d∑
w=0

(
d

w,k−w,` −w,d− k− ` +w

)

= (−1)k+`
(
d
k

)(
d
`

)
, (9.21)

the final step following since the remaining sum counts the number of ways to choose a

subset of size k and a subset of size ` from [d], with w being the size of the intersection.

Thus the result holds when n = 2d.

Suppose now that n > 2d and the result holds for n − 1. Continuing from (9.20) above

and completing the computation of the differences,

1
n!

∑
π∈Sn

χ(n−d,d)(π)ga,b,k,`(π)

=
∑

w+x+y+z=d
(−1)x+y

(
d

w,x,y, z

)
1

(k−w)!(` −w)!(b − k− ` +w)!

(k− i)x(d−w − x)k−i−x(` − i)y(d−w − x −y)`−w−y(b − k− ` +w)z

(n− 2d+w + x +y)b−k−`+w−z

=
∑

w+x+y+z=d
(−1)x+y

(
d

w,x,y, z

)(
d−w − x
k−w − x

)(
d−w − x −y
` −w −y

)(
n− 2d+w + x +y
b − k− ` +w − z

)

Reindexing in terms of x′ := k−w−x,y ′ = `−w−y,z′ = b−k−`+w−z, which we note

must be non-negative and satisfy x′ +y ′ + z′ = b − d, we find

=
d∑
w=0

∑
x′+y′+z′=b−d

(−1)x+y
(

d
w,k−w − x′, ` −w −y ′, d− k− ` +w + x′ +y ′

)
(
d− k+ x′

x′

)(
d− k− ` +w + x′ +y ′

y ′

)(
n− 2d+ k+ ` −w − x′ −y ′

z′

)
. (9.22)

We emphasize here first that b appears only in the summation bounds for the inner sum,
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and second that we have rewritten to leave only one occurrence of z′, in the final factor.

We group the terms of the sum according to whether z′ = 0 or z′ > 0:

S0(b,d, k, `) :=
d∑
w=0

∑
x′+y′=b−d

(−1)x+y
(

d
w,k−w − x′, ` −w −y ′, d− k− ` +w + x′ +y ′

)
(
d− k+ x′

x′

)(
d− k− ` +w + x′ +y ′

y ′

)
, (9.23)

S1(n, b,d, k, `) :=
d∑
w=0

∑
x′+y′+z′=b−d−1

(−1)x+y
(

d
w,k−w − x′, ` −w −y ′, d− k− ` +w + x′ +y ′

)
(
d− k+ x′

x′

)(
d− k− ` +w + x′ +y ′

y ′

)
(
n− 2d+ k+ ` −w − x −y

z′ + 1

)
. (9.24)

Then, the sum we are interested in, that given in (9.22), is S(n,b,d, k, `) := S0(b,d, k, `) +

S1(n, b,d, k, `). Now, applying the identity
(
m
a

)
=
(
m−1
a

)
+
(
m−1
a−1

)
to the last factor involving

z′ in S1, we find that

S1(n, b,d, k, `) = S1(n− 1, b, d, k, `)+ S(n− 1, b − 1, d, k, `). (9.25)

Thus we have

S(n,b,d, k, `) = S0(b,d, k, `)+ S1(n, b,d, k, `)

= S0(b,d, k, `)+ S1(n− 1, b, d, k, `)+ S(n− 1, b − 1, d, k, `) (by (9.25))

= S(n− 1, b, d, k, `)+ S(n− 1, b − 1, d, k, `)
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and by the inductive hypothesis

= (−1)k+`
(
d
k

)(
d
`

)((
n− 2d− 1
b − d

)
+
(
n− 2d− 1
b − d− 1

))

= (−1)k+`
(
d
k

)(
d
`

)(
n− 2d
b − d

)
, (9.26)

completing the induction.

The following is a reformulation of this result, perhaps with a more intuitive combinato-

rial interpretation and which will be more directly useful in our calculations to come.

Corollary 9.2.10. Let 0 ≤ a,b ≤ d, A ∈
(
[n]
a

)
, B ∈

(
[n]
b

)
, and 0 ≤ k ≤ a∧ b. Then,

1
n!

∑
π∈Sn

|π(A)∩B|=k

χ(n−d,d)(π) =


0, if a∧ b < d,

(−1)k+|A∩B| (dk)
( n
d,d−|A∩B|,n−2d+|A∩B|)

if a = b = d.
(9.27)

Proof. Let us write ` := |A∩B|. Then, using that χ(n−d,d) is a class function, we may average

over conjugations,

∑
π∈Sn

|π(A)∩B|=k

χ(n−d,d)(π) = 1
n!

∑
σ∈Sn

∑
π∈Sn

|σ−1πσ(A)∩B|=k

χ(n−d,d)(σ−1πσ)

= 1
n!

∑
σ∈Sn

∑
π∈Sn

|πσ(A)∩σ(B)|=k

χ(n−d,d)(π)

= 1(
n

`,a−`,b−`,n−a−b+`
) ∑
A′∈([n]a )
B′∈([n]b )
|A′∩B′|=`

∑
π∈Sn

|π(A′)∩B′|=k

χ(n−d,d)(π)

= 1(
n

`,a−`,b−`,n−a−b+`
) ∑
π∈Sn

χ(n−d,d)(π)ga,b,k,`(π), (9.28)

and the result now follows from Lemma 9.2.9 upon simplifying.

We note also that the special case a = b = k gives the summation of the character over all
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π with a specified mapping π(A) = B.

9.2.3 The Simplex-Harmonic Representation

We now discuss how our definition of the harmonic subspace V (d)H relates to the representa-

tion theory of the symmetric group. Let us fix v1, . . . ,vn ∈ Rn−1 unit vectors pointing to the

vertices of an equilateral simplex. These vectors are related to our pseudoexpectation by

Ẽ[xx>] = Gram(v1, . . . ,vn). (9.29)

We have that Sn acts on Rn−1 by permuting the vi (since
∑n
i=1 vi = 0 this is well-defined);

this is the irreducible “standard representation” of Sn. The symmetric powers of this irrep

give actions of Sn on R[z1, . . . , zn−1]hom
d by likewise permuting the 〈vi,z〉, products of which

form an overcomplete set of monomials. This contains the invariant subspace

V (d)H :=
{
p ∈ R[z1, . . . , zn−1]hom

d : 〈vi,∂〉2p = 0 for all i ∈ [n]
}
. (9.30)

We call V (d)H the simplex-harmonic representation of Sn. The next result identifies the iso-

morphism type of this representation.

Proposition 9.2.11 (Isomorphism type). V (d)H � W (n−d,d). The map Ψ : R[x1, . . . , xn]hom
d →

R[z1, . . . , zn−1]hom
d given by defining Ψ(xS) = (V >z)S and extending by linearity is an iso-

morphism between W (n−d,d) and V (d)H when restricted to W (n−d,d).

Proof. Let us abbreviate W = W (n−d,d) and V = V (d)H . We first compute the dimensions of V

and W and show that they are equal.

246



For W , by the hook length formula,

dim(W) = n!
d! · (n− d+ 1) · · · (n− 2d+ 2) · (n− 2d)!

= n!(n− 2d+ 1)
d!(n− d+ 1)!

=
(
n
d

)
· n− 2d+ 1
n− d+ 1

=
(
n
d

)
−
(
n
d− 1

)
. (9.31)

(The same also follows by evaluating χ(n−d,d) on the identity using the formula from Propo-

sition 9.2.6.)

For V , we note that V is isomorphic to the subspace of Symd(Rn) consisting of symmetric

tensors that are zero at any position with a repeated index and have any one-dimensional

slice summing to zero. The tensors satisfying the first constraint have dimension
(
n
d

)
, and

there are
(
n
d−1

)
one-dimensional slices. We verify that these slice constraints are linearly

independent: they may be identified with the vectors aS ∈ R(
[n]
d ) for S ∈

(
[n]
d−1

)
with entries

(aS)T = 1{S ⊆ T}. These vectors satisfy

〈aS ,aS′〉 =


n− d+ 1 if S = S′,

1 if |S ∩ S′| = d− 2,

0 otherwise.

(9.32)

Therefore, their Gram matrix is equal to (n − d + 1)I( nd−1) +A, where A is the adjacency

matrix of the Johnson graph J(n,d− 1). Its most negative eigenvalue is equal to −min(d−

1, n−d+1) = −(d−1) (see, e.g., Section 1.2.2 of [BVM]), whereby the Gram matrix of the aS is

positive definite. Thus the aS are linearly independent, and dim(V) =
(
n
d

)
−
(
n
d−1

)
= dim(W).

Therefore, to show V � W it suffices to show that one of V or W contains a copy of the

other. We show that V contains a copy of W . Recall from Definition 9.2.2 that W is the
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subspace of R[x1, . . . , xn]hom
d spanned by

d∏
a=1

(xia − xja) for ia, jb ∈ [n] distinct; i1 < · · · < in−d; j1 < · · · < jd; ia < ja. (9.33)

Note that ker(Ψ) is the ideal generated by x1+· · ·+xn, and therefore is an invariant subspace

of the Sn action. Since W is also an invariant subspace, and is irreducible, if W intersected

ker(Ψ) non-trivially then W would be contained in ker(Ψ), which is evidently not true (for

instance, any of the basis elements in (9.33) do not map to zero). Thus Ψ is an isomorphism

on W , so it suffices to show that Ψ(W) ⊆ V . Indeed, all polynomials of Ψ(W) also belong to

V : writing M = Gram(v1, . . . ,vn), for any basis element and k ∈ [n],

〈vk,∂〉2
d∏
a=1

(〈via ,z〉 − 〈vja ,z〉)

=
∑

{a,b}∈([n]2 )
(Mk,ia −Mk,ja)(Mk,ib −Mk,jb)

∏
c∈[d]\{a,b}

(〈vic ,z〉 − 〈vjc ,z〉), (9.34)

and since the ia and ja are all distinct while all off-diagonal entries of M are equal, one

of the two initial factors in each term will be zero. Thus, W � Ψ(W) ⊆ V , and by counting

dimensions V � W .

Proposition 9.2.12 (Multiplicity). V (d)H has multiplicity one in R[z1, . . . , zn−1]hom
d

Proof. We show the stronger statement that the multiplicity of V (d)H in R[x1, . . . , xn]hom
d ,

which contains a copy of R[z1, . . . , zn−1]hom
d as the quotient by the ideal generated by x1 +

· · · + xn. We use that R[x1, . . . , xn]hom
d admits a decomposition into invariant subspaces

Ũτ over τ ∈ Part(d), R[x1, . . . , xn]hom
d = ⊕

τ∈Part(d) Ũτ , where Ũτ consists of polynomials

whose monomials have their set of exponents equal to the numbers appearing in τ . Each Ũτ

with τ = (τ1, . . . , τm) is isomorphic to the combinatorial representation U (n−m,f1,...,f`), where

the fi give, in descending order, the frequencies of numbers appearing among the τi. By

Young’s rule, among these representations, only Ũ (1,...,1) contains a copy of V (d)H � W (n−d,d)
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(as for this to happen we must have m = d), and it contains exactly one copy of V (d)H .

9.3 Proof of Positivity

Proposition 9.2.4 gives us a means of showing that Y (n) � 0, for which we will not need

to reason with the simplex-harmonic representation. Viewing Y (n) as operating on poly-

nomials, since the ideal generated by
∑n
i=1xi is in the kernel of Y (n), the only possible

eigenspaces with non-zero eigenvalue are W (n,0),W (n−1,1), . . . ,W (n−dmax,dmax). Thus we can

choose a non-zero element of each isotypic component, pi ∈
⊕n−2d
k=0

(∑n
i=1xi

)kW (n−i,i), and

verify that Ẽ[pi(x)2] > 0 for each i.

To identify such polynomials, we compute the isotypic projections of monomials.

Definition 9.3.1 (Isotypic projection). For each S ∈
(
[n]
d

)
, define hS ∈ R[x1, . . . , xn]hom

d by

hS(x) =
(
n
d

)
−
(
n
d−1

)
n!

∑
π∈Sn

χ(n−d,d)(π)xπ(S), (9.35)

It then follows that hS(x) ∈
⊕n−2d
k=0

(∑n
i=1xi

)kW (n−|S|,|S|), the isotypic component or direct

sum of all irrep components isomorphic to W (n−|S|,|S|).

Proposition 9.3.2. For any S ∈
(
[n]
d

)
,

Ẽ[hS(x)2] = n− 2d+ 1
n− d+ 1

d−1∏
i=0

n− 2i
n− 2i− 1

> 0. (9.36)

Proof. First, since hS(x) is the sum of the projection of xS to one of the eigenspaces of Ẽ

and an element of the kernel of Ẽ, we have

Ẽ[hS(x)2] = Ẽ[hS(x)xS]
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and from here we may compute directly,

=
(
n
d

)
−
(
n
d−1

)
n!

d∑
k=0

α2d−2k
∑
π∈Sn

|π(S)∩S|=k

χ(n−d,d)(π)

=
(
n
d

)
−
(
n
d−1

)
(
n
d

) d∑
k=0

(−1)d−k
(
d
k

)
α2d−2k (Corollary 9.2.10)

= n− 2d+ 1
n− d+ 1

d∑
k=0

(−1)k
(
d
k

)
α2k. (9.37)

It remains to analyze the sum. We view such a sum as a dth order finite difference, in this

case a forward finite difference of the sequence f(k) = α(2k) for k = 0, . . . , d. Let us write

∆af for the sequence that is the ath forward finite difference. We will show by induction

that

∆af(k) = α2k

a−1∏
i=0

n− 2i
n− 2k− 2i− 1

. (9.38)

Clearly this holds for a = 0. If the result holds for a− 1, then we have

∆af(k) = ∆a−1f(k)−∆a−1f(k+ 1)

= α2k

a−2∏
i=0

n− 2i
n− 2k− 2i− 1

−α2k+2

a−2∏
i=0

n− 2i
n− 2k− 2i− 3

= α2k

a−2∏
i=0

n− 2i
n− 2k− 2i− 1

+α2k
2k+ 1

n− 2k− 1

a−2∏
i=0

n− 2i
n− 2k− 2i− 3

= α2k

a−2∏
i=0

n− 2i
n− 2k− 2i− 1

(
1+ 2k+ 1

n− 2k− 1
· n− 2k− 1
n− 2k− 2a+ 1

)

= α2k

a−2∏
i=0

n− 2i
n− 2k− 2i− 1

· n− 2(a− 1)
n− 2k− 2(a− 1)− 1

, (9.39)

completing the induction. Evaluating at a = d then gives

d∑
k=0

(−1)k
(
d
k

)
α2k = ∆df(0) =

d−1∏
i=0

n− 2i
n− 2i− 1

, (9.40)
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completing the proof.

It is then straightforward to check that, together with some representation-theoretic

reasoning, this implies Laurent’s result.

Proof of Theorem 9.1.1. Let p(x) ∈ R[x1, . . . , xn]. By Proposition 9.2.4, there exist hd,k ∈

W (n−d,d) for d ∈ {0, . . . , dmax} and k ∈ {0, . . . , n− 2d+ 1} such that

p(x) =
dmax∑
d=0

n−2d∑
k=0

 n∑
i=1

xi

khd,k(x). (9.41)

Since Ẽ is zero on multiples of
∑n
i=1xi, its pseudomoment matrix Y (n) acts as a scalar on

each of the W (n−d,d) by Schur’s lemma, and hd,0 for different d have different degrees and

thus orthogonal vectors of coefficients, we have

Ẽ[p(x)2] = Ẽ


dmax∑
d=0

hd,0(x)

2
 = dmax∑

d=0

Ẽ[hd,0(x)2] ≥ 0 (9.42)

by Proposition 9.3.2, completing the proof.

9.4 Pseudomoment Spectrum and Laurent’s Conjecture

We now would like to recover the actual eigenvalues of Y (n). Specifically, in this section we

will show the following.

Theorem 9.4.1. Y (n) has dmax + 2 distinct eigenvalues, 0 < λn,dmax < · · · < λn,1 < λn,0. The

multiplicity of the zero eigenvalue is
(

n
≤dmax−1

)
, while the λn,d have the following multiplicities
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and recursive description:

λn,0 =
dmax∑
k=0

(
n
k

)
α2
k, with multiplicity 1,

λn,d = n
n− 1

λn−2,d−1 for 1 ≤ d ≤ (n− 1)/2 with multiplicity

(
n
d

)
−
(
n
d− 1

)
.

This includes a conjecture Laurent makes in the Appendix of [Lau03b], and also gives a

formula for the “base case” of the recursion in terms of the coefficients αk from the pseu-

doexpectation as well as the multiplicities of all eigenvalues.

It may seem that we are close to obtaining the eigenvalues: since the W (n−d,d) are the

eigenspaces of Ẽ, it suffices to just find any concrete polynomial p ∈ W (n−d,d) that it is

convenient to compute with, whereupon we will have λn,d = Ẽ[p(x)2]/‖p‖2, where the norm

of a polynomial is the norm of the vector of coefficients (not the apolar norm). However,

our computation above does not quite achieve this: crucially, hS(x) does not belong to

W (n−d,d); rather, it equals the projection of xS to all copies of this irrep in R[{±1}n], of

which there are n− 2d+ 1. Since those copies that are divisible by
∑n
i=1xi are in the kernel

of Ẽ, we have actually computed Ẽ[hS(x)2] = Ẽ[ĥS(x)2] where ĥS(x) ∈ W (n−d,d) is the

relevant component of xS . However, not having an explicit description of ĥS(x), we have no

immediate way to compute ‖ĥS‖2.

Remark 9.4.2. One possible approach to implement this direct strategy is to try to take p ∈

W (n−d,d) to be one of the basis polynomials given in Definition 9.2.2. However, computing the

pseudoexpectation of the square of such a polynomial gives an unusual combinatorial sum to

which the character-theoretic tools we have developed do not seem to apply.

Instead, we will use use the representation of Ẽ as a Gram matrix suggested by our

general computations with spectral extensions of pseudomoments in the previous chapter,

specifically Lemma 8.3.11 and Corollary 8.3.13. We first verify that Ẽ indeed admits this
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kind of description.

Lemma 9.4.3 (Block diagonalization). Ẽ[hS(x)hT (x)] = 0 if |S| ≠ |T |. If S, T ∈
(
[n]
d

)
, then

Ẽ[hS(x)hT (x)] = σ̂ 2
d ·

〈
hS(V >z), hT (V >z)

〉
◦ (9.43)

where

σ̂ 2
d = d!

(
n− 1
n

)d d−1∏
i=0

n− 2i
n− 2i− 1

> 0. (9.44)

Proof. The first claim follows since if |S| ≠ |T | then hS(x) and hT (x) belong to orthogonal

eigenspaces of Ẽ. For the second claim, recall that Ψ : R[x1, . . . , xn]hom
d → R[z1, . . . , zn−1]hom

d

as defined in Proposition 9.2.11 is an isomorphism on each eigenspace with non-zero eigen-

value of Ẽ. Moreover, by Proposition 9.2.11, each such eigenspace is isomorphic to V (d)H and

thus is irreducible. So, since the apolar inner product in R[z1, . . . , zn−1]hom
d is invariant un-

der the action of Sn (permuting the 〈vi,z〉) and Ψ(hS(x)) = hS(V >z), the result must hold

with some σ̂ 2
d ≥ 0 (which must be non-negative by the positivity of Ẽ).

It remains to compute σ̂ 2
d , which is

σ̂ 2
d =

Ẽ[hS(x)2]
‖hS(V >z)‖2◦

(9.45)

for any S ∈
(
[n]
d

)
. We computed the numerator in Proposition 9.3.2, so we need only compute

the denominator.

Define, for 0 ≤ k ≤ d, βd,k := 〈(V >z)S , (V >z)T 〉◦ for any S, T ∈
(
[n]
d

)
with |S ∩ T | = k (as

this value only depends on |S ∩ T |). With this notation, since hS(V >z) is the apolar projec-

tion of (V >z)S to V (d)H (as it is by definition the isotypic projection and by Proposition 9.2.12
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V (d)H has multiplicity one in R[z1, . . . , zn−1]hom
d ),

‖hS(V >z)‖2
◦ =

〈
hS(V >z), (V >z)S

〉
◦

=
(
n
d

)
−
(
n
d−1

)
n!

d∑
k=0

βd,k
∑
π∈Sn

|π(S)∩S|=k

χ(n−d,d)(π)

= (−1)d
(

d
|S ∩ T |

)(n
d

)
−
(
n
d−1

)
(
n
d

) d∑
k=0

(−1)k
(
d
k

)
βd,k, (Corollary 9.2.10)

and we are left with a similar sum as in Proposition 9.3.2, but now a dth forward difference

of the sequence f(k) = βd,k. We note that, choosing a concrete S and T in the definition, we

may write

βd,k =
〈 d∏
i=1

〈vi, z〉,
k∏
i=1

〈vi, z〉
2d−k∏
i=d+1

〈vi, z〉
〉
◦
. (9.46)

Using this representation, it is straightforward to show, again by induction, that

∆af(k) =
〈 d∏
i=1

〈vi, z〉,
k∏
i=1

〈vi, z〉
2d−k∏

i=d+a+1

〈vi, z〉
a∏
j=1

〈vd+j − vk+j, z〉
〉
◦
. (9.47)

Therefore, we have

d∑
k=0

(−1)k
(
d
k

)
βd,k = ∆af(0)]

=
〈 d∏
i=1

〈vi, z〉,
d∏
i=1

〈vi − vd+i, z〉
〉
◦

where the only contribution applying the product rule to the inner product is in the matching

of the two products in their given order, whereby

= 1
d!

(
−1− 1

n− 1

)d
= (−1)d

d!

(
n

n− 1

)d
, (9.48)
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and substituting completes the proof.

The following then follows immediately since the hS(x) are a spanning set of the iso-

typic components of R[{±1}n]; this is analogous to Corollary 8.3.13 for the general spectral

extension.

Corollary 9.4.4 (Gram matrix expression). Let hS,T ∈ V (|S|−2|T |)
H be such that

(V >z)S =
b|S|/2c∑
k=0

∑
T∈Mk([n])

((V >z)T )2hS,T (V >z), (9.49)

Define

hS,k(x) :=
∑

T∈M(|S|−k)/2([n])
hS,T (x) ∈ R[x1, . . . , xn]hom

k (9.50)

if k ≤ |S| and k and |S| are of equal parity, and hS,k = 0 otherwise. Then,

Ẽ[xSxT ] =
|S|∧|T |∑
d=0

σ̂ 2
d · 〈hS,d(V >z), hT ,d(V >z)〉◦. (9.51)

Proof of Theorem 9.4.1. LetA(d) ∈ Rdim(V (d)H )×( [n]
≤dmax) have an isometric embedding of the hS,d

as its columns. Then, the expression in (9.51) says that

Y (n) =
dmax∑
d=0

σ̂ 2
dA

(d)>A(d). (9.52)

Define the matrix

A :=


σ̂0A(0)

...

σ̂dmaxA
(dmax)

 . (9.53)

Then, Y (n) =A>A, so the non-zero eigenvalues of Y (n) are equal to those of AA>.

By Schur’s lemma, whenever d′ ≥ d and d and d′ have the same parity, then we have that

{hS,d}S∈([n]d′ ) ⊂ V
(d)
H forms a tight frame in V (d)H , since the hS,d form a union of orbits under
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the action of Sn and V (d)H is irreducible. Let fd′,d denote the frame constant, so that, for all

p ∈ V (d)H , we have ∑
S∈([n]d′ )

〈hS,d, p〉◦h = fd′,dp. (9.54)

Let fd′,d = 0 if d > d′ or d′ and d have different parity. We then have

A(d)A(d)
> =

dmax∑
d′=d

fd′,d

Idim(V (d)H ). (9.55)

In particular, we may exhibit dim(V (d)H ) many eigenvectors of AA> with this positive eigen-

value supported on the dth block (in the same block decomposition as that of A). So,

AA> � 0 strictly, and its distinct eigenvalues are λn,0, . . . , λn,dmax > 0 given by

λn,d = σ̂ 2
d

dmax∑
d′=d

fd′,d with multiplicity dim(V (d)H ) =
(
n
d

)
−
(
n
d− 1

)
. (9.56)

Thus these are also precisely the positive eigenvalues of Y (n), and the multiplicity of the

zero eigenvalue of Y (n) is
(

n
≤dmax

)
−∑dmax

d=0 (
(
n
d

)
−
(
n
d−1

)
) =

(
n

≤dmax−1

)
, as claimed.

We now turn to the explicit computation of the eigenvalues. Let us write

η2
d′,d := ‖hS,d‖2

◦ for any S ∈
(
[n]
d′

)
, (9.57)

noting that these numbers are all equal by symmetry. Then, the frame constants from (9.54)

are

fd′,d =
(
n
d′

)
dim(V (d)H )

η2
d′,d =

(
n
d′

)
(
n
d

)
−
(
n
d−1

)η2
d′,d. (9.58)

It remains to compute the ηd′,d, which will yield the fd′,d and thus the eigenvalues λn,d.
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We first note that, by our earlier computation in Lemma 9.4.3, for any given S ∈
(
[n]
d

)
,

η2
d,d = ‖hS‖2

◦ =
(
n
d

)
−
(
n
d−1

)
(
n
d

) 1
d!

(
n

n− 1

)d
. (9.59)

Therefore,

fd,d =
(
n
d

)
(
n
d

)
−
(
n
d−1

)η2
d,d =

1
d!

(
n

n− 1

)d
. (9.60)

To compute the ηd′,d with d′ > d, we use that Ẽ itself can be used to compute the

following inner products, by Corollary 9.4.4:

Ẽ[xShT (x)] = σ̂ 2
d〈hS,d(x), hT (x)〉◦. (9.61)

Using that the {hT (x)}T∈([n]d ) form a tight frame with frame constant fd,d, we have

η2
d′,d = ‖hS,d‖2

◦

= 1
fd,d

∑
T∈([n]d )

〈hS,d(x), hT (x)〉2◦

= 1

σ̂ 4
dfd,d

∑
T∈([n]d )

(Ẽ[xShT (x)])2 (9.62)

We next expand these pseudoexpectations directly:

Ẽ[xShT (x)] =
(
n
d

)
−
(
n
d−1

)
n!

∑
π∈Sn

χ(n−d,d)(π)xS+π(T)

=
(
n
d

)
−
(
n
d−1

)
n!

∑
π∈Sn

χ(n−d,d)(π)αd+d′−2|S∩π(T)|

=
(
n
d

)
−
(
n
d−1

)
n!

d∑
k=0

αd+d′−2k
∑
π∈Sn

|S∩π(T)|=k

χ(n−d,d)(π)
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Suppose now that |S ∩ T | = `. Then, by Corollary 9.2.10 we have

=
(
n
d

)
−
(
n
d−1

)
(

n
`,d−`,d′−`,n−d−d′+`

)(n− 2d
d′ − d

)(
d
`

)
(−1)`

d∑
k=0

(
d
k

)
(−1)kαd+d′−2k

The remaining sum is one we evaluated in the course of our proof of Proposition 9.3.2 using

finite differences. Substituting that result here then gives

=
(
n
d

)
−
(
n
d−1

)
(

n
`,d−`,d′−`,n−d−d′+`

)(n− 2d
d′ − d

)(
d
`

) d−1∏
i=0

n− 2i
n− d′ + d− 2i− 1

·αd′−d. (9.63)

Substituting this into the summation that occurs in our expression for ηd,d′ , we then find

∑
T∈([n]d )

(Ẽ[xShT (x)])2

=
d∑
`=0

(
d′

`

)(
n− d′
d− `

)
(
n
d

)
−
(
n
d−1

)
(

n
`,d−`,d′−`,n−d−d′+`

)(n− 2d
d′ − d

)(
d
`

) d−1∏
i=0

n− 2i
n− d′ + d− 2i− 1

·αd′−d
2

= α2
d′−d

((n
d

)
−
(
n
d− 1

))(
n− 2d
d′ − d

) d−1∏
i=0

n− 2i
n− d′ + d− 2i− 1

2

d∑
`=0

(
d′

`

)(
n− d′
d− `

) (
d
`

)2

(
n

`,d−`,d′−`,n−d−d′+`
)2

= α2
d′−d

((n
d

)
−
(
n
d− 1

))(
n− 2d
d′ − d

) d−1∏
i=0

n− 2i
n− d′ + d− 2i− 1

2

d!2d′!(n− d′)!(n− d− d′)!(d′ − d)!
n!2

d∑
`=0

(
d′ − `
d′ − d

)(
n− d− d′ + `
n− d− d′

)

and the remaining sum evaluates by the Chu-Vandermonde identity to

= α2
d′−d

((n
d

)
−
(
n
d− 1

))(
n− 2d
d′ − d

) d−1∏
i=0

n− 2i
n− d′ + d− 2i− 1

2

d!2d′!(n− d′)!(n− d− d′)!(d′ − d)!
n!2

(
n− d+ 1

d

)
. (9.64)
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Having reached this expression, we may substitute for η2
d′,d and find many cancellations,

obtaining

η2
d′,d =

1

σ̂ 4
dfd,d

∑
T∈([n]d )

(Ẽ[xShT (x)])2

= α2
d′−d

(
n

n− 1

)dd−1∏
i=0

n− 2i− 1
n− 2i− 1− d′ + d

2((
n
d

)
−
(
n
d− 1

))2

d!d′!(n− d′)!(n− 2d)!2

n!2(n− d− d′)!(d′ − d)!

(
n− d+ 1

d

)
. (9.65)

Then we may again substitute for λn,d and find more cancellations, obtaining

λn,d = σ̂ 2
d

dmax∑
d′=d

fd′,d

= σ̂ 2
d

dmax∑
d′=d

(
n
d′

)
(
n
d

)
−
(
n
d−1

)η2
d′,d

= n!
dmax∑
d′=d

α2
d′−d

(n− d− d′)!(d′ − d)!
d−1∏
i=0

1
(n− 2i− 1− d′ + d)2 . (9.66)

The formula for λn,0 then follows immediately. To obtain the recursion, we compute

λn+2,d+1 = (n+ 2)!
(n+1)/2∑
d′=d+1

α2
n+2,d′−d−1

(n− d− d′ + 1)!(d′ − d− 1)!

d∏
i=0

1
(n− 2i+ 2− d′ + d)2

= (n+ 2)!
(n−1)/2∑
d′=d

α2
n+2,d′−d

(n− d− d′)!(d′ − d)!
d∏
i=0

1
(n− 2i+ 1− d′ + d)2

= (n+ 2)!
(n−1)/2∑
d′=d

1
(n+ 1− d′ + d)2

α2
n+2,d′−d

(n− d− d′)!(d′ − d)!
d−1∏
i=0

1
(n− 2i− 1− d′ + d)2
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and noting that αn+2,2k = n−2k+1
n+1 αn,2k, we find

= (n+ 2)!
(n+ 1)2

(n−1)/2∑
d′=d

α2
n,d′−d

(n− d− d′)!(d′ − d)!
d−1∏
i=0

1
(n− 2i− 1− d′ + d)2

= n+ 2
n+ 1

λn,d, (9.67)

completing the proof.
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10 | Sum-of-Forests Pseudomoments and

Lifting Theorems

Having established with a deterministic example that our spectral pseudomoment extension

from Chapter 8 gives correct results at least sometimes, we now continue with our earlier

plan of extending generic low-rank projection matrices.

Summary and References This chapter is based on part of the reference [Kun20b]. The

following is a summary of our main results in this chapter.

1. (Theorem 10.2.3) An extension to degree ω(1) (more precisely, an extension to de-

gree Ω(logn/ log logn) for cases we will be interested in) that we expect to succeed for

incoherent degree 2 pseudomoments of rank (1− o(1))n.

2. (Theorem 10.11.2) An extension to degree 6 that we expect to succeed for incoherent

degree 2 pseudomoments of rank δn for δ ∈ (0,1).

We also emphasize the following important technical details of our proofs that may be

interesting contribution beyond the lifting theorems themselves.

3. (Lemma 10.3.11) The derivation of the Möbius function of a set of forests under a

“compositional” ordering, which appears as the coefficients of corresponding terms of

pseudomoments.
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4. (Remark 10.8.6) A combinatorial identity that, per our arguments, appears to be re-

sponsible for the possibility of pseudomoments satisfying both the positivity and en-

trywise constraints. The identity relates the Möbius function of a partially ordered set

of forests to a sum over matrices associated to a pair of partitions similar to those

appearing in the Robinson-Schensted-Knuth (RSK) correspondence of representation

theory and the combinatorics of Young tableaux.

Prior Work The idea of a “lifting” theorem that automatically applies to many low-degree

pseudomoments is a relatively new one; our description of our results in this way (here and

in [Kun20b]) is inspired by [MRX20], who appear to be the first to have given an explicit such

statement. Our pseudomoment construction is inspired by on an old construction of har-

monic polynomials dating back to Maxwell [Max73] and Sylvester [Syl76] and rediscovered

many times since as well as a generalization due to Clerc [Cle00]; see Section 10.1.1.

10.1 Concrete Pseudomoment Extension

Recall that our construction of spectral extensions in Chapter 8 left as an unspecified input

the description of how a polynomial of the form (V >z)S =∏i∈S〈vi,z〉 decomposes into an

ideal part of a linear combination of multiples of 〈vi,z〉2, belonging to the subspace VI , and

a harmonic part that is a zero of any linear combination of the differential operators 〈vi,∂〉2,

belonging to the subspace VH . In this section, we develop a heuristic method to compute

these projections. Since (V >z)S is the sum of the two projections, it suffices to compute

either one. We will work with the projection to the multiharmonic subspace VH . We warn

in advance that this portion of the derivation is not mathematically rigorous; our goal is

only to obtain a plausible prediction for the projections in question, which we will then

analyze more precisely. Our construction will be based on a technique for computing these
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projections exactly for harmonic polynomials and certain multiharmonic generalizations,

which we review below.

10.1.1 Generalized Maxwell-Sylvester Representations

We describe a line of work describing how the projection of a polynomial to VH may some-

times be computed, rather surprisingly, by differentiating a Green’s function associated to

the defining PDE or system of PDEs. The following is the clearest instance of this idea, which

concerns the case of harmonic polynomials.

Proposition 10.1.1 (Theorem 1.7 of [AR95]; Theorem 5.18 of [ABW13]). Suppose n ≥ 3.1 Let

VH ⊂ R[y1, . . . , yn]hom
d be the subspace of harmonic polynomials (q(y) with ∆q = 0), and let

PH be the apolar projection to VH . Define

ϕ(y) := ‖y‖2−n
2 (the Green’s function of ∆), and (10.1)

K[u](y) :=ϕ(y)u(y/‖y‖2
2) (the Kelvin transform), (10.2)

the latter defined for u : Rn \ {0} → R a smooth function. Let p ∈ R[y1, . . . , yn]hom
d . Then,

PH [q] = 1∏d−1
i=0 (2−n− 2i)

K
[
q(∂)ϕ

]
. (10.3)

Roughly speaking, the Kelvin transform is a generalization to higher dimensions of inversion

across a circle, so this result says that apolar projections to harmonic polynomials may be

computed by inverting corresponding derivatives of the Green’s function of ∆. In other

words again, the Green’s function is a kind of generating function of the apolar projections

of the monomials.

This result has a long history. At least for n = 3, the idea and its application to

1A variant of this result also holds for n = 2; see Section 4 of [AR95].
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the expansion of Example 8.3.10 were already present in classical physical reasoning of

Maxwell [Max73]. Soon after, Sylvester [Syl76] gave a mathematical treatment, mention-

ing that an extension to other n is straightforward. See Section VII.5.5 of [CH89] on “The

Maxwell-Sylvester representation of spherical harmonics” for a modern exposition. These

ideas were rediscovered by [AR95]; there and in the later textbook treatment [ABW13] there

is greater emphasis on PH being a projection, though the fact that the apolar inner product

makes it an orthogonal projection goes unmentioned. Further historical discussion and

a presentation with all of the ideas relevant to us are given in an unpublished note of

Gichev [Gic]. A note of Arnol’d [Arn96] and Appendix A of his lecture notes [Arn13] also

discuss topological interpretations of these results and give historical commentary.

When we seek to apply these ideas in our setting, we will want to project to multihar-

monic polynomials, which satisfy pi(∂)q = 0 for several polynomials p1, . . . , pm. In our

case the polynomials will be quadratic, but a generalization to arbitrary polynomials is also

sensible. This question has been studied much less. The main work we are aware of in this

direction is due to Clerc [Cle00] (whose Green’s function construction was suggested earlier

in Herz’s thesis [Her55]; see Lemma 1.6 of the latter), where the pi are quadratic forms with

matrices spanning a Jordan subalgebra of Rr×rsym . The following is one, essentially trivial,

instance of those results.

Proposition 10.1.2. Let v1, . . . ,vr be an orthonormal basis ofRr . Define an associated Green’s

function and Kelvin transform

ϕ(z) :=
r∏
i=1

〈vi,z〉, (10.4)

K[f](z) :=ϕ(z)f
 r∑
i=1

〈vi,z〉−1vi

 . (10.5)

Then, for any p ∈ R[x1, . . . ,xr ] \ {0}, the apolar projection of p to the harmonic subspace is
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K[p(∂)ϕ].

In this case, it is easy to give a hands-on proof: one may write p in the monomial basis

〈vi,z〉, and in this basis the desired projection is just the multilinear part of p. On the other

hand, we have p(∂)ϕ = q/ϕ, where q is the multilinear part of p, and the result follows.

Though this is a simple derivation, we will see that extending it to overcomplete families of

vectors vi in fact forms one of the key heuristic steps in our derivation.

10.1.2 Closing the Prediction

We now use these ideas to heuristically project to our VH , and thus find a closed-form

prediction of Ẽ. The difference between our setting and the above is that n > r , and the vi

form an overcomplete set. In particular, in the Kelvin transform, it is not guaranteed that,

given some z, there exists a z′ such that V >z′ is the coordinatewise reciprocal of V >z, so

a genuine “inversion” like in the case of an orthonormal basis may be impossible. We also

remark that it is not possible to apply the results of [Cle00] directly, since the viv
>
i typically

do not span a Jordan subalgebra: 1
2(viv

>
i vjv

>
j + vjv>j viv>i ) = 1

2〈vi,vj〉(viv>j + vjv>i ) is not

always a linear combination of the vkv
>
k , since in fact the 1

2(viv
>
j + vjv>i ) span all of Rr×rsym

when the vi are overcomplete. There are plenty of non-trivial Jordan subalgebras of Rr×rsym ,

as discussed e.g. in [BES20]; they are just not generated in this way.

Nonetheless, let us continue with the first part of the calculation by analogy with Propo-

sition 10.1.2. Define

ϕ(z) :=
n∏
i=1

〈vi,z〉. (10.6)

Then, one may compute inductively by the product rule that

(V >∂)Sϕ(z) =
 ∑
σ∈Part(S)

∏
A∈σ
(−1)|A|−1(|A| − 1)!


n∑
a=1

∏
j∈A
Maj · 〈va,z〉−|A|


ϕ(z). (10.7)
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(That various summations over partitions arise in such calculations is well-known; see, e.g.,

[Har06] for a detailed discussion.) We now take a leap of faith: despite the preceding caveats,

let us suppose we could make a fictitious mapping F̃ : Rr → Rr that would invert the

values of each 〈vi,z〉, i.e., 〈vi, F̃(z)〉 = 〈vi,z〉−1 for each i ∈ [n]. Then, we would define a

Kelvin transform (also fictitious) by K̃[f ](z) = f(F̃(z)) ·ϕ(z). Using this, and noting that

ϕ(F̃(z)) =ϕ(z)−1, we predict

PH
[
(V >z)S

]
= K̃

[
(V >∂)Sϕ

]
(z)

=
∑

σ∈Part(S)

∏
A∈σ
(−1)|A|−1(|A| − 1)!


n∑
a=1

∏
j∈A
Maj · 〈va,z〉|A|

 . (10.8)

We make one adjustment to this prediction: when |A| = 1 with A = {i}, then the inner

summation is
∑n
a=1Mai〈va,z〉 = (MV >z)i = (V >V V >z)i ≈ δ−1〈vi,z〉. However, the

factor of δ−1 here appears to be superfluous; one way to confirm this is to compare this

prediction for |S| = 2 with the direct calculations of PH for d = 2 in Chapter 7 for the case

of ETFs. Thus we omit this factor in our final prediction.

We are left with the following prediction for the harmonic projection. First, it will be

useful to set notation for the polynomials occuring inside the summation.

Definition 10.1.3. For S ∈M([n]) with S ≠∅, m ∈ N, and x ∈ Rn, define

qS,m(x) :=


xmi if |S| = 1 with S = {i},∑n
a=1

∏
j∈T Majxma otherwise,

(10.9)

qS(x) := qS,|S|(x). (10.10)

We then predict

PH
[
(V >z)S

]
≈

∑
σ∈Part(S)

∏
A∈σ
(−1)|A|−1(|A| − 1)!qA(V >z). (10.11)
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By the orthogonality of the ideal and harmonic subspaces, we also immediately obtain a

prediction for the orthogonal projection to VI :

PI
[
(V >z)S

]
= (V >z)S−PH

[
(V >z)S

]
≈ −

∑
σ∈Part(S)
|σ |<|S|

∏
A∈σ
(−1)|A|−1(|A|−1)!qA(V >z). (10.12)

We therefore obtain the following corresponding predictions for the polynomials hS(x)

and rS(x) appearing in Lemma 8.3.11. We redefine these here for the duration of this chap-

ter, though we emphasize that these do not give the actual projections PH or PI but rather

are only heuristic approximations.

Definition 10.1.4 (hS and rS polynomials). For S ⊆ [n] and x ∈ Rn, define

hS(x) :=
∑

σ∈Part(S)

∏
A∈σ
(−1)|A|−1(|A| − 1)!qA(x), (10.13)

rS(x) := −
∑

σ∈Part(S)
|σ |<|S|

∏
A∈σ
(−1)|A|−1(|A| − 1)!qA(x). (10.14)

The “lowered” polynomials r ↓S (x) may also be defined by simply reducing the powers of

xi appearing in qA(x). Here again, however, we make a slight adjustment: when |A| = 2

with A = {i, j}, we would compute qA,0(x) =
∑n
a=1MaiMaj = (M 2)ij ≈ δ−1Mij . This factor

of δ−1 again appears to be superfluous, with the same justification as before. Removing it,

we make the following definition.

Definition 10.1.5. For S ∈M([n]) with S ≠∅ and |S| even, define

q↓S(x) = q↓S(x;M) :=


qS,1(x) if |S| is odd,

Mij if |S| = 2 with S = {i, j},

qS,0(x) if |S| ≥ 4 is even.

(10.15)

With this adjustment, we obtain the following values of r ↓S appearing in Lemma 8.3.11 and
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h↓S appearing in Remark 8.3.12.

Definition 10.1.6 (h↓S and r ↓S polynomials). For S ⊆ [n] and x ∈ Rn, define

h↓S(x) :=
∑

σ∈Part(S)

∏
A∈σ
(−1)|A|−1(|A| − 1)!q↓A(x), (10.16)

r ↓S (x) := −
∑

σ∈Part(S)
|σ |<|S|

∏
A∈σ
(−1)|A|−1(|A| − 1)!q↓A(x). (10.17)

Substituting the approximations (10.13) and (10.17) into the pseudoexpectation expres-

sion we obtained in Lemma 8.3.11, we are now equipped with a fully explicit heuristic recur-

sion for Ẽ, up to the choice of the constants σ 2
d . Let us demonstrate how, with some further

heuristic steps, this recovers our Definition 10.1.13 for d = 1 and d = 2. For d = 1 we expect

a sanity check recovering that Ẽ[xixj] = Mij , while for d = 2 we expect to recover the for-

mula we obtained for ETFs in Chapter 7 and then rederived with the Gaussian conditioning

interpretation in Section 8.2.

Example 10.1.7 (d = 1). If |S| = 1 with S = {i}, then there is no partition σ of S with

|σ | < |S|, so h{i}(x) = xi and r ↓{i}(x) = 0. Thus, if S = {i} and T = {j}, we are left with

simply

Ẽ(xi, xj) = σ 2
1δ ·

〈
〈vi,z〉, 〈vj,z〉

�
◦
= σ 2

1δ · 〈vi,vj〉 = σ 2
1δ ·Mij (10.18)

which upon taking σ 2
1 = δ−1 gives Ẽ(xi, xj) = Mij , as expected.

Example 10.1.8 (d = 2). If S = {i, j} then the only partition σ of S with |σ | < |S| is the

partition σ = {{i, j}}. Therefore,

h{i,j}(x) = xixj − (2− 1)! · q{i,j}(x)

= xixj −
n∑
a=1

MaiMajx2
a, (10.19)

r ↓{i,j}(x) = (2− 1)! · Z{i,j} = Mij. (10.20)

268



If, furthermore, T = {k, `}, then we compute

〈hS(V >z), hT (V >z)〉◦

=
〈
〈vi,z〉〈vj,z〉 −

n∑
a=1

MaiMaj〈va,z〉2, 〈vk,z〉〈v`,z〉 −
n∑
a=1

MakMa`〈va,z〉2
〉
◦

= 1
2
MikMj` + 1

2
Mi`Mjk − 2

n∑
a=1

MaiMajMakMa` +
n∑
a=1

n∑
b=1

MaiMajMbkMb`M2
ab

and if we make the approximation that the only important contributions from the final sum

are when a = b, then we obtain

≈ 1
2
MikMj` + 1

2
Mi`Mjk −

n∑
a=1

MaiMajMakMa`. (10.21)

Substituting the above into Lemma 8.3.11, we compute

Ẽ(xixj, xkx`)

= MijMk` + σ 2
2δ2 ·

〈
〈vi,z〉〈vj,z〉 −

n∑
a=1

MaiMajx2
a, 〈vk,z〉〈v`,z〉 −

n∑
a=1

MakMa`x2
a

〉
◦

= MijMk` + σ 2
2δ2

1
2
MikMj` + 1

2
Mi`Mjk −

n∑
a=1

MaiMajMakMa`



where we see that the only value of σ 2
2 that will both make Ẽ factor through multiplication

and achieve the normalization conditions Ẽ(xixj, xixj) ≈ 1 is σ 2
2 = 2δ−2, which gives

= MijMk` +MikMj` +Mi`Mjk − 2
n∑
a=1

MaiMajMakMa`, (10.22)

the formula discussed in Section 8.2.

The computation above is essentially the same as that in Section 8.2, only rewritten in the

language of degree 2 homogeneous polynomials rather than symmetric matrices.
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One may continue these (increasingly tedious) calculations for larger d to attempt to

find a pattern in the resulting polynomials of M . This is how we arrive at the values given

below, and we will sketch the basic idea of how to close the recursion. The more precise

version of that calculation is rather more complicated and will be implicit in our proofs

of the first lifting theorem in Sections 10.7 and 10.8. We mention for now that, in these

heuristic calculations, it is important to be careful with variants of the step above where we

restricted the double summation to indices a = b (indeed, that step in the above derivation

is not always valid; as we will detail in Section 10.10, this is actually the crux of the difficulty

in applying our method to low-rank rather than high-rank M ). This type of operation is

valid only when the difference between the matrices containing the given summations as

their entries has negligible operator norm—a subtle condition. We gloss this point for now,

but give much attention to these considerations in the technical proof details below and in

Section 10.13.

10.1.3 Sum-of-Forests Pseudomoments

The precise definition of our construction is as follows. Generalizing the degree 4 case, the

pseudoexpectation is formed as a linear combination of a particular type of polynomial in

the degree 2 pseudomoments, which we describe below.

Definition 10.1.9 (Contractive graphical scalar). Suppose G = (V , E) is a graph with two

types of vertices, which we denote • and � visually and whose subsets we denote V = V •tV�.

Suppose also that V • is equipped with a labelling κ : V • → [|V •|]. For s ∈ [n]|V•| and

a ∈ [n]V� , let fs,a : V → [n] have fs,a(v) = sκ(v) for v ∈ V • and fs,a(v) = av for v ∈ V�.

Then, for M ∈ Rn×nsym , we define

ZG(M ;s) :=
∑

a∈[n]V�

∏
{v,w}∈E

Mfs,a(v)fs,a(w). (10.23)
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We call this quantity a contractive graphical scalar (CGS) whose diagram is the graph G. When

S is a set or multiset of elements of [n] with |S| = |V •|, we define ZG(M ;S) := ZG(M ;s)

where s is the tuple of the elements of S in ascending order.

As an intuitive summary, the vertices of the underlying diagram G correspond to indices

in [n], and edges specify multiplicative factors given by entries of M . The • vertices are

“pinned” to the indices specified by s, while the � vertices are “contracted” over all possible

index assignments. CGSs are also a special case of existing formalisms, especially popular

in the physics literature, of trace diagrams and tensor networks [BB17].

Remark 10.1.10. Later, in Section 10.4, we will also study contractive graphical matrices

(CGMs), set- or tuple-indexed matrices whose entries are CGSs with the set S varying accord-

ing to the indices. CGMs are similar to graphical matrices as used in other work on SOS

relaxations [AMP16, BHK+19, MRX20]. Aside from major but ultimately superficial notational

differences, the main substantive difference is that graphical matrices require all indices la-

belling the vertices in the summation to be different from one another, while CGMs and CGSs

do not. This restriction is natural in the combinatorial setting—if M is an adjacency matrix

then the entries of graphical matrices count occurrences of subgraphs—but perhaps artifi-

cial more generally. While the above works give results on the spectra of graphical matrices,

and tensors formed with tensor networks have been studied at length elsewhere, the spectra

of CGM-like matrix “flattenings” of tensor networks remain poorly understood.2 We develop

some further tools for working with such objects in Section 10.13.

Next, we specify the fairly simple class of diagrams whose CGSs will actually appear in

our construction.

Definition 10.1.11 (Good forest). We call a forest good if it has the following properties:

1. no vertex is isolated, and

2One notable exception is the calculations with the trace method in the recent work [MW19].
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2. the degree of every internal (non-leaf) vertex is even and at least 4.

We count the empty forest as a good forest. Denote by F(m) the set of good forests on m

leaves, equipped with a labelling κ of the leaves by the set [m]. We consider two labelled

forests equivalent if they are isomorphic as partially labelled graphs; thus, the same underly-

ing forest may appear in F(m) with some but not all of them! ways that it could be labelled.

For F ∈ F(m), we interpret F as a diagram by calling V • the leaves of F and calling V� the

internal vertices of F . Finally, we denote by T (m) the subset of F ∈ F(m) that are connected

(and therefore trees).

We note that, form odd, the constraints imply that F(m) is empty. We give some examples

of these forests and the associated CGSs in Figure 10.1.

Finally, we define the coefficients that are attached to each forest diagram’s CGS in our

construction.

Definition 10.1.12 (Möbius function of good forests). For F = (V • t V�, E) ∈ F(m), define

µ(F) :=
∏
v∈V�

(− (deg(v)− 2)!
) = (−1)|V

�| ∏
v∈V�

(deg(v)− 2)!. (10.24)

For F the empty forest, we set µ(F) = 1 by convention.

These constants have an important interpretation in terms of the combinatorics of F(m):

as we will show in Section 10.3, when F(m) is endowed with a natural partial ordering,

µ(F) is (up to sign) the Möbius function of the “interval” of forests lying below F in this

ordering. In general, Möbius functions encode the combinatorics of inclusion-exclusion cal-

culations under a partial ordering [Rot64]. In our situation, µ(F) ensures that, even if we

allow repeated indices in the monomial index S in the definition below, a suitable cancel-

lation occurs such that the pseudoexpectation of xS still approximately satisfies the ideal

annihilation constraint in Definition 6.1.2.
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MijMk`Mmp −2Mij
n∑
a=1

MakMa`MamMap 4
n∑

a,b=1

MaiMajMakMabMb`MbmMbp

Figure 10.1: Forests, polynomials, and coefficients. We show three examples of good forests F ∈
F(6) with labelled leaves, together with the corresponding CGS terms µ(F)·ZF(M ; (i, j, k, `,m,p))
appearing in the pseudoexpectation of Definition 10.1.13.

With these ingredients defined, we are prepared to define our pseudoexpectation.

Definition 10.1.13 (Sum-of-forests pseudoexpectation). Suppose M ∈ Rn×nsym . We define ẼM :

R[x1, . . . , xn] → R to be a linear operator with ẼM[x2
i p(x)] = ẼM[p(x)] for all i ∈ [n] and

p ∈ R[x1, . . . , xn], and values on multilinear monomials given by

ẼM

∏
i∈S
xi

 :=
∑

F∈F(|S|)
µ(F) · ZF(M ;S) for all S ⊆ [n]. (10.25)

Remark 10.1.14 (Pseudocumulant generating function). One interesting intuition for this

construction is in terms of the formal cumulant generating function associated to ẼM . If

we approximate by collapsing all forests to “star trees” on their connected components (i.e.,

by contracting all edges between � vertices), then, by the calculations we present later in

Section 10.3, we find

log ẼM exp(〈λ,x〉) ≈ 1
2
λ>Mλ+

n∑
i=1

(
log cosh((Mλ)i)− 1

2
(Mλ)2i

)
, (10.26)

viewing the left-hand side as a formal power series. Since log cosh(λ) is the cumulant gen-

erating function of x ∼ Unif({±1}), we see that ẼM encodes some compromise among three

desiderata: x lying in the row space of M , x having approximately independent ±1-valued

coordinates, and x having covariance matrix M .
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Let us now discuss how one arrives at this definition from continuing in the vein of

Examples 10.1.7 and 10.1.8 from the previous section. From those examples, it is plausible

that the degree d pseudomoments might in general be given by linear combinations of CGSs

whose diagrams are forests. We may make the ansatz that this is the case, and attempt to

derive a recursion describing the coefficients of these forests.

Reasoning diagramatically, increasing the degree generates new diagrams whose CGSs

occur in the pseudomoments in two ways, corresponding to the two terms in Lemma 8.3.11,

whose recursion we recall here:

Ẽ(xS ,xT ) = Ẽ(r ↓S (x), r
↓
T (x))︸ ︷︷ ︸

“ideal” term

+σ 2
dδ

d · 〈hS(V >z), hT (V >z)〉◦︸ ︷︷ ︸
“harmonic” term

. (10.27)

First, it turns out that all CGSs that arise from the inner product 〈hS(V >z), hT (V >z)〉◦ in

the harmonic term may be fully “collapsed” to a CGS with only one summation (or a product

of summations over subsets of indices), as we have done above. These contribute diagrams

that are forests of stars: each connected component is either two • vertices connected to

one another, or a single � vertex connected to several leaves. Second, in computing the ideal

term Ẽ(r ↓S (x), r
↓
T (x)), we join the diagrams of odd partition parts to the leaves of existing

diagrams at lower degree, a process we illustrate later in Figure 10.3. Thus our ansatz is

closed, in that the recursion—assuming the collapsing step detailed above is sound—will

only yield forest diagrams at higher degree, since any forest is either a forest of only stars,

or stars on some subsets of leaves with some subsets attached to a smaller forest.

Thus we indeed expect the pseudomoments to be a linear combination of CGSs whose

diagrams are forests. Moreover, more careful parity considerations show that we expect only

good forests (Definition 10.1.11) to appear. Taking this for granted, if the pseudomoments

are to be symmetric under permutations of the indices, then the coefficients µ(F) should

depend only on the unlabelled isomorphism type of the graph F , not on the leaf labels
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κ. Making this assumption, each successive µ(F) may be expressed in a cumbersome but

explicit combinatorial recursion, eventually letting us predict the formula for µ(F). This

computation will be implicitly carried out in Section 10.7, where we prove that the h↓S(x)

give a block diagonalization of our pseudomoments.

We emphasize the pleasant interplay of diagrammatic and linear-algebraic ideas here.

As we mentioned after Lemma 8.3.11, the decomposition of the pseudomoments into the

ideal and harmonic parts expresses the spectral structure of the pseudomoment matrices,

which involves a sequence of alternating “lift lower-degree pseudomoment matrix” and “add

orthogonal harmonic part” steps. These correspond precisely to the sequence of alternating

“compose partitions with old forests” and “add new star forests” steps generating good

forests recursively.

Remark 10.1.15 (Setting σ 2
d ). We have glossed above the remaining detail of choosing the

constants σ 2
d to make Ẽ factor through multiplication. The further calculations discussed

above confirm the pattern in the examples d = 1,2 that the correct choice of this remaining

scaling factor is σ 2
d := d!δ−d. With this choice, we note that the harmonic term may be written

more compactly as

σ 2
dδ

d · 〈hS(V >z), hT (V >z)
〉
◦ =

〈
hS(V >z), hT (V >z)

〉
∂ , (10.28)

where 〈·, ·〉∂ is the rescaled apolar inner product from Definition 8.3.3, given simply by

〈p,q〉∂ = p(∂)q.

10.2 Lifting 1: High Rank to High Degree

We now proceed to our first lifting theorem. We first introduce several quantities measur-

ing favorable behavior of M . As a high-level summary, these quantities capture various
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aspects of the “incoherence” of M with respect to the standard basis vectors e1, . . . ,en. To

formulate the subtlest of the incoherence quantities precisely, we will require the following

preliminary technical definition, whose relevance will only become clear in the course of

our proof in Section 10.5. There, it will describe a residual error term arising from allowing

repeated indices in S in Definition 10.1.13, after certain cancellations are taken into account.

Definition 10.2.1 (Maximal repetition-spanning forest). For each F ∈ F(m) and s ∈ [n]m,

let MaxSpan(F,s) be the subgraph of F formed by the following procedure. Let C1, . . . , Ck be

the connected components of F .

Initialize with MaxSpan(F,s) = ∅.

for i = 1, . . . , n do

for j = 1, . . . , k do

if Cj has two leaves `1 ≠ `2 with sκ(`1) = sκ(`2) = i then

Let T be the minimal spanning tree of all leaves ` of Cj with sκ(`) = i.

if T is vertex-disjoint from MaxSpan(F,s) then

Add T to MaxSpan(F,s).

end if

end if

end for

end for

We say that a ∈ [n]V�(F) is (F,s)-tight if, for all connected components C of MaxSpan(F,s)

with sκ(`) = i for all leaves ` of C , for all v ∈ V�(C), av = i. Otherwise, we say that a is

(F,s)-loose.

With this, we define the following functions of M . Below, M ◦k denotes the kth entrywise

power of M , and set(s) for a tuple s denotes the set of indices occurring in s.
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Definition 10.2.2 (Incoherence quantities). For M ∈ Rn×nsym , define the following quantities:

εoffdiag(M) := max
1≤i<j≤n

|Mij|, (10.29)

εcorr(M) :=
 max

1≤i<j≤n

n∑
k=1

M2
ikM

2
jk

1/2

, (10.30)

εpow(M) := max
k≥2
‖M ◦k − In‖, (10.31)

εtree(M ; 2d) := max
0≤d′≤d

max
T∈T (2d′)

max
s∈[n]2d′

∣∣∣ZT (M ;s)− 1{s1 = · · · = sn}
∣∣∣ , (10.32)

εerr(M ; 2d) := max
0≤d′≤d

max
T∈T (2d′)

max
s∈[n]2d′

n|set(s)|/2
∣∣∣∣∣ ∑

a∈[n]V�
a (T ,s)-loose

∏
(v,w)∈E(T)

Mfs,a(v)fs,a(w)

∣∣∣∣∣, (10.33)

ε(M ; 2d) := εoffdiag(M)+ εcorr(M)+ εpow(M)+ εtree(M ;d)+ εerr(M ; 2d). (10.34)

Our main result then states thatM may be extended to a high-degree pseudoexpectation

so long as its smallest eigenvalue is not too small compared to the sum of the incoherence

quantities.

Theorem 10.2.3. Let M ∈ Rn×nsym with Mii = 1 for all i ∈ [n]. Suppose that

λmin(M) ≥ (12d)32‖M‖5ε(M ; 2d)1/d. (10.35)

Then, ẼM is a degree 2d pseudoexpectation with ẼM[xx>] =M .

In practice, Theorem 10.2.3 will not be directly applicable to the M we wish to extend,

which, as mentioned earlier, will be rank-deficient and therefore have λmin(M) = 0 (or very

small). This obstacle is easily overcome by instead extending M ′ = (1 − α)M + αIn for

α ∈ (0,1) a small constant, whereby λmin(M ′) ≥ α. Unfortunately, it seems difficult to make

a general statement about how the more intricate quantities εtree and εerr transform when

M is replaced with M ′; however, we will show in our applications that directly analyzing

these quantities for M ′ is essentially no more difficult than analyzing them for M . Indeed,
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we expect these to only become smaller under this replacement since M ′ equals M with

the off-diagonal entries multiplied by (1−α).

Remark 10.2.4 (Different ways of nudging). A similar “nudging” operation to the one we

propose above, movingM towards the identity matrix, has been used before in [MRX20, KB20]

for degree 4 SOS and in the earlier work [AU03] for LP relaxations.3 However, the way that

this adjustment propagates through our construction is quite different: while [MRX20, KB20]

consider, in essence, a convex combination of the form (1−α)ẼM +αẼIn , we instead consider

Ẽ(1−α)M+αIn . The mapping M , ẼM is highly non-linear, so this is a major difference, which

indeed turns out to be crucial for the adjustment to effectively counterbalance the error terms

in our analysis.

We expect the following general quantitative behavior from this result. Typically, we will

have ε(M ; 2d) = O(n−γ) for some γ > 0. We will also have ‖M‖ = O(1) and λmin(M) =

Ω̃(1) after the adjustment discussed above. Therefore, Theorem 10.2.3 will ensure that M

is extensible to degree 2d so long as n−γ/d poly(d) = O(1), whereby the threshold scaling

at which the condition of Theorem 10.2.3 is no longer satisfied is slightly smaller than

d ∼ logn; for instance, suchM will be extensible to degree d ∼ logn/ log logn. See the brief

discussion after Proposition 10.12.11 for an explanation of why this scaling of the degree is

likely the best our proof techniques can achieve.

10.3 Partial Ordering and Möbius Function of F(m)

In the previous section, we found a way to compute the coefficients µ(F) attached to each

forest diagram F in Definition 10.1.13. Calculating examples, one is led to conjecture the for-

mula given in Definition 10.1.12 for these quantities. We will eventually give the rather dif-

ficult justification for that equality in the course of proving Theorem 10.2.3 in Section 10.7.

3I thank Aida Khajavirad for bringing the reference [AU03] to my attention.
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For now, we prove the simpler interpretation of these constants that will guide other parts

of that proof: the µ(F) give the Möbius function of a certain partial ordering on the CGS

terms of the pseudoexpectation.

Before proceeding, let us introduce some notations and clarifications concerning parti-

tions that will be useful here and in the remainder of the chapter.

Definition 10.3.1 (Partitions). For A a set or multiset, we write Part(A) for the set or multiset,

respectively, of partitions of A. Repeated elements in a multiset are viewed as distinct for

generating partitions, making Part(A) a multiset when A is a multiset. For example,

Part({i, i, j}) =
{
{{i}, {i}, {j}}, {{i, i}, {j}}, {{i}, {i, j}}, {{i}, {i, j}}︸ ︷︷ ︸

repeated

, {{i, i, j}}
}
. (10.36)

We write Part(A; even) and Part(A; odd) for partitions into only even or odd parts, respectively,

and Part(A;k), Part(A;≥ k), and Part(A;≤ k) for partitions into parts of size exactly, at

most, and at least k, respectively. We also allow these constraints to be chained, so that, e.g.,

Part(A; even;≥ k) is the set of partitions into even parts of size at least k. Similarly, for a

specific partition π ∈ Part(A), we write π[even],π[odd],π[k],π[≥ k],π[≤ k],π[even;≥ k]

and so forth for the parts of π with the specified properties.

10.3.1 Möbius Functions of Partially Ordered Sets

First, we review some basic concepts of the combinatorics of partially ordered sets (hence-

forth posets). Recall that a poset is a set P equipped with a relation ≤ that satisfies reflexivity

(x ≤ x for all x ∈ P), antisymmetry (if x ≤ y and y ≤ x then x = y), and transitivity (if

x ≤ y and y ≤ z, then x ≤ z). For the purposes of this paper, we will assume all posets are

finite. The following beautiful and vast generalization of the classical Möbius function of

number theory was introduced by Rota in [Rot64] (the reference’s introduction gives a more

nuanced discussion of the historical context at the time).

279



Definition 10.3.2 (Poset Möbius function). Let P be a poset. Then, the Möbius funcion of P,

denoted µP(x,y), is defined over all pairs x ≤ y by the relations

µP(x,x) = 1, (10.37)∑
x≤y≤z

µP(x,y) = 0 for all x < z. (10.38)

The key consequence of this definition is the following general inclusion-exclusion princi-

ple over posets, again a vast generalization of both the Möbius inversion formula of number

theory and the ordinary inclusion-exclusion principle over the poset of subsets of a set.

Proposition 10.3.3 (Poset Möbius inversion). If P has a minimal element, f : P → R is given,

and g(x) := ∑
y≤x f(y), then f(x) = ∑

y≤x µP(y,x)g(y). Similarly, if P has a maximal

element and g(x) :=∑y≥x f(y), then f(x) =∑y≥x µP(x,y)g(y).
In addition to [Rot64], the reader may consult, e.g., [BG75] for some consequences of this

result in enumerative combinatorics.

We give three examples of Möbius functions of posets of partitions that will be useful

in our calculations. The first concerns subsets and corresponds to the classical inclusion-

exclusion principle, and the latter two concern partitions of a set.

Example 10.3.4 (Subsets). Give 2[m] the poset structure of S ≤ T whenever S ⊆ T . Write

µSubset(·, ·) for the Möbius function of [m]. Then,

µSubset(S, T) = (−1)|T |−|S|. (10.39)

Example 10.3.5 (Partitions [Rot64]). Let Part([m]) denote the poset of partitions of [m],

where π ≤ ρ whenever π is a refinement of ρ. Write µPart(·, ·) for the Möbius function of
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Part([m]), eliding m for the sake of brevity. Then,

µPart(π,ρ) =
∏
A∈ρ
(−1)#{B∈π :B⊆A}−1(#{B ∈ π : B ⊆ A} − 1)!. (10.40)

In particular, letting � := {{1}, . . . , {m}} be the unique minimal element of Part([m]), we

have

µPart(�, ρ) =
∏
A∈ρ
(−1)|A|−1(|A| − 1)!. (10.41)

Example 10.3.6 (Partitions into even parts [Syl76]). Form ≥ 2 even, let EvenPart([m]) denote

the poset of partitions of [m] into even parts, where π ≤ ρ whenever π is a refinement of

ρ, along with the additional formal element � with � ≤ π for all partitions π . Again write

µEvenPart(·, ·) for the associated Möbius function, eliding m for the sake of brevity. Let the

sequence ν(k) for k ≥ 0 be defined by the exponential generating function log cosh(x) =:∑∞
k=0

ν(k)
k! x

k, or equivalently tanh(x) =:
∑∞
k=0

ν(k+1)
k! xk. Then,

µEvenPart(�, ρ) = −
∏
A∈ρ
ν(|A|). (10.42)

On the other hand, if π > �, the [π,ρ] is isomorphic to a poset of ordinary partitions, so we

recover

µEvenPart(π,ρ) =
∏
A∈ρ
(−1)#{B∈π :B⊆A}−1(#{B ∈ π : B ⊆ A} − 1)!. (10.43)

There is no convenient closed form for ν(k), but a combinatorial interpretation (up to sign)

is given by (−1)kν(2k) counting the number of alternating permutations of 2k+1 elements.

This fact, as a generating function identity, is a classical result due to André [And81] who

used it to derive the asymptotics of ν ; see also [Sta10] for a survey. The connection with

Möbius functions was first observed in Sylvester’s thesis [Syl76], and Stanley’s subsequent

work [Sta78] explored further situations where the Möbius function of a poset is given by an

exponential generating function. Some of our calculations in Section 10.3 indicate that the
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poset defined there, while not one of Stanley’s “exponential structures,” is still amenable to

analysis via exponential generating functions, suggesting that the results of [Sta78] might

be generalized to posets having more general self-similarity properties.

10.3.2 The Compositional Ordering

We first introduce the poset structure that is associated with µ(F). We call this a compo-

sitional structure because it is organized according to which forests are obtained by “com-

posing” one forest with another by inserting smaller forests at each � vertex.

Definition 10.3.7 (Compositional poset). Suppose F ∈ F(m). For each v ∈ V�(F), write E(v)

for the set of edges incident with v , and fix κv : E(v)→ [|E(v)|] a labelling of E(v). Suppose

that for each v ∈ V�(F), we are given Fv ∈ F(deg(v)). Write F[(Fv)v∈V�(F)] ∈ F(m) for the

forest formed as follows. Begin with the disjoint union of all Fv for v ∈ V�(F) and all pairs in

F . Denote the leaves of Fv in this disjoint union by `v,1, . . . , `v,deg(v). Then, merge the edges

ending at `v,i and `w,j whenever κ−1
v (i) = κ−1

w (j). Whenever κ−1
v (i) terminates in a leaf x of

F , give `v,i the label that x has in F . Finally, whenever x belongs to a pair of F , give x in the

disjoint union the same label that it has in F .

Let the compositional relation ≤ on F(m) be defined by setting F ′ ≤ F if, for each v ∈

V�(F), there exists Fv ∈ F(deg(v)) such that F ′ = F[(Fv)v∈V�(F)].

It is straightforward to check that this relation does not depend on the auxiliary orderings

κv used in the definition. While the notation used to describe the compositional relation

above is somewhat heavy, we emphasize that it is conceptually quite intuitive, and give an

illustration in Figure 10.2.

We give the following additional definition before continuing to the basic properties of

the resulting poset.

Definition 10.3.8 (Star tree). Form ≥ 4 an even number, we denote by Sm the star tree onm
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Figure 10.2: Ordering in the compositional poset F(m). We give an example of the ordering
relation between two forests in F(14), highlighting the “composing forests” at each � vertex of the
greater forest that witness this relation.

leaves, consisting of a single � vertex connected to m • vertices. For m = 2, denote by S2 the

tree with no � vertices and two • vertices connected to one another. Note that all labellings

of Sm are isomorphic, so there is a unique labelled star tree in F(m).

Proposition 10.3.9. F(m) endowed with the relation ≤ forms a poset. The unique maximal

element in F(m) is Sm, while any perfect matching in F(m) is a minimal element.

To work with the Möbius function, it will be more convenient to define a version of this

poset augmented with a unique minimal element, as follows (this is the same manipulation

as is convenient to use, for example, in the analysis of the poset of partitions into sets of

even size; see [Sta78]).

Definition 10.3.10. Let F(m) consist of F(m) with an additional formal element denoted �.

We extend the poset structure of F(m) to F(m) by setting � ≤ F for all F ∈ F(m). When we

wish to distinguish � from the elements of F(m), we call the latter proper forests.

The main result of this section obtains the Möbius function of this partial ordering.

Lemma 10.3.11. Let µF(·, ·) be the Möbius function of F(m) (where we elide m for the sake

of brevity, as it is implied by the arguments). Then µF(�,�) = 1, and for F ∈ F(m),

µF(�, F) = (−1)|V
�(F)|+1

∏
v∈V�(F)

(deg(v)− 2)! = −µ(F), (10.44)

where µ(·) on the right-hand side is the quantity from Definition 10.1.12.
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We proceed in two steps: first, and what is the main part of the argument, we compute

the Möbius function of a star tree. Then, we show that the Möbius function of a general

forest factorizes into that of the star trees corresponding to each of its internal vertices.

The following ancillary definition will be useful both here and in a later proof.

Definition 10.3.12 (Rooted odd tree). For odd ` ≥ 3, define the set of rooted odd trees on `

leaves, denoted T root(`), to be the set of rooted trees where the number of children of each

internal vertex is odd and at least 3, and where the leaves are labelled by [`]. Define a map

e : T root(m− 1)→ T (m) that attaches the leaf labelled m to the root.

While it is formally easier to express this definition in terms of rooted trees, it may be

intuitively clearer to think of a rooted odd tree as still being a good tree, only having one

distinguished “stub” leaf, whose lone neighbor is viewed as the root.

Proposition 10.3.13. µF(�, S2) = −1. For all even m ≥ 4, µF(�, Sm) = (m− 2)!.

Proof. We first establish the following preliminary identity.

Claim:
∑

T∈T (m)
µF(�, T ) = −ν(m) = µEvenPart(�, {[m]}). (10.45)

We proceed using a common idiom of Möbius inversion arguments, similar to, e.g., count-

ing labelled connected graphs (see Example 2 in Section 4 of [BG75]). For F ∈ F(m), let

conn(F) ∈ Part([m]; even) denote the partition of leaves into those belonging to each con-

nected component of F . For π ∈ Part([m]; even), define

b(π) := −
∑

F∈F([m])
conn(F)=π

µ(�, F), (10.46)
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and b(�) = 0. Then, the quantity we are interested in is −b({[m]}). By Möbius inversion,

b({[m]}) =
∑

π∈Part(m;even)∪{�}

 ∑
�≤ρ≤π

b(ρ)

µEvenPart(π, {[m]}). (10.47)

The inner summation is zero if π = �, and otherwise equals

∑
�≤ρ≤π

b(ρ) =
∏
A∈π

 ∑
F∈F([|A|])

−µ(F)
 = 1 if π ≠ �. (10.48)

Therefore, we may continue

b({[m]}) =
∑

π∈Part(m;even)

µEvenPart(π, {[m]}) =
∑

π∈Part(m;even)

(−1)|π|−1(|π| − 1)!. (10.49)

By the composition formula for exponential generating functions, this means

∑
k≥0

b({[2k]})
(2k)!

x2k = log (1+ (cosh(x)− 1)) = log cosh(x), (10.50)

and the result follows by equating coefficients.

Next, we relate the trees of T ([m]) that we sum over in this identity to the rooted odd

trees introduced in Definition 10.3.12. We note that the map e defined there is a bijection

between T root(m − 1) and T (m) (the inverse map removes the leaf labelled m and sets its

single neighbor to be the root). The Möbius function composed with this bijection is

µ(�, e(T)) = (−1)|V
�(T)|+1

∏
v∈V�(T)

µ(�, S|c(v)|+1),

where c(v) gives the number of children of an internal vertex.

Finally, we combine the recursion associated to the rooted structure of T root(m − 1)

(whereby a rooted tree is, recursively, the root and a collection of rooted trees attached to

the root) and the identity of the Claim to derive a generating function identity that completes
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the proof. Namely, we may manipulate, for m ≥ 4,

ν(m) = −
∑

T∈T (m)
µ(�, T )

= −
∑

T∈T root(m−1)

µ(�, e(T))

=
∑

T∈T root(m−1)

(−1)|V
�(T)| ∏

v∈V�(G)
µ(�, S|c(v)|+1)

=
∑

π∈Part([m−1];odd)
|π|>1

(−µ(�, S|π|+1))
∏
S∈π

 ∑
T∈T root(S)

(−1)|V
�(T)| ∏

v∈V�(T)
µ(�, S|c(v)|+1)



=
∑

π∈Part([m−1];odd)
|π|>1

(−µ(�, S|π|+1))
∏
S∈π

− ∑
T∈T root(|S|)

µ(�, e(T))


=
∑

π∈Part([m−1];odd)
|π|>1

(−µ(�, S|π|+1))
∏
S∈π

ν(|S| + 1) (10.51)

We now have a relatively simple identity connecting µ(�, Sm) with ν(m). To translate

this into a relation of generating functions, we remove the condition |π| > 1 and correct to

account for the case m = 2, obtaining, for any even m ≥ 2,

2ν(m) = 1{m = 2} +
∑

π∈Part([m−1];odd)

(−µ(�, S|π|+1))
∏
S∈π

ν(|S| + 1). (10.52)

Now, let F(x) := ∑
k≥1

µ(�,S2k)
(2k)! x

2k. Multiplying by x2k−1/(2k − 1)! on either side of (10.52)

and summing over all k ≥ 1, we find, by the composition formula for exponential generating

functions,

2 tanh(x) = x − F ′(tanh(x)). (10.53)

Equivalently, taking y = tanh(x), we have

F ′(y) = tanh−1(y)− 2y. (10.54)
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Recalling

tanh−1(y) = 1
2

(
log(1+y)− log(1−y)) = ∑

k≥0

y2k+1

2k+ 1
, (10.55)

we have

F(y) = −1
2
x2 +

∑
k≥2

x2k

2k(2k− 1)
= − 1

2!
x2 +

∑
k≥2

(2k− 2)!
(2k)!

x2k, (10.56)

and the result follows.

Before completing the proof of Lemma 10.3.11, we give the following preliminary result,

describing the interval lying below a forest as a product poset. This follows immediately

from the definition of the compositional relation, since the set of forests smaller than F

corresponds to a choice of a local “composing forest” at each v ∈ V�(F).

Proposition 10.3.14. Let F = ((V •, V�), E) ∈ F(m). Then, we have the isomorphism of posets

(�, F] �
∏

v∈V�(F)
(�, Sdeg(v)]. (10.57)

We now complete the proof of the main Lemma.

Proof of Lemma 10.3.11. Let µ̂(�, ·) be the putative Möbius function from the statement,

µ̂(�, F) = (−1)|V
�(F)|+1

∏
v∈V�(F)

(deg(v)− 2)!. (10.58)

We proceed by induction on m. For m = 2, the result holds by inspection. Suppose m ≥ 4.

Since µ̂(�,�) = 1 by definition, and since by Proposition 10.3.13 we know that µ̂(�, Sm) =

µ(�, Sm), it suffices to show that, for all F ∈ F(m) with F ≠ Sm, we have

∑
F ′∈[�,F]

µ̂(�, F ′) = 0. (10.59)
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Let F ∈ F(m) with F ≠ Sm. We then compute:

∑
F ′∈[�,F]

µ̂(�, F ′) = 1−
∑

F ′∈(�,F]

∏
v∈V�(F ′)

(−(deg(v)− 2)!)

= 1−
∏

v∈V�(F)

 ∑
F ′∈(�,Sdeg(v)]

∏
w∈V�(F ′)

(−(deg(w)− 2)!)

 (Proposition 10.3.14)

= 1−
∏

v∈V�(F)

− ∑
F ′∈(�,Sdeg(v)]

µ(�, F ′)


= 1−
∏

v∈V�(F)
µ(�,�) (inductive hypothesis)

= 0, (10.60)

completing the proof.

10.4 Pseudomoment and Contractive Graphical Matrices

We now proceed to the proof of Theorem 10.2.3. We first outline the general approach of

our proof and introduce the main objects involved. By construction, Ẽ as given in Defini-

tion 10.1.13 satisfies Conditions 1 and 2 of the pseudoexpectation properties from Defini-

tion 6.1.2 (normalization and ideal annihilation); therefore, it suffices to prove positivity.

Moreover, positivity may be considered in any suitable basis modulo the ideal generated by

the constraint polynomials, and given any fixed basis positivity may be written in linear-

algebraic terms as the positive semidefiniteness of the associated pseudomoment matrix.

We state this explicitly below, in an application of standard reasoning in the SOS literature

(see, e.g., [Lau09]).

Proposition 10.4.1. Let Ẽ : R[x1, . . . , xn]≤2d → R be a linear operator satisfying the normal-

ization and ideal annihilation properties of Definition 6.1.2. Let I ⊂ R[x1, . . . , xn] be the ideal

generated by x2
i − 1 for i = 1, . . . , n, and let p1, . . . , p( n≤d) ∈ R[x1, . . . , xn]≤d be a collection of
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coset representatives for a basis of R[x1, . . . , xn]≤d / I . Define the associated pseudomoment

matrix Z ∈ R(
n
≤d)×( n≤d) with entries

Zs,t = Ẽ[ps(x)pt(x)]. (10.61)

Then, Ẽ satisfies the positivity property of Definition 6.1.2 if and only if Z � 0.

If we were to take the standard multilinear monomial basis for the ps(x), we would wind

up with Z being a sum of CGSs of different diagrams in each entry, with the CGS indices

corresponding to the set indexing of Z. While we will ultimately work in a different basis,

this general observation will still hold, so we define the following broad formalism for the

matrices that will arise.

The following enhancement of the diagrams introduced in Definition 10.1.9 is the anal-

ogous object to what is called a shape in the literature on graphical matrices [AMP16,

BHK+19]. We prefer to reserve the term diagram for any object specifying some contractive

calculation, to use that term unadorned for the scalar version, and to add ribbon to indicate

the specification of “sidedness” that induces a matrix structure.

Definition 10.4.2 (Ribbon diagram). Suppose G = (V , E) is a graph with two types of vertices,

which we denote • and � visually and whose subsets we denote V = V • t V�. Suppose also

that V • is further partitioned into two subsets, which we call “left” and “right” and denote

V • = LtR. Finally, suppose that each of L and R is equipped with a labelling κL : L → [|L|]

and κR :R→ [|R|]. We call such G together with the labellings κL and κR a ribbon diagram.

Definition 10.4.3 (Good forest ribbon diagram). We write F(`,m) for the set of good forests

on ` +m vertices, equipped with a partition of the leaves V • = L t R with |L| = ` and

|R| =m.
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Definition 10.4.4 (Contractive graphical matrix). Suppose G is a ribbon diagram with la-

bellings κL and κR. Define κ : V • → [|V •|] by κ(`) = κL(`) for ` ∈ L and κ(r) = |L| + κR(r)

for r ∈ R. With this labelling, we interpret G as a CGS diagram.

For M ∈ Rn×nsym , we then define the contractive graphical matrix (CGM) of G to be the

matrix ZG ∈ R(
[n]
|L|)×([n]|R|) with entries

ZGS,T = ZGS,T (M) := ZG(M ; (s1, . . . , s|L|, t1, . . . , t|R|)) (10.62)

where S = {s1, . . . , s|L|} and T = {t1, . . . , t|R|} with s1 < · · · < s|L| and t1 < · · · < t|R|.

We note that the restriction to set-valued indices in this definition is rather artificial; the

most natural indexing would be by [n]|L| × [n]|R|. However, as the set-indexed subma-

trix of this larger matrix is most relevant for our application, we use this definition in the

main text; we present several technical results with the more general tuple-indexed CGMs in

Section 10.13.

Remark 10.4.5 (Multiscale spectrum). As in calculations involving graphical matrices in the

pseudocalibration approach [AMP16, RSS18, BHK+19], the scale of the norm of a CGM may be

read off of its ribbon diagram. We emphasize the following general principle: if ‖M‖ = O(1)

and F ∈ F(2d), then ‖ZF‖ = ω(1) if and only if some connected components of F have

leaves in only L or only R. We call such components sided. CGMs tensorize over connected

components (Proposition 10.13.3), so the norm of a CGM is the product of the norms of CGMs

of its diagram’s components. In the case ofM a rescaled random low-rank projection matrix,

where ‖M‖ = O(1) and ‖M‖F = Θ(n1/2), components that are not sided give norm O(1)

(Proposition 10.13.13), while each sided component gives norm roughly Θ̃(n1/2), which follows

from calculating the sizes of the individual CGM entries assuming square root cancellations.

Thus the norm of a CGM is Θ̃(n#{sided components}/2).

In particular, we will encounter the same difficulty as in other SOS lower bounds that the
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pseudomoment matrices we work with have a multiscale spectrum, meaning simply that the

scaling of different ZG with n can be very different. For the main part of our analysis we

will be able to ignore this, since by working in the multiharmonic basis from Remark 8.3.12,

we will be able to eliminate all ribbon diagrams with sided components, leaving us with only

terms of norm O(1). Unfortunately, this issue returns when handling various error terms, so

some of our choices below will still be motivated by handling the multiscale difficulty correctly.

10.5 Main and Error Terms

Recall that our pseudoexpectation was constructed in Section 10.1.3 as a sum of ZF(M ;S)

for S a multiset, and had the property of being approximately unchanged by adding pairs of

repeated indices to S. While in Definition 10.1.13 we have forced these to be exact equalities

to produce a pseudoexpectation satisfying the ideal annihilation constraints exactly, the

approximate version of the pseudoexpectation, which is better suited for the diagrammatic

reasoning that will justify positivity, will still be very useful. Therefore, we decompose Ẽ into

a “main term,” which is the actual result of our heuristic calculation but only approximately

satisfies the hypercube constraints, and an “error term” that implements the remaining

correction, as follows.

Definition 10.5.1 (Main and error pseudoexpectations). Define Ẽmain, Ẽerr : R[x1, . . . , xn]→ R

to be linear operators with values on monomials given by

Ẽmain[xS] :=
∑

F∈F(|S|)
µ(F) · ZF(M ;S), (10.63)

Ẽerr[xS] := Ẽ[xS]− Ẽmain[xS], (10.64)

for all multisets S ∈ M([n]). Note that for S a multiset, Ẽ[xS] = Ẽ[xS′] where S′ is the

(non-multi) set of indices occurring an odd number of times in S.
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In the remainder of this section, we show how the presence of the Möbius function in our

pseudomoment values implies that Ẽerr[xS] is small. It is not difficult to see that Ẽ and Ẽmain

are equal to leading order, since if, for instance, only one index is repeated two times in S,

then the dominant terms of Ẽmain will be those from diagrams where the two occurrences

of this index are paired and there is an arbitrary forest on the remaining indices; various

generalizations thereof hold for greater even and odd numbers of repetitions. This kind of

argument shows, for example, that forM a rescaled random low-rank projection matrix, we

have Ẽmain[xS] = (1 +O(n−1/2))Ẽ[xS] as n → ∞. However, due to the multiscale spectrum

of the pseudomoments as discussed in Remark 10.4.5, it turns out that this does not give

sufficient control of Ẽerr.

We must go further than this initial analysis and take advantage of cancellations among

even the sub-leading order terms of Ẽerr, a fortunate side effect of the Möbius function

coefficients. These cancellations generalize the following observation used in [KB20] for the

degree 4 case. If we take S = {i, i, j, k} (the simple situation mentioned above), then we have

Ẽerr[xS] = Mjk︸ ︷︷ ︸
Ẽ[xS]

−
(
MiiMjk +MijMik +MikMij − 2

n∑
a=1

M2
aiMajMak︸ ︷︷ ︸

Ẽmain[xS]

)

= 2
∑

a∈[n]\{i}
M2
aiMajMak, (10.65)

where the term 2MijMik in Ẽmain[xS] has cancelled. For M a rescaled random low-rank pro-

jection matrix, this makes a significant difference: the term that cancels is Θ(n−1), while the

remaining error term after the cancellation is only Θ(n−3/2) (assuming square root cancella-

tions).

Surprisingly, a similar cancellation obtains at all degrees and for any combination of

repeated indices. The general character of the remaining error terms is that, as in the above

simple example the � vertex connecting two equal leaves labelled i was not allowed to have
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its index equal i, so in general the minimal spanning subtree of a collection of leaves with

the same label cannot “collapse” by having all of its internal vertices have that same label.

The collections of spanning subtrees with respect to which we will study this cancellation

are precisely the forests MaxSpan(F,s), as defined earlier in Definition 10.2.1. Below we

record the important properties of the subgraphs that result from this construction.

Proposition 10.5.2 (Properties of MaxSpan). For any F ∈ F(m) and s ∈ [n]m, MaxSpan(F,s)

satisfies the following.

1. (Components) For every connected component C of MaxSpan(F,s), there is some i ∈ [n]

and Cj a connected component of F such that |κ−1(i)∩V •(Cj)| ≥ 2 and C is the minimal

spanning tree of κ−1(i)∩ V •(Cj).

2. (Maximality) MaxSpan(F,s) is the union of a maximal collection of vertex-disjoint span-

ning trees of the above kind.

3. (Independence over connected components) If C1, . . . , Ck are the connected components

of F , then MaxSpan(F,s) = MaxSpan(C1,s|C1) t · · · t MaxSpan(Ck,s|Ck). (We write

s|Ci for the restriction of s to the indices that appear as labels of the leaves of Ci.)

4. (Priority of small indices) Whenever i < j, |κ−1(i)∩ V •(Ck)| ≥ 2, |κ−1(j)∩ V •(Ck)| ≥ 2,

and MaxSpan(F,s) contains the minimal spanning tree of κ−1(j)∩ V •(Ck), then it also

contains the minimal spanning tree of κ−1(i)∩ V •(Ck).

We are now prepared to express our generalization of the cancellation that we observed

above in (10.65), which amounts to the cancellation of all summation terms where the entire

subgraph MaxSpan(F,s) collapses in the sense discussed previously.

Definition 10.5.3 (Graphical error terms). Let F ∈ F(m) and s ∈ [n]m. Recall that we say

a ∈ [n]V�(F) is (F,s)-tight if, for all connected components C of MaxSpan(F,s), if sκ(x) = i
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for all leaves x of C , then av = i for all v ∈ V�(C) as well. Otherwise, we say that a is

(F,s)-loose. With this, we define

∆F(M ;s) :=
∑

a∈[n]V�
a is (F,s)-loose

∏
{v,w}∈E

Mfs,a(v)fs,a(w). (10.66)

As in Definition 10.1.9, we also extend the definition to allow sets or multisets in the second

argument of ∆F by replacing them with the corresponding tuple of elements in ascending

order.

The following preliminary definition, building on the rooted odd trees introduced in Defini-

tion 10.3.12, will be useful in the argument.

Definition 10.5.4 (Good forest with rooted components). For m ≥ 2, let F root(m) be the set

of forests on m leaves where every connected component is either a good tree (per Defini-

tion 10.1.11) or a rooted odd tree (per Definition 10.3.12), and where the leaves are labelled

by [m]. Note that some but not all components of such a forest may have distinguished

roots. For F ∈ F root(m), let odd(F) denote the set of rooted odd tree components of F , and let

µ(F) := µ(F ′) for F ′ formed by attaching an extra leaf to the root of every tree in odd(F).

Lemma 10.5.5 (Graphical error pseudomoments). For any S ∈M([n]),

Ẽerr[xS] = −
∑

F∈F(m)
µ(F) ·∆F(M ;S). (10.67)

Proof. Our result will follow from the following, purely combinatorial, result. For F ∈ F(m)

and A ⊆ [m], let us say that F is A-dominated if, for every connected component C of F ,

every � vertex of C is contained in the minimal spanning tree of the leaves κ−1(A)∩ V •(C).
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Then,

Claim:
∑

F∈F(m)
F is A-dominated

µ(F) =


1 if m ∈ {|A|, |A| + 1},

0 otherwise.
(10.68)

We first prove the Claim. Let ` = |A|; without loss of generality we take A = [`]. Let us

write

c(`,m) :=
∑

F∈F(m)
F is [`]-dominated

µ(F). (10.69)

For each fixed `, we will proceed by induction on m ≥ `. For the base case, we have

c(`, `) = 1 by the defining property of the Möbius function, since in this case the summation

is over all F ∈ F(`).

Let r` : F(m) → F root(m − `) return the rooted forest formed by deleting the minimal

spanning trees of the elements of [`] in each connected component, where upon deleting

part of a tree, we set any vertex with a deleted neighbor to be the root of the new odd tree

connected component thereby formed. Then, we have

1 =
∑

F∈F(m)
µ(F)

=
∑

R∈F root(m−`)

∑
F∈F(m)
r`(F)=R

µ(F)

and, factoring out µ(R) from µ(F) with r`(F) = R, we note that what is left is a sum of µ(F)

over [`]-dominated forests F on [` + |odd(R)|], whereby

=
∑

R∈F root(m−`)
µ(R)c(`, ` + |odd(R)|). (10.70)

Now, we consider two cases. First, if m = ` + 1 for ` odd, then there is only one R in the

above summation, having one leaf connected to a root, which has µ(R) = 1. Therefore,
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c(`, ` + 1) = 1.

Otherwise, supposing m ≥ ` + 2 and continuing the induction, if we assume the Claim

holds for all smaller m, then we find

1 =
∑

R∈F root(m−`)
|odd(R)|=1{` odd}

µ(R)+ c(`,m). (10.71)

If ` is even, then the first term is a sum over R ∈ F(m − `). If ` is odd, then the sum may

be viewed as a sum over R ∈ F(m−`+1) by viewing the single root vertex as an additional

leaf. In either case, this sum equals 1 by the definition of the Möbius function, whereby

c(`,m) = 0, completing the proof.

We now return to the proof of the statement. Suppose S ∈ M([n]), and let s ∈ [n]|S|

be the tuple of the elements of S in ascending order. Given F ∈ F(|S|), let us write

ind(F, S) for the multiset with one occurrence of each i ∈ [n] for each connected com-

ponent C of MaxSpan(F,s) with sκ(`) = i for all leaves ` in C , and a further occurrence

of each i ∈ [n] for each leaf ` not belonging to MaxSpan(F ;s) with sκ(`) = i. And, write

coll(F, S) ∈ F(|ind(F, S)|) for the good forest obtained by deleting from F each component

of MaxSpan(F ;s) and replacing each incidence between MaxSpan(F ;s) and F \MaxSpan(F ;s)

with a new leaf, labelled such that

Zcoll(F,S)(M ; ind(F, S)) =
∑

a∈[n]V�(F)
a (F,S)-tight

∏
{v,w}∈E(F)

MfS,a(v)fS,a(w). (10.72)

Intuitively, these definitions describe the forest obtained from F by collapsing all tight sub-

trees in MaxSpan(F,s), with extra occurrences of their indices added as labels on leaves in

the new “fragmented” tree.
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Using these definitions, we may rewrite the quantity that we need to compute as follows.

Ẽmain[xS]−
∑

F∈F(|S|)
µ(F) ·∆F(M ;S)

=
∑

F∈F(|S|)
µ(F)

∑
a∈[n]V�(F)
a (F,S)-tight

∏
{v,w}∈E(F)

MfS,a(v)fS,a(w)

=
∑

F∈F(|S|)
µ(F)Zcoll(F,S)(M ; ind(F, S))

=
∑

S′∈M([n])

∑
F ′∈F(|S′|)

( ∑
F∈F(|S|)

coll(F,S)=F ′
ind(F,S)=S′

µ(F)

︸ ︷︷ ︸
=:ζ(F ′,S′,S)

)
ZF

′
(M ;S′). (10.73)

We claim that the inner coefficient ζ(F ′, S′, S) is zero unless S′ is the (non-multi) set of

indices occurring an odd number of times in S, in which case it is µ(F ′). This will complete

the proof, since we will then have that the above equals Ẽ[xS] (by definition of the latter).

Since ind(F, S) for any F only contains indices occurring in S, we will have ζ(F ′, S′, S) = 0

unless S′ only contains indices also occurring in S. In other words, we have set(S′) ⊆ set(S);

note, however, that a given index can occur more times in S′ than in S.

Let C′1, . . . , C′m be the connected components of F ′, let κ′ be the function labelling the

leaves of F ′, and let s′ be the tuple of elements of S′ in ascending order. Let S′i := {s′κ′(`) :

` ∈ V •(C′i)}, a priori a multiset. In fact, no index can occur twice in any S′i : if j is the least

such index, then by construction the minimal spanning tree on all ` ∈ V •(C′i) with s′κ′(`) = j

would have been included in MaxSpan(F,s) and would have been collapsed in forming F ′.

Therefore, each S′i is a set, and S = S′1 + · · · + S′m.

Now, we define the subsets of connected components containing a leaf labelled by each

index: for j ∈ [n], let Aj = {i ∈ [m] : j ∈ S′i}. Also, let nj equal the number of occurrences

of j in S. Then, every F with coll(F, S) = F ′ and ind(F, S) = S′ is obtained by composing

with F ′ forests Fj for j ∈ [n] whose leaves are κ′−1(j), together with some nj − |Aj| further
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leaves `j,1, . . . , `j,nj , such that Fj is dominated (in the sense above) by these further leaves,

which all have sκ(`j,k) = j, and such that Fj does not connect any C′i1 , C
′
i2 for i1, i2 ∈ Aj′ with

j′ < j. It is easier to understand the description in reverse: the Fj are precisely the forests

added to MaxSpan(F,s) for index j, if F collapses to F ′.

Using this description of the F appearing in ζ(F ′, S′, S) and the fact that µ(F) factorizes

over � vertices, we may factorize

ζ(F ′, S′, S) = µ(F ′)
n∏
j=1

( ∑
F∈F(nj)

F [nj−|Aj|]-dominated
F does not connect C′i1 ,C

′
i2

for i1,i2∈Aj′ ,j′<j

µ(F)
)
. (10.74)

Now, suppose for the sake of contradiction that ζ(F ′, S′, S) ≠ 0 for some F ′, and |Aj| ≠

1{nj odd} for some j (remembering that Aj are defined in terms of F ′). Choose the smallest

such j. Then, the connectivity property on F in the jth factor above is vacuous since |Aj′| ≤

1 for all j < j′, so it may be removed in the summation. By the Claim, that factor is

then zero, whereby ζ(F ′, S′, S) = 0, unless |Aj| = 1{nj odd}, so we reach a contradiction.

Finally, if indeed |Aj| = 1{nj odd} for all j, then the connectivity condition is vacuous for

all terms, so it may always be removed, whereupon by the Claim the product above is 1 and

ζ(F ′, S′, S) = µ(F ′) as desired.

Lastly, we prove the following additional result on Ẽerr that will be useful later, showing

that it decomposes into a sum over a choice of some “main term trees” and some “error

trees” to apply to subsets of S.

Proposition 10.5.6 (Error term factorizes over connected components). For any S ∈M([n]),

Ẽerr[xS] =
∑
A⊆S
A≠∅

Ẽmain[xS−A]
∑

π∈Part(A;even)

∏
R∈π

− ∑
T∈T (|R|)

µ(T) ·∆T (M ;R)

 . (10.75)
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Proof. We begin from the definition,

∆F(M ;s) =
∑

a∈[n]V�
a is (F,s)-loose

∏
{v,w}∈E

Mfs,a(v)fs,a(v)

Now, we observe from Proposition 10.5.2 that a is (F,s)-loose if and only if a|T is (F,s|T )-

loose for some T ∈ conn(F). Therefore, by the inclusion-exclusion principle, we may write

=
∑

A⊆conn(F)
A≠∅

(−1)|A|−1
∑

a∈[n]V�
a|T is (F,s|T )-loose for T∈A

∏
{v,w}∈E

Mfs,a(v)fs,a(v)

= −
∑

A⊆conn(F)
A≠∅

∏
T∈A

(−∆T (M ;s|T )
) ∏
T∉A
ZT (M ;s|T ). (10.76)

Now, we use that µ(F) =∏k
i=1 µ(Ti), so by definition of Ẽerr, we have

Ẽerr[xs] = −
∑

F∈F(m)
µ(F) ·∆F(M ;s)

=
∑

F∈F(m)

∑
A⊆conn(F)
A≠∅

∏
T∈A

(− µ(T) ·∆T (M ;s|T )
) ∏
T∉A

(
µ(T) · ZT (M ;s|T )

)
. (10.77)

Reversing the order of summation and then reorganizing the inner sum according to the

partition π of the leaves of F lying in each connected component then gives the result.

10.6 Spectral Analysis in the Harmonic Basis: Outline of

Theorem 10.2.3

Our basic strategy for proving positivity is to invoke Proposition 10.4.1 with the multihar-

monic basis discussed in Remark 8.3.12. As our heuristic calculations there suggested, this

will attenuate the multiscale spectrum of the pseudomoment matrix written in the standard
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monomial basis, making the analysis of the spectrum much simpler. It will also let us use

the heuristic Gram matrix expression (8.51) as a tool for proving positivity.

In this section, we describe the objects that arise after writing the pseudomoments in

this basis, and state the main technical results that lead to the proof of Theorem 10.2.3.

First, we recall the definition of the basis. For S ⊆ [n], we have

q↓S(x;M) :=



xi if |S| = 1 with S = {i},

Mij if |S| = 2 with S = {i, j},∑n
a=1

∏
i∈SMia · xa if |S| ≥ 3 is odd,∑n

a=1

∏
i∈SMia if |S| ≥ 4 is even,

(10.78)

h↓S(x;M) :=
∑

σ∈Part(S)

∏
A∈σ
(−1)|A|−1(|A| − 1)!q↓A(x;M). (10.79)

For the sake of brevity, we will usually omit the explicit dependence on M below, abbrevi-

ating h↓S(x) = h↓S(x;M).

Next, we write the pseudomoments in this basis, separating the contributions of the

main and error terms.

Definition 10.6.1 (Main and error pseudomoments). Define Zmain,Zerr,Z ∈ R(
[n]
≤d)×([n]≤d) to

have entries

Zmain
S,T := Ẽmain[h↓S(x)h

↓
T (x)], (10.80)

Zerr
S,T := Ẽerr[h↓S(x)h

↓
T (x)], (10.81)

ZS,T := Ẽ[h↓S(x)h
↓
T (x)] (10.82)

= Zmain
S,T + Zerr

S,T . (10.83)

We assign a technical lemma to the analysis of each of the two terms.
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Lemma 10.6.2 (Positivity of main term). Under the assumptions of Theorem 10.2.3,

λmin(Zmain) ≥ λmin(M)d

− (6d)10d‖M‖3d(εtree(M ;d)+ εpow(M)+ εoffdiag(M)+ εcorr(M)). (10.84)

Lemma 10.6.3 (Bound on error term). Under the assumptions of Theorem 10.2.3,

‖Zerr‖ ≤ (12d)32d‖M‖5dεerr(M ; 2d). (10.85)

Given these statements, it is straightforward to prove our main theorem.

Proof of Theorem 10.2.3. Since the only multilinear monomial in h↓S(x) is xS , the h↓S(x) for

S ∈
(
[n]
≤d
)

form a basis for R[x1, . . . , xn]≤d/I for I the ideal generated by {x2
i − 1}ni=1. Thus

by Proposition 10.4.1 it suffices to show Z � 0. Since Z = Zmain +Zerr, we have λmin(Z) ≥

λmin(Zmain) − ‖Zerr‖. Substituting the results of Lemmata 10.6.2 and 10.6.3 then gives the

result.

Before proceeding to the proof details, we note that we will use tools given later in

Section 10.12 (various miscellaneous combinatorial and linear-algebraic bounds) and Sec-

tion 10.13 (tools for working with CGMs).

10.7 Approximate Block Diagonalization: Towards

Lemma 10.6.2

As a first step towards showing the positivity of Zmain, we show that our choice of writing

the pseudomoments of Ẽmain in the multiharmonic basis makes Zmain approximately block

diagonal. This verifies what we expect based on the informal argument leading up to Re-
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mark 8.3.12.

10.7.1 Stretched Forest Ribbon Diagrams

We first describe an important cancellation in Zmain. Writing the pseudomoments in the

multiharmonic basis in fact leaves only the following especially well-behaved type of forest

ribbon diagram. Below we call a � vertex terminal if it is incident to any leaves.

Definition 10.7.1 (Stretched forest ribbon diagram). We say that F ∈ F(`,m) is stretched if

it satisfies the following properties:

1. Every terminal � vertex of F has a neighbor in both L and R.

2. No connected component of F is a sided pair: a pair of connected • vertices both lying

in L or both lying in R.

3. No connected component of F is a skewed star: a star with one vertex in L and more

than one vertex in R, or one vertex in R and more than one vertex in L.

A fortunate combinatorial cancellation shows that, in the multiharmonic basis, the pseu-

domoment terms of stretched forest ribbon diagrams retain their initial coefficients, while

non-stretched forest ribbon diagrams are eliminated.

Proposition 10.7.2. For any S, T ⊆ [n],

Zmain
S,T = Ẽmain[h↓S(x)h

↓
T (x)] =

∑
F∈F(|S|,|T |)
F stretched

µ(F) · ZFS,T (M). (10.86)

Proof. We expand directly:

Ẽmain[h↓S(x)h
↓
T (x)]

= Ẽmain

[( ∑
σ∈Part(S)

∏
A∈σ
(−1)|A|−1(|A| − 1)!q↓A(x)

)( ∑
τ∈Part(T)

∏
B∈τ
(−1)|B|−1(|B| − 1)!q↓B(x)

)]
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=
∑

σ∈Part(S)
τ∈Part(T)

∏
R∈σ+τ

(−1)|R|−1(|R| − 1)!
∏

R∈σ[even]+τ[even]

q↓R

∑
a∈[n]σ[odd;≥3]

b∈[n]τ[odd;≥3]

∏
A∈σ[odd;≥3]

∏
i∈A
Ma(A),i ·

∏
B∈τ[odd;≥3]

∏
j∈B
Mb(B),j ·

Ẽmain

 ∏
{i}∈σ[1]

xi
∏

A∈σ[odd;≥3]

xa(A)
∏

{j}∈τ[1]
xj

∏
B∈τ[odd;≥3]

xb(B)

 (10.87)

Let us write fa : σ[odd]→ [n] to map A = {i}, i when |A| = 1 and to map A, a(A) when

|A| ≥ 3, and likewise gb : τ[odd]→ [n]. Then, expanding the pseudoexpectation, we have

=
∑

σ∈Part(S)
τ∈Part(T)

∏
R∈σ+τ

(−1)|R|−1(|R| − 1)!
∏

R∈σ[even]+τ[even]

q↓R

∑
a∈[n]σ[odd;≥3]

b∈[n]τ[odd;≥3]

∏
A∈σ[odd;≥3]

∏
i∈A
Ma(A),i ·

∏
B∈τ[odd;≥3]

∏
j∈B
Mb(B),j ·

∑
F∈F(|σ[odd]|,|τ[odd]|)

µ(F) · ZF(fa(A))A∈σ[odd],(gb(B))B∈τ[odd]

We say that F ∈ F(|S|, |T |) is an odd merge of (σ , τ) through F ′ ∈ F(|σ[odd]|, |τ[odd]|) if F

consists of even stars on the even parts of σ and τ , and even stars on the odd parts of σ and

τ with one extra leaf added to each, composed in the sense of the compositional ordering

of Definition 10.3.7 with F ′. See Figure 10.3 for an example. When F is an odd merge of

(σ , τ) through F ′, then F ′ is uniquely determined by σ,τ , and F . Using this notion, we may

rewrite the above as

=
∑

F∈F(|S|,|T |)

( ∑
σ∈Part(S)
τ∈Part(T)

F ′∈F(|σ[odd]|,|τ[odd]|)
F is an odd merge

of (σ ,τ) through F ′

∏
R∈σ+τ

(−1)|R|−1(|R| − 1)! · µ(F ′)
)
ZFS,T
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Figure 10.3: Odd merge of partitions. We illustrate an odd merge of two partitions σ and τ
through a forest ribbon diagram F , as used in the proof of Proposition 10.7.2. The gray boxes
show the components of the resulting diagram arising from the partitions (and, one step before,
arising from terms in the multiharmonic basis polynomials h↓S(x)), while the remainder is the forest
ribbon diagram that merges the odd parts of the partitions. The odd parts that are merged by F are
highlighted with bold brackets.

We make two further simplifying observations. First, the factors of (−1)|R| multiply to

(−1)|S|+|T |, and |S| + |T | must be even in order for F(|S|, |T |) to be non-empty, so we may

omit the (−1)|R| factors. Second, by the factorization µ(F) = ∏
v∈V�(F)(−(deg(v) − 2)!),

when F is an odd merge of (σ , τ) through F ′ then we have µ(F) = µ(F ′)∏|R|≥3 is odd(−(|R|−

1)!)
∏
|R|≥4 is even(−(|R| − 2)!), where both products are over R ∈ σ + τ satisfying the given

conditions. It may again be helpful to consult Figure 10.3 to see why this formula holds.

Using this, we may extract µ(F) and continue

=
∑

F∈F(|S|,|T |)

( ∑
σ∈Part(S)
τ∈Part(T)
F odd merge

of (σ ,τ)

(−1)|σ[≤2]|+|τ[≤2]| ∏
R∈σ[even;≥4]+τ[even;≥4]

(R − 1)

︸ ︷︷ ︸
=:η(F)

)
µ(F) · ZFS,T . (10.88)

It remains to analyze the inner coefficient η(F). To do this, it suffices to enumerate the
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pairs of partitions (σ , τ) of which F is an odd merge. We describe the possible partitions

below.

• If v ∈ V�(F) is the only � vertex of a skewed star connected component with leaves

i1, . . . , ik ∈ L (for k odd) and j ∈ R, then j must be a singleton in τ while i1, . . . , ik can

either (1) all be singletons in σ or (2) constitute one part {i1, . . . , ik} of σ . A symmetric

condition holds if there is more than one leaf in R and one leaf in L.

• If v ∈ V�(F) is the only � vertex of a sided star connected component with leaves

i1, . . . , ik ∈ L (for k even), then the i1, . . . , ik can either (1) all be singletons in σ ,

(2) constitute one part {i1, . . . , ik} of σ , or (3) be divided into an odd part {i1, . . . , ik} \

{ik?} and a singleton {ik?} for any choice of k? ∈ 1, . . . , k. A symmetric condition

holds if the leaves are all in R.

• If i1, i2 ∈ L form a sided pair in F , then i1, i2 can either (1) both be singletons in σ , or

(2) constitute one part {i1, i2} of σ . A symmetric condition holds if the two leaves are

in R.

• If v ∈ V�(F) is terminal, is not the only � vertex of its connected component, and

has leaf neighbors i1, . . . , ik ∈ L (for k odd), then the i1, . . . , ik can either (1) all be

singletons in σ , or (2) constitute one part {i1, . . . , ik} of σ . A symmetric condition

holds if the leaves are all in R.

• If v ∈ V�(F) is terminal, is not the only � vertex of its connected component, and has

leaf neighbors in both L and R, then all leaves attached to v must be singletons in σ

and τ (according to whether they belong to L or R, respectively).

• If i ∈ L and j ∈ R form a non-sided pair in F , then i and j must be singletons in σ

and τ , respectively.
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Factorizing η(F) according to which terminal � vertex or pair connected component each

leaf of F is attached to using these criteria, we find

η(F) =
∏

C∈conn(F)
C sided pair

(1− 1)
∏

v terminal in V�(F),
all leaf neighbors of v in L

or all leaf neighbors of v in R

(1− 1)
∏

C∈conn(F)
C sided even star

on k≥4 leaves

((k− 1)− k+ 1) ·

∏
C∈conn(F)
C skewed star
on ≥4 leaves

(1− 1)

= 1{F is stretched}, (10.89)

completing the proof.

10.7.2 Tying Bound and Bowtie Forest Ribbon Diagrams

The above does not appear to give the block diagonalization we promised—there exist

stretched ribbon diagrams in F(`,m) even when ` ≠m, so the off-diagonal blocks of Zmain

are non-zero. To find that this is an approximate block diagonalization, we must recog-

nize that the CGMs of many stretched ribbon diagrams are approximately equal (up to a

small error in operator norm) and then observe another combinatorial cancellation in these

“standardized” diagrams.

Specifically, we will show that all stretched forest ribbon diagrams’ CGMs can be reduced

to the following special type of stretched forest ribbon diagram.

Definition 10.7.3 (Bowtie forest ribbon diagram). We call F ∈ F(`,m) a bowtie forest if

every connected component of F is a pair or star with at least one leaf in each of L and R.

Each connected component of such F is a bowtie. We call a bowtie or bowtie forest balanced

if all components have an equal number of leaves in L and in R.

Note that there are no balanced bowtie forests in F(`,m) unless ` =m; thus, since in our
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final expression for the pseudomoments below only balanced bowtie forests will remain, we

will indeed have an approximate block diagonalization.

Next, we show that any stretched forest ribbon diagram can be “tied” to form a bowtie

forest ribbon diagram by collapsing every non-pair connected component to have a single �

vertex, while incurring only a small error in the associated CGMs.

Lemma 10.7.4 (Stretched forest ribbon diagrams: tying bound). Suppose that εtree(M ; (` +

m)/2) ≤ 1. Let F ∈ F(`,m) be stretched. Let tie(F) ∈ F(`,m) be formed by replacing each

connected component of F that is not a pair with the bowtie of a single � vertex attached to

all of the leaves of that connected component. Then, tie(F) is a bowtie forest, and

‖ZF −Ztie(F)‖ ≤ (` +m)(2‖M‖) 3
2 (`+m)εtree(M ; (` +m)/2).

The basic intuition behind the result is that, since every terminal � vertex of a stretched

ribbon diagram is connected to both L and R, the corresponding CGM may be factorized

into ZF = ALDAR, where AL and AR correspond to the contributions of edges attaching

L and R respectively to the internal vertices, while D is CGM of the induced “inner” ribbon

diagram on the � vertices. Thanks to the diagram being stretched, D is actually diagonal,

and the result essentially states that its only significant entries are those corresponding to

all � vertices in each connected component having the same index. That is the origin of the

εtree incoherence quantity here.

Proof of Lemma 10.7.4. We recall the statement of the result. Let F ∈ F(`,m) be a stretched

forest ribbon diagram, with all edges labelled with M . Let tie(F) be the forest ribbon dia-

gram constructed by tying every connected component of F that is not a pair into a bowtie.

By construction, tie(F) is a bowtie forest ribbon diagram. Our goal is then to show the bound

‖ZF −Ztie(F)‖ ≤ (` +m)(2‖M‖) 3
2 (`+m)εtree(M ; (` +m)/2). (10.90)
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Let us first suppose that T ∈ T (`,m) is connected. We will then show the bound

‖ZT −Ztie(T)‖ ≤ 2
3
2 (`+m)εtree(M ; (` +m)/2), (10.91)

the same as the above but without the leading factor of (` +m). Since the norm of the

CGM of a connected component of F that has k leaves is at most ‖M‖ 3
2k by Proposi-

tion 10.13.13 and Corollary 10.12.10, the bound on arbitrary F will then follow by applying

Proposition 10.13.4.

Write U ⊆ V�(T) for the set of terminal vertices of T . By Corollary 10.12.10, |U| ≤

|V�(T)| ≤ (`+m)/2. Recall that, since T is stretched, every vertex of U is adjacent to some

vertex of L and some vertex of R. Let A be the ribbon diagram on vertex triplet ((L, U),∅)

induced by T , let B be the ribbon diagram on vertex triplet ((U,U),∅) obtained by deleting

L and R from T , and let C be the ribbon diagram on vertex triplet ((U,R),∅) induced by

T . Then, by Proposition 10.13.11, we may factorize ZT = ZG[A]ZG[B]ZG[C]. Moreover, let

G′[B] be the ribbon diagram obtained by relabelling every edge in G[B] with the identity

matrix. Then we have Ztie(T) = ZG[A]ZG′[B]ZG[C]. Therefore, by norm submultiplicativity

and Proposition 10.13.13 applied to G[A] and G[C], we may bound

‖ZT −Ztie(T)‖ ≤ ‖ZG[A]‖ · ‖ZG[C]‖ · ‖ZG[B] −ZG′[B]‖ ≤ ‖M‖`+m‖ZG[B] −ZG′[B]‖. (10.92)

Since L(G[B]) = R(G[B]) = L(G′[B]) = R(G′[B]) = U , the matrices ZG[B] and ZG
′[B]

are diagonal. Let us view G[B] as being partitioned into edge-disjoint (but not necessarily

vertex disjoint) subtrees B1, . . . , Bn, such that every leaf of every Bi belongs to U . Since the

Bi are edge-disjoint, n is at most the number of edges in T , which by Corollary 10.12.10 is at

most 3
2(`+m). Since L(G[B]) = R(G[B]), the labellings κL and κR must be equal, so let us

simply write κ for this single labelling. Suppose that the leaves of Bi are `i,1, . . . , `i,ai ∈ U .
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Then, we have

ZG[B]s,s =
n∏
i=1

ZBi
(
M ;

(
s(κ(`i,1)), . . . , s(κ(`i,ai))

))
. (10.93)

By the definition of εtree, we have

∣∣∣∣∣1{s(κ(`i,1)) = · · · = s(κ(`i,ai))} − ZBi
(
M ;

(
s(κ(`i,1)), . . . , s(κ(`i,ai))

))∣∣∣∣∣
≤ εtree(M ;ai)

≤ εtree(M ; (` +m)/2). (10.94)

Since the Bi form an edge partition of T into subtrees, we have

n∏
i=1

1{s(κ(`i,1)) = · · · = s(κ(`i,ai))} = 1{s(i) = s(j) for all i, j ∈ [|U|]} = ZG′[B]s,s . (10.95)

Therefore, substituting and expanding, we find

∣∣∣∣ZG[B]s,s − ZG′[B]s,s

∣∣∣∣
=
∣∣∣∣∣∣
n∏
i=1

ZBi
(
M ;

(
s(κ(`i,1)), . . . , s(κ(`i,ai))

))− n∏
i=1

1{s(κ(`i,1)) = · · · = s(κ(`i,ai))}
∣∣∣∣∣∣

=
∣∣∣∣∣ ∑
A⊆[n]
A≠∅

∏
i∈A

(
ZBi

(
M ;

(
s(κ(`i,1)), . . . , s(κ(`i,ai))

))− 1{s(κ(`i,1)) = · · · = s(κ(`i,ai))}
)

∏
i∉A

1{s(κ(`i,1)) = · · · = s(κ(`i,ai))}
∣∣∣∣∣

≤
∑
A⊆[n]
A≠∅

εtree(M ; (` +m)/2)|A|

≤ 2nεtree(M ; (` +m)/2)

≤ 2
3
2 (`+m)εtree(M ; (` +m)/2), (10.96)
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completing the proof.

10.7.3 Simplification of Coefficients

We next define the result of tying all of the ribbon diagrams in Zmain:

Ztied
S,T :=

∑
F∈F(|S|,|T |)
F stretched

µ(F) · Ztie(F)
S,T , (10.97)

where since each bowtie forest can be formed by tying multiple stretched forests, we rewrite

to isolate the resulting coefficient of each bowtie forest,

=
∑

F∈F(|S|,|T |)
F bowtie forest

( ∑
F ′∈F(|S|,|T |)
F ′ stretched

tie(F ′)=F

µ(F ′)

︸ ︷︷ ︸
=:ξ(F)

)
ZFS,T . (10.98)

The following result gives the combinatorial analysis of the coefficients ξ(F) appearing here,

which yields a surprising cancellation that verifies that Zmain is approximately block diago-

nal.

Lemma 10.7.5 (Stretched forest ribbon diagrams: combinatorial reduction). Let F ∈ F(`,m)

be a bowtie forest. Then,

ξ(F) :=
∑

F ′∈F(|S|,|T |)
F ′ stretched
tie(F ′)=F

µ(F ′) = 1{F balanced}
∏

C∈conn(F)
C balanced bowtie

on 2k leaves

(−1)k−1(k− 1)!k!. (10.99)

We give the proof, a rather involved calculation with exponential generating functions, be-

low. We leave open the interesting problem of finding a more conceptual combinatorial

proof of this result, especially in light of the appearance of ξ(F) again in Lemma 10.8.5

later.
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Proof of Lemma 10.7.5. It suffices to consider connected forests, since both the left- and

right-hand sides of the statement factorize over connected components. Thus, we want to

show ∑
T∈T (`,m)
T stretched

µ(F) = 1{` =m}(−1)m−1(m− 1)!m!. (10.100)

It will be slightly easier to work with a less stringent definition of “stretched” which removes

the exceptions for skewed stars, and also allows sided stars if the other side has no • ver-

tices. Let us call F weakly stretched if every terminal � vertex has a neighbor both in L

and in R, or if there is only one � vertex and one of L and R is empty. Then, our task is

equivalent to showing

∑
T∈T (`,m)

T weakly stretched

µ(F) =



(−1)m−1(m− 1)!m! if ` =m ≥ 1,

−(m− 2)! if ` = 0,m ≥ 4 is even,

−(` − 2)! if m = 0, ` ≥ 4 is even,

−(m− 1)! if ` = 1,m ≥ 3 is odd,

−(` − 1)! if m = 1, ` ≥ 3 is odd,

0 otherwise.

(10.101)

We use the convention that lowercase functions of combinatorial variables, like f(a, b),

give coefficients, and uppercase functions of analytic variables, like F(x,y), give the corre-

sponding exponential generating functions.

Define the coefficients

c(k) =


−(k− 2)! if k ≥ 4 is even,

0 otherwise.
(10.102)
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Our goal is to compute the coefficients

f(`,m) =
∑

T∈T (`,m)
T weakly stretched

∏
v∈V�(T)

c(deg(v)), (10.103)

Equivalently, separating the terminal and non-terminal vertices, we may rewrite with the

following intermediate quantities:

gT (m) :=
∑

φ:[m]→V�(T)

∏
v∈V�(T)

c(deg(v)+ |φ−1(v)|) for a given T ∈ T (m), (10.104)

g(`,m) :=
∑

T∈T (`)
gT (m), (10.105)

h(`,m,n,p) :=
∑

π∈Part([`+m]; odd)
S∩{1,...,`}≠∅ for all S∈π

S∩{`+1,...,m}≠∅ for all S∈π

∏
S∈π
(−(|S| − 1)!)g(n+ |π|, p), (10.106)

f(`,m) = c(` +m)+
∑̀
a=0

m∑
b=0

(
`
a

)(
m
b

)
h(a,b,0, ` +m− a− b). (10.107)

The first term in the final expression counts the star tree on [a+b] having a single � vertex.

In any other tree, every terminal � vertex must be adjacent to an odd number of leaves,

giving the remaining recursion. We will calculate the exponential generating functions of

the sums appearing, in the same order as they are given above. We have introduced a

needlessly general version of h(·, ·, ·, ·) in order to make it simpler to close a recursion to

come.

Before proceeding, we compute the exponential generating function of the c(k):

C(x) =
∑
k≥0

xk

k!
c(k)

= −
∞∑
k=2

x2k

2k(2k− 1)

= 1
2
x2 − 1

2
(1+ x) log(1+ x)− 1

2
(1− x) log(1− x)k. (10.108)
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Next, to compute the exponential generating function of the gT (m), note that, grouping

by the values of |φ−1(v)| for each v , we may rewrite

gT (m) =
∑

z∈nV�(T)|z|=m

(
m
z

) ∏
v∈V�(T)

c(deg(v)+ zv). (10.109)

Thus, the generating function factorizes as

GT (x) =
∑
m≥0

xm

m!
gT (m)

=
∏

v∈V�(T)

 ∑
m≥0

xm

m!
f(deg(v)+m)


=

∏
v∈V�(T)

ddeg(v)

dxdeg(v)

 ∑
m≥0

xm

m!
c(m)


=

∏
v∈V�(T)

C(deg(v))(x). (10.110)

Next, for the g(`,m), we have

G(x,y) =
∑
`≥0

x`

`!

∑
T∈F(`)

T connected

GT (y). (10.111)

Let us define

G`(y) =
∑

T∈F(`)
T connected

GT (y). (10.112)

A tree on ` > 1 leaves can either be a single edge between two leaves (if ` = 2), or will

have every leaf connected to an internal vertex. In the latter case, let us think of the tree

as being rooted as the internal vertex that the leaf labelled ` is attached to. Then, recur-

sively, the tree consists of several rooted trees, whose leaves form a partition of [` − 1],

attached to the single new root. (This is similar to our formalism of “rooted odd trees” from
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Definition 10.3.12.) Writing this recursive structure in terms of generating functions,

G`(y) = 1{` = 2} +
∑

π∈Part([`−1])

C(|π|+1)(y)
∏
S∈π

G|S|+1(y). (10.113)

Now, noting that G(x,y) is the exponential generating function of the Gk(y), we use the

composition formula. This calculation is clearer if we reindex, defining G̃`(y) = G`+1(y),

which satisfy

G̃`(y) = 1{` = 1} +
∑

π∈Part([`])

C(|π|+1)(y)
∏
S∈π

G̃|S|(y). (10.114)

Note that ∑
`≥0

x`

`!
C(`)(y) = C(x +y) (10.115)

since this is just a Taylor expansion of C about y . The generating function of C(k+1)(y) is

then the derivative in x, which is C′(x +y). However, we must subtract off the term that is

constant in x before using this in the composition formula, giving C′(x+y)−C′(y). Thus,

we find by the composition formula

G̃(x,y) :=
∞∑
`=0

x`

`!
G̃`(y) = x + C′(G̃(x,y)+y)− C′(y). (10.116)

We have

C′(x) = x − 1
2

log(1+ x)+ 1
2

log(1− x) (10.117)

whereby the above functional equation is

G̃(x,y) = x + G̃(x,y)+y − 1
2

log(1+ G̃(x,y)+y)+ 1
2

log(1− G̃(x,y)−y)−y

+ 1
2

log(1+y)− 1
2

log(1−y),
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which, after cancellations, gives

0 = x− 1
2

log(1+G̃(x,y)+y)+ 1
2

log(1−G̃(x,y)−y)+ 1
2

log(1+y)− 1
2

log(1−y), (10.118)

and exponentiating we have

e−2x = (1− G̃(x,y)−y)(1+y)
(1+ G̃(x,y)+y)(1−y) =

1− G̃(x,y)
1−y

1+ G̃(x,y)
1+y

(10.119)

solving which we find

G̃(x,y) = 1− e−2x

1
1−y + e−2x

1+y
= (1−y2)(1− e−2x)

1+ e−2x +y(1− e−2x)
= 1−y2

y + coth(x)
. (10.120)

Finally, G(x,y) is the integral with respect to x, with the boundary condition G(0, y) = 0.

This gives

G(x,y) = log(cosh(x))− xy + log(1+y tanh(x)) (10.121)

Note that, when y = 0, we recover the result from the proof of Lemma 10.3.11 that the

sum over trees of our Mobius function gives the alternating tangent numbers from Exam-

ple 10.3.6, whose generating function is log(cosh(x)).

We next compute the exponential generating function of the h(`,m,n,p). Define the

simpler version of these coefficients, without the condition that each subset of the partition

π intersect both {1, . . . , `} and {` + 1, . . . ,m}:

h(`,m,n,p) :=
∑

π∈Part([`+m]; odd)

∏
S∈π
(−(|S| − 1)!)g(n+ |π|, p). (10.122)

Note that, by decomposing an odd partition into the parts that are contained in k, the parts
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that are contained in `, and all the other parts, we have

h̃(`,m,n,p) =
∑̀
q=0

m∑
r=0

(
`
q

)(
m
r

) ∑
π∈Part([q];odd)
ρ∈Part([r];odd)

∏
S∈π+ρ

(−(|S|−1)!)h(`−q,m−r ,n+|π|+|ρ|, p).

(10.123)

Now, by the composition formula this implies

H̃(w,x,y, z) = H(w,x,y − tanh−1(w)− tanh−1(x), z) (10.124)

and therefore we can conversely recover H from H̃ by

H(w,x,y, z) = H̃(w,x,y + tanh−1(w)+ tanh−1(x), z). (10.125)

On the other hand, again by the composition formula and the addition formula,

H̃(w,x,y, z) =
∑
m≥0

ym

m!
∂m

∂tm
[G(t, z)]t=− tanh−1(w+x) = G(y − tanh−1(w + x), z) (10.126)

and thus

H(w,x,y, z) = G(y + tanh−1(w)+ tanh−1(x)− tanh−1(w + x), z). (10.127)

Lastly, by the addition formula we have

F(x,y) = C(x +y)+H(x,y,0, x +y)

= C(x +y)+G(tanh−1(x)+ tanh−1(y)− tanh−1(x +y),x +y)
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and substituting in for C and G,

= 1
2
(x +y)2 − 1

2
(1+ x +y) log(1+ x +y)− 1

2
(1− x −y) log(1− x −y)

+ log(cosh(tanh−1(x)+ tanh−1(y)− tanh−1(x +y)))

− (x +y)(tanh−1(x)+ tanh−1(y)− tanh−1(x +y))

+ log(1+ (x +y) tanh(tanh−1(x)+ tanh−1(y)− tanh−1(x +y))), (10.128)

which after some algebra is equivalent to

= C(x)+ C(y)− x tanh−1(y)−y tanh−1(x)+ xy + log(1+ xy). (10.129)

Expanding the exponential generating function coefficients of the final line then gives the

result.

Equipped with these results, let us summarize our analysis below, giving a combined

error bound between Zmain and Ztied as well as the final form of the latter.

Corollary 10.7.6. Suppose that εtree(M ;d) ≤ 1. We have

Ztied
S,T =

∑
F∈F(|S|,|T |)

F balanced bowtie forest

ξ(F) · ZFS,T , (10.130)

and this matrix satisfies

‖Zmain −Ztied‖ ≤ (6d)10d‖M‖3dεtree(M ;d). (10.131)

Proof. The first formula follows from Lemma 10.7.5. For the norm bound, we apply the

result of Lemma 10.7.4 to each CGM term in each block of Zmain and use the norm bound of
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Proposition 10.12.4, which gives

‖Zmain −Ztied‖ ≤
d∑

`,m=0

(` +m)(2‖M‖) 3
2 (`+m)εtree(M ; (` +m)/2)

∑
F∈F(`,m)

|µ(F)|

≤ (2d)(2‖M‖)3dεtree(M ;d)
d∑

`,m=0

|F(`,m)| max
F∈F(`,m)

|µ(F)|

and using Propositions 10.12.11 and 10.12.5 to bound |F(`,m)| and |µ(F)| respectively, we

finish

≤ (2d)(2‖M‖)3dεtree(M ;d) · d2(6d)3d(6d)6d, (10.132)

and the remaining bound follows from elementary manipulations.

10.8 Approximate Gram Factorization: Proof of

Lemma 10.6.2

To prove a lower bound on λmin(Zmain), our strategy will be to justify the equality

Ẽmain[h↓S(x)h
↓
T (x)] ≈ 〈hS(V >z), hT (V >z)〉∂, (10.133)

that was suggested by our calculations in Chapter 8. The right-hand side is block diagonal

(since homogeneous polynomials of different degrees are apolar), so our block diagonaliza-

tion of the left-hand side is a useful start. To continue, we follow the same plan for the

right-hand side in this section as we did for the left-hand side in the previous section: we (1)

express the Gram matrix as a linear combination of CGMs, (2) show that the corresponding

ribbon diagrams may be simplified to the same bowtie forests from Definition 10.7.3, and

(3) perform a combinatorial analysis of the coefficients attached to each bowtie forest after

318



the simplification.

10.8.1 Partition Transport Plans and Ribbon Diagrams

We first describe the class of ribbon diagrams that will arise in expanding the inner products

above, which may be viewed as encoding the following kind of combinatorial object.

Definition 10.8.1 (Partition transport plan). For a pair of partitions σ,τ ∈ Part([d]), we

write Plans(σ , τ) for the set of matrices D ∈ Nσ×τ where the sum of each row indexed by

A ∈ σ is |A|, and the sum of each column indexed by B ∈ τ is |B|.

We borrow the terms “transport” and “plan” from the theory of optimal transport [Vil08],

since D may be seen as specifying a protocol for moving masses corresponding to the

part sizes of σ and τ . These same matrices also play a crucial role in the Robinson-

Schensted-Knuth correspondence of representation theory and the combinatorics of Young

tableaux (where they are sometimes called generalized permutations) [Ful97]. It is an in-

triguing question for future investigation whether this connection can shed light on our use

of Plans(σ , τ).

We encode a pair of partitions and a partition transport plan between them into a ribbon

diagram in the following way.

Definition 10.8.2 (Partition transport ribbon diagram). Suppose that σ,τ ∈ Part([d]) and

D ∈ Plans(σ , τ). Then, let G = G(σ,τ,D) be the associated partition transport ribbon

diagram, with graphical structure defined as follows:

• L(G) and R(G) are two disjoint sets, each labelled by 1, . . . , d.

• V�(G) contains one vertex for each part of σ[≥ 2] and each part of τ[≥ 2].

• Whenever i ∈ A ∈ σ , then the vertex labelled i in L and the � vertex corresponding to

319



A have an edge between them. Likewise, whenever j ∈ B ∈ τ , then the vertex labelled

j in R and the � vertex corresponding to B have an edge between them.

• When A ∈ σ[≥ 2] and B ∈ τ[≥ 2], then there are DA,B parallel edges between the

corresponding � vertices.

• When A = {i} ∈ σ[1], B ∈ τ[≥ 2], and DA,B = 1, then there is an edge between the

vertex labelled i in L and the � vertex corresponding to B. Likewise, when B = {j} ∈

τ[1], A ∈ σ[≥ 2], and DA,B = 1, then there is an edge between the vertex labelled j in

R and the � vertex corresponding to A.

• When A = {i} ∈ σ[1], B = {j} ∈ τ[1], and DA,B = 1, then there is an edge between the

vertex labelled i in L and the vertex labelled j in R.

See Figure 10.4 for an example featuring all of these situations that may be clearer than the

written description.

This formalism allows us to make the following compact CGM description of the Gram

matrix of the non-lowered multiharmonic polynomials.

Proposition 10.8.3 (CGM expansion of multiharmonic Gram matrix). Define Y ∈ R(
[n]
≤d)×([n]≤d)

by

YS,T = 〈hS(V >z), hT (V >z)〉∂. (10.134)

Then, Y is block diagonal, with diagonal blocks Y [d,d] ∈ R(
[n]
d )×([n]d ) given by

Y [d,d] =
∑

σ,τ∈Part([d])

∏
R∈σ+τ

(−1)|R|−1(|R| − 1)!(|R|)!
∑

D∈Plans(σ ,τ)

1
D!
ZG(σ,τ,D)(M), (10.135)

where D! :=∏A∈σ
∏
B∈τ DA,B !.
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σ = {{1,2,3,4},
{5,6,7,8},
{9},
{10,11,12}}

τ = {{1,2,3,4,5},
{6,7,8},
{9},
{10},
{11,12}}

D =


2 2 0 0 0
3 1 0 0 0
0 0 1 0 0
0 0 0 1 2


Figure 10.4: Partition transport plan and ribbon diagram. We illustrate an example of two par-
titions σ,τ ∈ Part([12]), a partition transport plan D ∈ Plans(σ , τ), and the associated partition
transport ribbon diagram G(σ ,τ,D).

Proof. We expand directly by linearity:

〈hS(V >z), hT (V >z)〉∂

=
〈 ∑
σ∈Part(S)

∏
A∈σ
(−1)|A|−1(|A| − 1)!qA(V >z),

∑
τ∈Part(T)

∏
B∈τ
(−1)|B|−1(|B| − 1)!qB(V >z)

〉
∂

=
∑

σ∈Part(S)
τ∈Part(T)

∏
R∈σ+τ

(−1)|R|−1(|R| − 1)!
〈∏
A∈σ

qA(V >z),
∏
B∈τ
qB(V >z)

〉
∂

(10.136)

The remaining polynomials we may further expand

∏
A∈σ

qA(V >z) =
∏

A={i}∈σ[1]
〈vi,z〉 ·

∏
A∈σ[≥2]


n∑
a=1

∏
i∈A
Mai · 〈va,z〉|A|


=

∏
A={i}∈σ[1]

〈vi,z〉
∑

a∈[n]σ[≥2]

∏
A∈σ[≥2]

∏
i∈A
Mi,a(A) · 〈va(A),z〉|A|

=
∑

a∈[n]σ[≥2]

∏
A∈σ

∏
i∈A
Mi,fa(A) · 〈vfa(A),z〉|A|, (10.137)
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where we define fa(A) = a(A) if |A| ≥ 2, and fa(A) = i if A = {i}. Likewise, for b ∈ [n]τ[≥2],

as will arise in qB , we set gb(B) = b(B) if |B| ≥ 2, and gb(B) = j if B = {j}. Thus we may

expand the remaining inner product from before as

〈∏
A∈σ

qA(V >z),
∏
B∈τ
qB(V >z)

〉
∂

=
∑

a∈[n]σ[≥2]

b∈[n]τ[≥2]

∏
A∈σ

∏
i∈A
Mi,fa(A) ·

∏
B∈τ

∏
j∈B
Mj,gb(B) ·

〈∏
A∈σ
〈vfa(A),z〉|A|,

∏
B∈τ
〈vfb(B),z〉|B|

〉
∂

.

(10.138)

Finally, this remaining inner product we expand by the product rule, executing which

gives rise to the summation over partition transport plans that arises in our result (this

calculation is easy to verify by induction, or may be seen as an application of the more

general Faà di Bruno formula; see, e.g., [Har06]):

〈 ∏
A∈σ
〈vf(A),z〉|A|,

∏
B∈τ
〈vf(B),z〉|B|

�
∂

=
∏
A∈σ
〈vf(A),∂〉|A|

∏
B∈τ
〈vf(B),z〉|B|

=
∏
B∈τ
(|B|)!

∑
D∈Plans(σ ,τ)

∏
A∈σ

(
|A|

DA,B1 · · ·DA,B|τ|

) ∏
A∈σ

∏
B∈τ
(Mf(A),f (B))DA,B

=
∏

R∈σ+τ
(|R|)!

∑
D∈Plans(σ ,τ)

∏
A∈σ

∏
B∈τ

(Mf(A),f (B))DA,B

DA,B !
, (10.139)

where we remark that in the final expression here we restore the symmetry between σ

and τ , which was briefly broken to perform the calculation. The final result then follows

from combining the preceding equations (10.136), (10.138), and (10.139), identifying the

summation occurring as precisely that defined by the partition transport ribbon diagram

corresponding to (σ , τ,D).
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Figure 10.5: Tying stretched forest and partition transport ribbon diagrams. We illustrate the
key diagrammatic idea of the argument proving Lemma 10.6.2, that both the stretched forest ribbon
diagrams appearing in Zmain and the partition transport ribbon diagrams appearing in Y may be
“tied” to form the same bowtie forest ribbon diagrams.

10.8.2 Tying Bound

We now describe the “tied” version of a partition transport ribbon diagram and bound the

error in operator norm incurred by the tying procedure.

Lemma 10.8.4 (Partition transport ribbon diagrams: tying bound). Let σ,τ ∈ Part([d])

and D ∈ Plans(σ , τ). Let G = G(σ,τ,D) ∈ F(d,d) be the associated partition transport

ribbon diagram. Let tie(G) denote the diagram obtained from G by contracting all connected

components that are not pairs to a bowtie. Then, tie(G) is a balanced bowtie forest, and

‖ZG −Ztie(G)‖ ≤ d2‖M‖3d(εpow(M)+ εoffdiag(M)+ εcorr(M)). (10.140)

The proof considers various cases depending on the graph structure of G, but is similar in

principle to the proof of Lemma 10.7.4, the tying bound for stretched forest diagrams—we

again factorize CGMs and argue that the “inner” ribbon diagrams may be collapsed without

incurring a substantial error in operator bound.

Proof of Lemma 10.8.4. We recall the statement: let σ,τ ∈ Part([d]), let D ∈ Plans(σ , τ),

and let G = G(σ,τ,D) be the associated partition transport ribbon diagram. We will show
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the slightly stronger bound,

‖ZG −Ztie(G)‖ ≤ d‖M‖3d
(
εpow(M)+ dεoffdiag(M)+ dεcorr(M)

)
. (10.141)

As in the previous proof, let us first suppose that G is connected. We will then show the

bound

‖ZG −Ztie(G)‖ ≤ ‖M‖3d
(
εpow(M)+ dεoffdiag(M)+ dεcorr(M)

)
, (10.142)

the same as the above but without the leading factor of d. Since there are exactly 3d edges in

any connected component of a partition transport ribbon diagram such that the component

has 2d leaves, the final result will then follow by applying Propositions 10.13.13 and 10.13.4.

Let us write ∂�L, ∂�R ⊂ V� for the sets of � vertices with a neighbor in L and R,

respectively. We have ∂�L ∪ ∂�R = V�, and we observe that ∂�L ∩ ∂�R = ∅ if and only if

both σ and τ contain no singletons.

Case 1: d = 1. This is only possible if σ = τ = {{1}} andD = [1]. In this case, G = tie(G)

(both consist of two leaves connected to one another), so ‖ZG −Ztie(G)‖ = 0.

Case 2: ∂�L∩ ∂�R ≠∅ and d ≥ 2. We argue by induction on |V�(G)| that the following

bound holds in this case:

‖ZG −Ztie(G)‖ ≤ ‖M‖3d · |V�(G)| · εoffdiag(M) (10.143)

If |V�(G)| = 1, then G = tie(G), so ‖ZG − Ztie(G)‖ = 0. Now, suppose we have estab-

lished the result for all partition transport ribbon diagrams satisfying the assumptions of

this case with |V�| ≤ m, and have |V�(G)| = m + 1 > 1. Let v ∈ ∂�L ∩ ∂�R. We apply

the factorization of Proposition 10.13.11 with A = L, B = V�, and C = R, which factor-
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izes ZG = ZG[A]ZG[B]ZG[C]. Since v ∈ L(G[B]) ∩ R(G[B]), ZG[B] is the direct sum of n

further CGMs where v is pinned to each possible value in [n]. Let G′[B] denote the ribbon

diagram formed from G[B] by relabelling all edges between v and all of its neighbors with

the identity matrix. When v is pinned, the factors contributed by these edges are constant

factors in each direct summand CGM, so we have ‖ZG[B]−ZG′[B]‖ ≤ ‖M‖|E(G[B])|εoffdiag(M).

Now, let G′ denote the ribbon diagram formed from G by contracting all edges between v

and all of its neighbors in V�. Then, we have ZG
′ = ZG[A]ZG′[B]ZG[C], so ‖ZG′ − ZG‖ ≤

‖M |E(G)|εoffdiag(M) ≤ ‖M‖3dεoffdiag(M) by Proposition 10.13.13 and Corollary 10.12.10.

Since tie(G′) = tie(G), we find

‖ZG −Ztie(G)‖

≤ ‖ZG −ZG′‖ + ‖ZG′ −Ztie(G′)‖

≤ ‖M‖3dεoffdiag(M)+ ‖M 3d‖ · |V�(G′)| · εoffdiag(M) (inductive hypothesis)

Since |V�(G′)| < |V�(G)| by construction, the proof of (10.143) is complete.

Lastly, since each � vertex of G corresponds to a part of σ or τ having size at least 2,

we have |V�(G)| ≤ d, so we obtain the simpler version

‖ZG −Ztie(G)‖ ≤ ‖M‖3ddεoffdiag(M). (10.144)

Case 3: ∂�L∩∂�R =∅, d ≥ 2, and a row or column ofD has only one non-zero entry. Let

us suppose without loss of generality that it is a row of D that has the specified property,

which corresponds to a part S ∈ σ . Let v ∈ V� be the associated � vertex in G. The given

condition means that v has only one neighbor in ∂�R, which we call w, and that there are

|S| ≥ 2 parallel edges between v and w. Let G′ denote the diagram where v and w are
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identified. Then, by Proposition 10.13.13, we have

‖ZG −ZG′‖ ≤ ‖M‖3dεpow(M). (10.145)

We note that tie(G′) = tie(G), and Case 2 applies to G′ (indeed, G′ is the partition trans-

port ribbon diagram formed by replacing the part S of σ with |S| singletons that are all

transported to the part of τ corresponding to w). Therefore, using that result, we conclude

‖ZG −Ztie(G)‖ ≤ ‖M‖3d(εpow(M)+ dεoffdiag(M)). (10.146)

Case 4: ∂�L∩ ∂�R = ∅, d ≥ 2, and no row or column of D has only one non-zero entry.

We argue by induction on |V�(G)| that the following bound holds:

‖ZG −Ztie(G)‖ ≤ ‖M‖3d(εpow(M)+ |V�(G)|εcorr(M)). (10.147)

We cannot have |V�(G)| = 1, since then the single � vertex would need to belong to ∂�L ∩

∂�R. Thus the base case is |V�(G)| = 2. In this case, G consists of two � vertices, each

connected to d leaves, and with d parallel edges between them. We apply the factorization

of Proposition 10.13.11 with A = L, B = V�, and C = R. Then, G[B] consists of two vertices,

one in L(G[B]) and one in R(G[B]), connected by d parallel edges. Writing G′[B] for the

diagram where these edges are replaced by a single one labelled with the identity, we then

have ‖ZG[B] − ZG′[B]‖ = ‖M ◦d − In‖ ≤ εpow(M). And, since Ztie(G) = ZG[A]ZG′[B]ZG[C],

using Proposition 10.13.13 we find

‖ZG −Ztie(G)‖ ≤ ‖M‖3dεpow(M). (10.148)

(We could reduce the exponent to 2d here, but accept the insignificant additional slack to
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make the final expression cleaner.)

Now, suppose we have established the result for all partition transport ribbon diagrams

G with |V�(G)| ≤ m, and have G with |V�(G)| = m + 1 > 2. Since G is connected, has

∂�L ∩ ∂�R = ∅, and d > 1, all parts of σ and τ must have size at least 2. Moreover,

since |V�(G)| > 2, we must have either |σ | > 1 or |τ| > 1. Let us suppose, without loss of

generality, that |σ | > 1 (otherwise we may reverse the roles of σ and τ , which amounts to

transposing the ribbon diagram G and the associated CGM).

Choose any part S ∈ σ , and let v ∈ V�(G) be the associated � vertex. We apply the

factorization of Proposition 10.13.11 with A = L∪ (∂�L \ {v}), B = ∂�R∪ {v}, and C = R.

Consider the diagram G[B]. We have R(G[B]) = ∂�R and V�(G[B]) = ∅. Moreover, by the

assumption of this case, every vertex of ∂�R has a neighbor in L\{v}. Therefore, L(G[B]) =

∂�R∪ {v}. In particular, R(G[B]) ⊆ L(G[B]), so R(G[B]) = L(G[B])∩R(G[B]) = ∂�R.

Following the pinning transformation of Proposition 10.13.10, after a suitable permuta-

tion, the CGM of G[B] will then be the direct sum of column vectors vs ∈ Rn, indexed by

s ∈ [n]∂�R, where

(vs)i =
∏

x∈∂�v
Mi,s(x), (10.149)

where the product is understood to repeat vertices x when v is connected to x with multiple

edges. In particular, we have

‖vs‖2
2 =

n∑
i=1

∏
x∈∂v

M2
i,s(x), (10.150)

and since, again by the assumption of this case, v has at least two different neighbors in

∂�R, we have ‖vs‖2 ≤ εcorr(M) whenever s is not constant on ∂v . Thus letting G′ be the

diagram formed from G by identifying all neighbors of v , and applying Proposition 10.13.13,

we find that

‖ZG −ZG′‖ ≤ ‖M‖3dεcorr(M), (10.151)

327



so by the inductive hypothesis,

‖ZG −Ztie(G)‖ ≤ ‖M‖3dεcorr(M)+ ‖M‖3d(εpow(M)+ |V�(G′)|εcorr(M)), (10.152)

and since |V�(G′)| < |V�(G)|, the induction is complete. Finally, using again that |V�(G)| ≤

d since all parts of σ and τ have size at least 2 in this case, we find the looser bound

‖ZG −Ztie(G)‖ ≤ ‖M‖3d(εpow(M)+ dεcorr(M)). (10.153)

Conclusion. In the four cases considered above, we have shown that either ‖ZG−Ztie(G)‖

is zero, or is bounded as in (10.144), (10.146), and (10.153). We then observe that the “master

bound” in the statement is larger than each of these, completing the proof.

10.8.3 Simplification of Coefficients

Next, we describe the result of tying every ribbon diagram in Y . As before, this involves a

combinatorial calculation to sum over all diagrams that produce a given bowtie forest upon

tying. As we would hope, the resulting coefficients are the same as those arising in Ztied.

Lemma 10.8.5 (Partition transport ribbon diagrams: combinatorial reduction). For d ∈ N,

define Y tied[d,d] ∈ R(
[n]
d )×([n]d ) by

Y tied[d,d] :=
∑

σ,τ∈Part([d])

∏
A∈σ+τ

(−1)|A|−1(|A| − 1)!(|A|)!

∑
D∈Plans(σ ,τ)

1
D!
Ztie(G(σ,τ,D))(M). (10.154)

Then,

Y tied[d,d] =
∑

F∈F(d,d)
F balanced bowtie forest

ξ(F) ·ZF , (10.155)

328



where ξ(F) is the same coefficient from Lemma 10.7.5, given by

ξ(F) = 1{F balanced}
∏

C∈conn(F)
C balanced bowtie

on 2k leaves

(−1)k−1(k− 1)!k!. (10.156)

In particular, the direct sum of Y tied[d′,d′] over 0 ≤ d′ ≤ d equals Ztied as defined in (10.97).

Remark 10.8.6. We note that the fact that the combinatorial quantities in Lemma 10.7.5

earlier, sums of Möbius functions of stretched forests, and those in Lemma 10.8.5 above,

sums of combinatorial coefficients of partition transport plans, are equal is quite surprising.

We isolate this fact to emphasize its unusual form:

∑
F∈F(`,m)
F stretched

µ(F) =
∑

σ∈Part([`])
τ∈Part([m])

∏
A∈σ+τ

(−1)|A|−1(|A| − 1)!(|A|)!
∑

D∈Plans(σ ,τ)

1
D!
. (10.157)

Our proofs, unfortunately, give little insight as to why this should be the case, instead showing,

in an especially technical manner for the left-hand side, that both sides equal another quan-

tity. It would be interesting to find a combinatorial or order-theoretic argument explaining

this coincidence, which is crucial to our argument, more directly.

Proof of Lemma 10.8.5. Let us say that a partition transport plan D ∈ Plans(σ , τ) is con-

nected if its diagram G(σ ,τ,D) is connected, and refer to the connected components of D,

denoted conn(D), as the subsets of σ + τ that belong to each connected component of

the diagram. As in the previous Lemma, both sides of the result factorize over connected

components, so it suffices to show that

∑
σ,τ∈Part([d])

(−1)|σ |+|τ|
∏

A∈σ+τ
(|A| − 1)!(|A|)!

∑
D∈Plans(σ ,τ)
D connected

1
D!
= (−1)d−1(d− 1)!d!, (10.158)

Let us first work with the innermost sum. For σ,τ arbitrary partitions, writing ‖σ‖ =
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∑
S∈σ |S| and likewise for ‖τ‖, by the inner product calculation from Proposition 10.8.3 we

have ∑
D∈Plans(σ ,τ)

1
D!
= 1{‖σ‖ = ‖τ‖} d!∏

A∈σ+τ(|A|)!
. (10.159)

We now compute the restriction to connected D using Möbius inversion (a similar calcula-

tion to the proof of Lemma 10.3.11). For π ∈ Part(σ + τ), let us define

b(π) :=
∑

D∈Plans(σ ,τ)
conn(D)=π

1
D!
. (10.160)

Then, the quantity we are interested in is b({σ + τ}). The downward sums of b(π) are

c(π) :=
∑
π ′≤π

b(π ′)

=
∑

D∈Plans(σ ,τ)
conn(D)≤π

1
D!

=
∏
ρ∈π

 ∑
D∈Plans(σ∩ρ,τ∩ρ)

1
D!


= 1{‖σ ∩ ρ‖ = ‖τ ∩ ρ‖ for all ρ ∈ π}

∏
ρ∈π(‖ρ‖/2)!∏
A∈σ+τ(|A|)!

. (10.161)

Therefore, by Möbius inversion (in the poset Part(σ + τ)),

∑
D∈Plans(σ ,τ)
D connected

1
D!

= b({σ + τ})

=
∑

π∈Part(σ+τ)
µPart(π, {σ + τ}) c(π)

= 1∏
A∈σ+τ(|A|)!

∑
π∈Part(σ+τ)

‖σ∩ρ‖=‖τ∩ρ‖ for all ρ∈π

(−1)|π|−1(|π| − 1)!
∏
ρ∈π
(‖ρ‖/2)! (10.162)
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Now, we substitute this into the left-hand side in the initial statement:

∑
σ,τ∈Part([d])

(−1)|σ |+|τ|
∏

A∈σ+τ
(|A| − 1)!(|A|)!

∑
D∈Plans(σ ,τ)
D connected

1
D!

=
∑

σ,τ∈Part([d])

(−1)|σ |+|τ|
∏

A∈σ+τ
(|A| − 1)!

∑
π∈Part(σ+τ)

‖σ∩ρ‖=‖τ∩ρ‖ for all ρ∈π

(−1)|π|−1(|π| − 1)!
∏
ρ∈π
(‖ρ‖/2)!

and exchanging the order of summation,

=
∑

π∈Part([2d])
|R∩{1,...,d}|=|R∩{d+1,...,2d}|

for all R∈π

(−1)|π|−1(|π| − 1)!
∏
R∈π
(|R|/2)!

∑
σ∈Part({1,...,d})

τ∈Part({d+1,...,2d})
σ+τ≤π

(−1)|σ |+|τ|
∏

A∈σ+τ
(|A| − 1)!. (10.163)

We again think in terms of Möbius functions, but now on a different poset: on the prod-

uct poset Part({1, . . . , d})×Part({d+1, . . . ,2d}), the Möbius function is (see [Rot64] for this

fact)

µPart×Part(({{1}, . . . , {`}}, {{`+1}, . . . , {2`}}), (σ , τ)) = (−1)|σ |+|τ|
∏

A∈σ+τ
(|A|−1)!, (10.164)

and {(σ , τ) : σ + τ ≤ π} is an interval. Therefore, the inner sum above is zero unless every

part of π has size two, so that π is a matching of {1, . . . , d} with {d + 1, . . . ,2d}, in which

case the inner sum is 1. There are d! such matchings π , so we find that the above expression

equals (−1)d−1(d− 1)!d!, giving the result.

We again summarize our findings below.

Corollary 10.8.7. ‖Y −Ztied‖ ≤ d5d‖M‖3d(εpow(M)+ εoffdiag(M)+ εcorr(M)).
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Proof. Since Y and Ztied are both block diagonal, it suffices to consider a diagonal block

indexed by
(
[n]
d

)
. Since by Lemma 10.8.5 this block of Ztied is Y tied[d,d], this amounts to

bounding ‖Y [d,d] −Y tied[d,d]‖. Applying triangle inequality and Lemma 10.8.4, we find

‖Y [d,d] −Y tied[d,d]‖

≤
∑

σ,τ∈Part([d])

∏
A∈σ+τ

(|A| − 1)!(|A|)!
∑

D∈Plans(σ ,τ)

1
D!
‖ZG(σ,τ,D) −Ztie(G(σ,τ,D))‖

≤ d2‖M‖3d(εpow(M)+ εoffdiag(M)+ εcorr(M)) · (d− 1)!d! ·
∑

σ,τ∈Part([d])

|Plans(σ , τ)|

and bounding |Part([d])| and |Plans(σ , τ)| using Propositions 10.12.7 and 10.12.8 respec-

tively and noting that d · d! ≤ dd we have

≤ ‖M‖3d(εpow(M)+ εoffdiag(M)+ εcorr(M)) · d2d · d2ddd, (10.165)

and the result follows.

Finally, what will be the crucial feature of Y for us is that its spectrum is bounded

below. Since Y is formed by definition as a Gram matrix we will certainly have Y � 0;

however, as we show below, we moreover have Y � λI for some small but positive λ > 0,

depending on the smallest eigenvalue of M . Intuitively, before any technical reasoning we

would already expect some quantitative statement of this kind, since whenever M is non-

singular the hS(V >z) are linearly independent and their conditioning should depend mostly

on the conditioning of (V >z)S .

Proposition 10.8.8. λmin(Y ) ≥ λmin(M)d.

Proof. Since Y is block diagonal, it suffices to show the result for each Y [d,d]. Let U ∈

RMd([n])×([n]d ) have as its columns the monomial coefficients of the polynomials hS(x) (not-

ing that the entries of the columns are indexed by multisets in [n], compatible with this

332



interpretation), and let A ∈ RMd([n])×Md([n]) have as its entries AS,T = 〈(V >z)S , (V >z)T 〉∂ .

We then have Y [d,d] = U>AU .

Write the singular value decomposition V = Q1ΣQ>2 for Qi ∈ O(n) and Σ diagonal

containing the singular values of V . Then, applying the orthogonal invariance of Proposi-

tion 8.3.4, we have AS,T = 〈(Q2Σz)S , (Q2Σz)T 〉∂ . Now, letting U ′ ∈ RMd([n])×Md([n]) have

as its columns the monomial coefficients of (Q2z)S and letting A′ ∈ RMd([n])×Md([n]) have

entries A′S,T = 〈(Σz)S , (Σz)T 〉∂ , we have A = U ′>A′U ′, and A′ is a diagonal matrix with

entries equal to d! multiplied by various products of 2d of the singular values of V . In par-

ticular, letting σmin be the smallest such singular value, we have A′ � σ 2d
minIMd([n]). There-

fore, A � σ 2d
min · d!U ′>U ′. But the entries of the matrix d!U ′>U ′ are the inner products

〈(Q2z)S , (Q2z)T 〉∂ = 〈zS ,zT 〉∂ , again by orthogonal invariance. Thus this matrix is merely

d!IMd([n]), so we find A � σ 2d
mind!IMd([n]).

Therefore, Y [d,d] � σ 2d
mind!U>U . Since the only multilinear monomial appearing in hS(x)

is xS , and this occurs with coefficient 1, the block of U> indexed by all columns and rows

corresponding to multisets with no repeated elements is the identity. In particular then,

U>U � I([n]d ), so Y [d,d] � σ 2d
mind!I([n]d ). Finally, since M = V >V , we have λmin(M) = σ 2

min,

and the result follows.

Combining our results, we are now prepared to prove Lemma 10.6.2.

Proof of Lemma 10.6.2. We need only recall the main results from the last two sections:

‖Zmain −Ztied‖ ≤ (6d)10d‖M‖3dεtree(M ;d), (Corollary 10.7.6)

‖Y −Ztied‖ ≤ d5d‖M‖3d(εpow(M)+ εoffdiag(M)+ εcorr(M)), (Corollary 10.8.7)

λmin(Y ) ≥ λmin(M)d, (Proposition 10.8.8)

where we note that the assumption εtree(M ;d) ≤ 1 in Corollary 10.7.6 follows from the
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condition of Theorem 10.2.3, which is assumed in the statement. The result follows then

follows by the eigenvalue inequality λmin(Zmain) ≥ λmin(Y )−‖Zmain−Ztied‖−‖Ztied−Y ‖.

10.9 Bound on the Error Term: Proof of Lemma 10.6.3

Our first step in analyzing the error term is, as for the main term, to evaluate it in the mul-

tiharmonic basis, giving the entries of Zerr. We recall that, in Proposition 10.5.6, we found

that Ẽerr decomposes as an application of Ẽmain to some of the input indices and a combina-

tion of error trees applied to the other indices. Thus, part of the result of this calculation

will be the familiar stretched forest terms from the calculations in Proposition 10.7.2, while

the remainder will consist of the ∆F error components from Section 10.5, applied to some

of the partition components of the multiharmonic basis polynomials. To make it easier to

describe and eventually bound the latter, we define the following type of error matrix.

Definition 10.9.1 (Partition-error matrices). Suppose σ = {A1, . . . , An} ∈ Part([`]; odd), τ =

{B1, . . . , Bp} ∈ Part([m]; odd), and T ∈ T (n + p). We then define the partition-error matrix

∆(σ ,τ,T) ∈ R(
[n]
` )×([n]m ) associated to this triplet to have entries

∆(σ ,τ,T)st :=
∑

a∈[n]σ[≥3]

b∈[n]τ[≥3]

∏
A∈σ

∏
i∈A
Mi,fs,a(A) ·

∏
B∈τ

∏
j∈B
Mj,gt,b(B) ·

∆T (M ; (fs,a(A1), . . . , fs,a(An), gt,b(B1), . . . , gt,b(Bp))). (10.166)
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Proposition 10.9.2. For any S, T ⊆ [n],

Zerr
S,T = Ẽerr[h↓S(x)h

↓
T (x)]

=
∑
A⊆S
B⊆T

A+B≠S+T

( ∑
F∈F(|A|,|B|)
F stretched

µ(F) · ZFA,B
)( ∑

π∈Part((S\A)+(T\B);even)

(−1)|π|
∏
R∈π

∑
σ∈Part([|R∩S|];odd)
τ∈Part([|R∩T |];odd)∏

A∈σ+τ
(−1)|A|−1(|A| − 1)!

∑
F∈T (|σ |+|τ|)

µ(F) ·∆(σ ,τ,F)R∩S,R∩T

)
. (10.167)

Proof. As in Proposition 10.7.2, we begin by expanding directly:

Ẽerr[h↓S(x)h
↓
T (x)]

=
∑

σ∈Part(S)
τ∈Part(T)

∏
R∈σ+τ

(−1)|R|−1(|R| − 1)!
∏

R∈σ[even]+τ[even]

q↓R ·

∑
a∈[n]σ[odd;≥3]

b∈[n]τ[odd;≥3]

∏
A∈σ[odd]

∏
i∈A
Mfa(A),i

∏
B∈τ[odd]

∏
j∈B
Mfb(B),j · Ẽerr

 ∏
A∈σ[odd]

xfa(A)
∏

B∈τ[odd]

xgb(B)



where fa, gb are defined as in Proposition 10.7.2. Now, expanding the pseudoexpectation

according to Proposition 10.5.6, we have

=
∑

σ∈Part(S)
τ∈Part(T)

∏
R∈σ+τ

(−1)|R|−1(|R| − 1)!
∏

R∈σ[even]+τ[even]

q↓R ·

∑
a∈[n]σ[odd;≥3]

b∈[n]τ[odd;≥3]

∏
A∈σ[odd]

∏
i∈A
Mfa(A),i

∏
B∈τ[odd]

∏
j∈B
Mfb(B),j

∑
π⊆σ[odd]
ρ⊆τ[odd]

|π|+|ρ|<|σ[odd]|+|τ[odd]|

Ẽmain

∏
A∈π

xfa(A)
∏
B∈ρ
xgb(B)


∑

β∈Part((σ[odd]\π)+(τ[odd]\ρ);even)∏
γ∈β

− ∑
T∈T (|R|)

µ(T) ·∆T (M ; (fa(A))A∈γ∩σ ◦ (gb(B))B∈γ∩τ)

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Here, we swap the order of summation and reorganize the sum according to the union of all

parts of π and σ[even], which we call J, and the union of all parts of ρ and τ[even], which we

call K. Recognizing after this manipulation the intermediate result from Proposition 10.7.2,

we continue

=
∑
J⊆S
K⊆T

J+K≠S+T

Ẽmain[h↓J(x)h↓K(x)]
∑

σ∈Part(S\J;odd)
τ∈Part(T\K;odd)

∏
R∈σ+τ

(−1)|R|−1(|R| − 1)!

∑
a∈[n]σ[odd;≥3]

b∈[n]τ[odd;≥3]

∏
A∈σ

∏
i∈A
Mfa(A),i

∏
B∈τ

∏
j∈B
Mfb(B),i

∑
β∈Part(σ+τ ;even)

∏
γ∈β

− ∑
T∈T (|R|)

µ(T) ·∆T (M ; (fa(A))A∈γ∩σ ◦ (gb(B))B∈γ∩τ)


and again exchanging the order of summation and letting π be the partition formed by

taking the union of the sets in every part of β, by a similar manipulation to that in Proposi-

tion 10.7.2 we complete the proof.

We now develop a few tools to bound the norms of partition-error matrices. The follow-

ing is a minor variant of Proposition 10.13.11, a diagrammatic factorization of CGMs that

we use at length in the deferred technical proofs. This shows how ∆(σ ,τ,T) can be factorized

into two outer factors that are similar to CGMs with no � vertices, and an inner factor that

consists of values of ∆T arranged in a matrix of suitable shape.

Proposition 10.9.3. Let σ = {A1, . . . , Aq} ∈ Part([`]; odd), τ = {B1, . . . , Bp} ∈ Part([m]; odd),

and T ∈ T (q + p). Define Zσ ∈ R(
[n]
` )×[n]q to have entries

Zσsa =
∏

Aq={i}∈σ[1]
1{si = aq}

∏
Aq∈σ[≥3]

∏
i∈Aq

Msi,aq , (10.168)
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and similarly Zτ ∈ R(
[n]
m )×[n]p . Let F (T ,q,p) ∈ R[n]

q×[n]p have entries

F (T ,q,p)ab = ∆T (M ; (a1, . . . , aq, b1, . . . , bp)). (10.169)

Then, ∆(σ ,τ,T) = ZσF (T ,q,p)Zτ> .

Proof. The result follows from expanding the definition of the matrix multiplication and

comparing with Definition 10.9.1.

Next, we show how the norm of the inner matrix can be controlled; in fact, we give a

stronger statement bounding the Frobenius norm.

Proposition 10.9.4 (Error matrix Frobenius norm bound). For any d′ ≤ d and T ∈ T (2d′),

 ∑
s∈[n]2d′

(∆T (M ;s))2
1/2

≤ (2d)d εerr(M ; 2d) (10.170)

Proof. Recall that we denote by set(s) the set of distinct indices appearing in s. By definition

of εerr, we have

|∆T (M ;s)| ≤ n−|set(s)|/2εerr(M ; 2d). (10.171)

Therefore, we find

 ∑
s∈[n]2d′

(∆T (M ;s))2
1/2

≤
 ∑
s∈[n]2d′

n−|set(s)|
1/2

εerr(M ; 2d)

≤
2d′∑
k=1

n−k · #{s ∈ [n]2d′ : |set(s)| = k}
1/2

εerr(M ; 2d)

≤
2d′∑
k=1

k2d′

k!

1/2

εerr(M ; 2d)

≤ (2d′)d′εerr(M ; 2d), (10.172)

and the result follows since d′ ≤ d.
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Combining these results with an ancillary result gives the following bound.

Corollary 10.9.5. ‖∆(σ ,τ,T)‖ ≤ (2(` +m))(`+m)‖M‖`+mεerr(M ; 2d).

Proof. By norm submultiplicativity, ‖∆(σ ,τ,T)‖ ≤ ‖Zσ‖ · ‖F (T ,n,p)‖ · ‖Zτ‖. By Proposi-

tion 10.13.13, we have ‖Zσ‖ ≤ ‖M‖` and ‖Zτ‖ ≤ ‖M‖m, and by Proposition 10.9.4, we

have ‖F (T ,n,p)‖ ≤ ‖F (T ,n,p)‖F ≤ (2(n + p))n+pεerr(M ;n + p), and the result then follows

after noting n+ p ≤ ` +m since n = |σ | and p = |τ|.

Proof of Lemma 10.6.3. First, we note that under the assumptions of Theorem 10.2.3, which

we have also assumed in the statement of the Lemma, we have εerr(M ; 2d) ≤ 1.

We then follow the same manipulations as in Lemma 10.6.2, using Proposition 10.12.4 to

bound the norm of Zerr by the sum of all block norms. Also, since products over subsets of

indices correspond to tensorizations of terms in this sum (see Proposition 10.13.3), we may

bound such products by corresponding products of matrix norms. We therefore find

‖Zerr‖ ≤
d∑

`,m=0

∑
a∈[`]
b∈[m]

a+b<`+m

( ∑
F∈F(a,b)
F stretched

|µ(F)| · ‖ZF‖
)

∑
π∈Part([`+m−a−b];even)

∏
R∈π

( ∑
σ∈Part(R∩[`−a];odd)

τ∈Part(R∩{`−a+1,...,`+m−a−b};odd)

∏
A∈σ+τ

(|A| − 1)!

∑
T∈T (|σ |,|τ|)

|µ(T)| · ‖∆(σ ,τ,T)‖
)
. (10.173)

In the sum over stretched forest ribbon diagrams, by Proposition 10.12.5 we have |µ(F)| ≤

(3(a + b))! ≤ (3(a + b))3(a+b) ≤ 3((` +m))3(`+m) ≤ (6d)6d, by Proposition 10.12.11 we

have |F(a, b)| ≤ (a+b)3(a+b) ≤ (2d)6d, and by Proposition 10.13.13 and Corollary 10.12.10

we have ‖ZF‖ ≤ ‖M‖3d. In the second term, by Corollary 10.9.5 we have ‖∆(σ ,τ,T)‖ ≤

(2|R|)|R|‖M‖|R|εerr(M ; 2d), by Proposition 10.12.5 we have |µ(T)| ≤ (3|R|)! ≤ (3|R|)3|R|,

and by Proposition 10.12.11 we have |T (|σ |, |τ|)| ≤ |F(|σ |, |τ|)| ≤ (|σ | + |τ|)3(|σ |+|τ|) ≤
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(|R|)3|R|. We also have
∏
A∈σ+τ(|A| − 1)! ≤ (|σ | + |τ|)! ≤ (|R|)! ≤ |R||R|. Finally, by Proposi-

tion 10.12.7, viewing σ and τ taken together as a partition of R, the number of choices of σ

and τ is at most |R||R|. Combining these observations, we continue

‖Zerr‖ ≤ (6d)12d‖M‖3dεerr(M ; 2d)
d∑

`,m=0

∑
a∈[`]
b∈[m]

a+b<`+m

∑
π∈Part([`+m−a−b];even)

∏
R∈π
(3|R|)9|R|‖M‖|R|

where since
∑
R∈π |R| ≤ 2d we continue

≤ (6d)30d‖M‖5dεerr(M ; 2d) · d2 · d2 · |Part(2d)|

and by Proposition 10.12.7 again we may finish

≤ (12d)32d‖M‖5dεerr(M ; 2d), (10.174)

completing the proof.

10.10 Obstacles to Low-Rank Extensions

Unfortunately, our approach above does not appear to extend directly to the low-rank set-

ting. There are two major obstacles to attempting to apply Theorem 10.2.3 to M equal

to a rescaled low-rank projection matrix. These correspond to two incoherence quantities

that are no longer o(1) as n → ∞ once rank(M) = n − Θ(n): εpow and εerr. As we describe

below, the former seems to represent a fundamental barrier requiring us to reconsider our

derivation of the pseudomoments, while the latter can probably be handled without much

difficulty.
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10.10.1 Order-2 Tensor Orthonormality: The εpow Obstacle

The more substantial issue arises, in the course of our proof of Theorem 10.2.3, in the

collapse of partition transport diagrams. Put simply, our construction relies on the v⊗ki for

all k ≥ 2 behaving like a nearly-orthonormal set. Once rank(M) = n − Θ(n), this is no

longer the case: for k ≥ 3 the v⊗ki still behave like an orthonormal set, but the v⊗2
i , which

equivalently may be viewed as the matrices viv
>
i , are too “crowded” in Rr×rsym and have an

overly significant collective bias in the direction of the identity matrix.

More precisely, as illustrated in Figure 10.6, when rank(M) = n−Θ(n) then we no longer

have merelyM ◦2 ≈ In, but ratherM ◦2 ≈ In+t1n1>n for t = Θ(n−1), whereby one particular

diagram contributes a non-negligible new term. (To see explicitly that this occurs, we may

compute n−11>nM ◦21n = ‖M‖2
F/n = Θ(1) in this scaling.) This happens already at degree

2d = 4, where this diagram has coefficient +2, and therefore our approximate Gramian fac-

torization Y of Zmain has an extra positive term of the form of the right-most diagram in

the Figure, two sided pairs with edges labelled by M 2 instead of M . The associated CGM,

after multiplying by t, has spectral norm O(1) (see the scaling discussed in Remark 10.4.5),

so we have “Y � Zmain” in psd ordering—in this case, our approximate Gramian factor-

ization is simply false. Moreover, when M 2 ≈ λM (as for M a rescaled projector), this

additional diagram is the same as the diagram that is “orthogonalized away” by writing the

pseudomoments in the multiharmonic basis. Therefore, the other diagrams in Zmain cannot

compensate for this negative term, whereby Zmain 6� 0 and it is not merely the Gramian

approximation that fails but rather the pseudomoment construction itself.

Some technical tricks can work around this issue at low degrees: in [KB20], we made

an adjustment to the pseudomoments before passing to the multiharmonic basis, and also

adjusted the basis so thatZmain written in this basis has a similar extra term, whereby we can
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+

Figure 10.6: Extra term from D = [2 ] partition transport ribbon diagram. We illustrate the
issue discussed in Section 10.10.1, that a partition transport ribbon diagram with associated plan
D = [2 ] produces an extra term consisting of two sided pairs when collapsed. The two parallel
edges in the diagram on the left represent the matrix M ◦2, and this expansion corresponds to an
approximation M ◦2 ≈ In + t1n1>n.

restore the equality Zmain ≈ Y .4 In Section 10.11 below we will take a different approach,

simply adding extra terms to ẼM itself that achieve the same thing. This is slightly more

flexible, working up to 2d = 6.

It seems, however, that to resolve this issue for arbitrarily high degrees would require

rethinking much of our derivation to include a second-order correction. Namely, our very

initial construction of the approximate Green’s function to the system of PDEs 〈vi,∂〉2p = 0

in Section 10.1.2 already has built in the premise that the matrices viv
>
i are nearly or-

thonormal, when compared to the actual Green’s function derivations in similar situations

by [Cle00]. Specifically, we took ϕ(z) = ∏n
i=1〈vi,z〉, while Clerc’s derivation suggests that

the more principled choice would be ϕ(z) = det(
∑n
i=1〈vi,z〉2viv>i )1/2. Unfortunately, we

have not been able to achieve the symmetries required of the pseudomoments building har-

monic projections by starting with such a Green’s function. Nonetheless, since this same

assumption eventually leads our construction astray, it seems plausible that the correct res-

olution will come from building a more nuanced approximate Green’s function and deriving

the prediction anew.

4The change of basis is expressed there as a Schur complement, which turns out to be equivalent.
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10.10.2 Sided Error Terms: The εerr Obstacle

Another, milder difficulty that arises when rank(M) = n − Θ(n) is that we have εerr(M) =

Θ(1). This is less of a problem because we have used a very coarse approach to bounding the

error contribution Zerr, bounding related matrix norms by Frobenius norms in the proof of

Lemma 10.6.3. Since, assuming randomly behaving entries, we only expect such a bound to

be tight when a matrix is actually a vector, this should not be a problem except in situations

where the diagram-like objects of error terms appearing in the proof of Lemma 10.6.3 are

sided, applying only to left or right indices in a diagram. To be more specific, we recall that,

per Proposition 10.5.6, the full pseudoexpectation may be written as a sum over diagrams

where “main term trees” are applied to some subsets of indices and “error term trees” are

applied to others. The multiharmonic basis eliminates sided main term trees, but does not

have any useful effect on sided error term trees.

Below, we give a simple result showing that, in quite general pseudoexpectations like

this, one may build a basis that eliminates sided terms of any kind. It is possible to combine

this construction with the multiharmonic basis to eliminate sided error terms, though this

complicates other parts of the analysis and has no direct benefit in our applications, so we

do not pursue it here.

Proposition 10.10.1. Let Ẽ : R[x1, . . . , xn]→ R be linear and given by

Ẽ[xS] =
∑

π∈Part(S)

∏
A∈π

EA (10.175)

for all S ∈M([n]), where EA are arbitrary multiset-indexed quantities. Define the polynomi-

als

pS(x) :=
∑
T⊆S

 ∑
π∈Part(S−T)

(−1)|π|
∏
A∈π

EA

xT . (10.176)

342



for all S ∈M([n]). The pseudomoments written in this basis are then

Ẽ[pS(x)pT (x)]
∑

π∈Part(S+T)
A∩S≠∅,A∩T≠∅

for all A∈π

∏
A∈π

EA. (10.177)

Proof. We calculate directly:

Ẽ[pS(x)pT (x)]

=
∑
S′⊆S
T ′⊆T

∑
σ∈Part(S′)
τ∈Part(T ′)

π∈Part((S−S′)+(T−T ′))
A∩S≠∅,A∩T≠∅

for all A∈π

( ∑
σ ′⊆σ
τ′⊆τ

(−1)|σ
′|+|τ′|

) ∏
A∈σ+τ+π

EA

=
∑
S′⊆S
T ′⊆T

∑
σ∈Part(S′)
τ∈Part(T ′)

π∈Part((S−S′)+(T−T ′))
A∩S≠∅,A∩T≠∅

for all A∈π

( ∑
σ ′⊆σ

(−1)|σ
′|
)( ∑

τ′⊆τ
(−1)|τ

′|
) ∏
A∈σ+τ+π

EA, (10.178)

and the remaining coefficients are 1 if |S′| = |T ′| = 0 and 0 otherwise, completing the

proof.

Here we have used implicitly the simple Möbius function of the subset poset from Exam-

ple 10.3.4 in building our basis. There would appear to be an analogy between this feature

and the appearance of the Möbius function of partitions from Example 10.3.5 in the multi-

harmonic basis. It would be interesting to develop more general techniques for “orthogo-

nalizing away” the terms of pseudoexpectations that contribute to a multiscale spectrum in

the pseudomoment matrix using bases that incorporate poset combinatorics.

10.11 Lifting 2: Low Rank to Low Degree

As discussed above, Theorem 10.2.3 does not apply directly to low-rank M , as we sought

for our applications to the SK Hamiltonian and related problems. However, for low degrees
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of SOS, we can still make a manual correction and obtain a lower bound.

We present our result in terms of another, modified lifting theorem for arbitrary de-

gree 2 pseudomoments. This extension only reaches degree 6, but allows the flexibility we

sought above in εpow. We obtain it by inelegant means, using simplifications specific to the

diagrams appearing at degree 6 to make some technical improvements in the argument of

Theorem 10.2.3.

Definition 10.11.1 (Additional incoherence quantities). For M ∈ Rn×nsym and t > 0, define the

following quantities:

ε̃pow(M , t) := max
{
‖M ◦2 − In − t1n1>n‖, max

k≥3
‖M ◦3 − In‖

}
, (10.179)

ε̃(M , t) := εoffdiag(M)+ ε̃pow(M , t)+n−1/2εerr(M ; 6). (10.180)

Theorem 10.11.2. Let M ∈ Rn×nsym with Mii = 1 for all i ∈ [n], and suppose tpow > 0. Suppose

that

λmin(M) ≥ 106‖M‖5ε̃(M , tpow)1/3. (10.181)

Define the constant

c := 250tpow

(‖M‖6‖M 2‖F +nεoffdiag(M 2)+n2εoffdiag(M 2)3
)
. (10.182)

Then, there exists a degree 6 pseudoexpectation Ẽ with Ẽ[xx>] = (1− c)M + cIn.

We show as part of the proof that a pseudoexpectation achieving this can be built by

adding a correction of sub-leading order to those terms of the pseudoexpectation in Def-

inition 10.1.13 where F is a perfect matching. As mentioned above, it is likely that to extend

this result to degree ω(1) using our ideas would require somewhat rethinking our con-

struction and the derivation we give in Section 10.1.2 to take into account the above “εpow
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obstacle,” but this makes it plausible that the result will be some form of small correction

added to ẼM .

Proof of Theorem 10.11.2. The construction of Ẽ is a minor variation on that of ẼM from

Theorem 10.2.3, modified to counteract the negative terms discussed in Section 10.10.1.

Ẽpairs
M

∏
i∈S
xi

 := 1{|S| ∈ {4,6}}
∑

F∈F(|S|)
F all pairs

ZF(M 2;S) for all S ⊆ [n], (10.183)

Ẽid

∏
i∈S
xi

 := 1{S = ∅}, (10.184)

Ẽ := (1− c)
(
ẼM + 2tpowẼ

pairs
M

)
+ c Ẽid. (10.185)

We remark that here we use a combination of the two strategies for attenuating the spectrum

of the error terms that were discussed in Remark 10.2.4. We also emphasize the detail

that the matrix used in the CGSs in Ẽpairs is the square of M . (For M a rescaled random

projection we expect M 2 ≈ λM for some λ, but we do not require such a relation to hold,

nor is this taken into account in the incoherence quantities used in the statement.)

Let us moreover decompose Ẽpairs
M into three terms, as follows. Note that the first two are

bilinear operators on polynomials of degree at most d, in the sense of Definition 8.2.1, while

the last has the additional symmetry making it a linear operator on polynomials of degree
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at most 2d.

Ẽpairs:main:1
M (xS ,xT )

:= 1{|S| + |T | ∈ {4,6}}
∑

F∈F(|S|,|T |)
F all pairs

F has 2 sided pairs

ZFS,T (M
2) for all S, T ∈M([n]), (10.186)

Ẽpairs:main:2
M (xS ,xT )

:= 1{|S| + |T | ∈ {4,6}}
∑

F∈F(|S|,|T |)
F all pairs

F has ≤1 sided pair

ZFS,T (M
2) for all S ∈M([n]), (10.187)

Ẽpairs:err
M (xS ,xT )

:= Ẽpairs
M [xS+T ]− Ẽpairs:main:1

M (xS ,xT )− Ẽpairs:main:2
M (xS ,xT ) (10.188)

= Ẽpairs:err
M [xS+T ].

The point here is that, since we expect tpow‖M 2‖2
F = O(1), only the ribbon diagrams with

two sided pairs, those in Ẽpairs:main:1, will contribute significantly. The further decomposition

between Ẽpairs:main:1 + Ẽpairs:main:2 and Ẽpairs:err is precisely the same as that between Ẽmain and

Ẽerr in Theorem 10.2.3, the former being simpler to work with in terms of CGMs and the

latter being a small correction.

Our result will then follow from the following three claims:

ẼM + 2tpowẼ
pairs:main:1
M � 0, (10.189)

2(1− c)tpowẼ
pairs:main:2
M + c

2
Ẽid � 0, (10.190)

2(1− c)tpowẼ
pairs:err
M + c

2
Ẽid � 0. (10.191)

For (10.189) we will argue by adjusting the proof of Theorem 10.2.3, arguing for positivity

in the harmonic basis, and using that the additional term counteracts the negative terms
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discussed in Section 10.10.1. For (10.190) and (10.191), we will make simpler arguments in

the standard monomial basis.

Proof of (10.189): We will be quite explicit about the calculations in this section, essen-

tially recapitulating this special case of Theorem 10.2.3 with adjustments as needed. We

notice first that the only cases where Ẽpairs:main:1
M (xS ,xT ) ≠ 0 are where either |S| = |T | = 2 or

|S| = |T | = 3. In the former case there is only a single diagram, with one sided pair in each

L and R, while in the latter case there are 9 such diagrams, with one additional non-sided

pair (there are 3 · 3 = 9 ways to choose the leaves belonging to this pair).

Let us enumerate explicitly the multiharmonic basis polynomials h↓S(x) for |S| ≤ 3:

h↓∅(x) = 1, (10.192)

h↓{i}(x) = xi, (10.193)

h↓{i,j}(x) = xixj −Mij, (10.194)

h↓{i,j,k}(x) = xixjxk −Mijxk −Mikxj −Mjkxi + 2
n∑
a=1

MaiMajMakxa. (10.195)

We see therefore that the only cases with Ẽpairs:main:1(h↓S(x), h
↓
T (x)) ≠ 0 will again be those

with either |S| = |T | = 2 or |S| = |T | = 3, and in these two cases Ẽpairs:main:1(h↓S(x), h
↓
T (x)) =

Ẽpairs:main:1(xS ,xT ); thus, the more complicated terms in the harmonic basis polynomials are

in fact entirely “invisible” to the corrective term Ẽpairs:main:1. That this does not happen any-

more once 2d ≥ 8 seems to be one of the main obstructions to applying a similar adjustment

technique there.

Following the proof of Theorem 10.2.3 but adding an extra detail, we define the pseudo-
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moment matrices Zmain:1,Zmain:2,Zerr,Z ∈ R(
[n]
≤3)×([n]≤3) to have entries

Zmain:1
S,T := Ẽmain

M [h↓S(x)h
↓
T (x)], (10.196)

Zmain:2
S,T := 2tpowẼ

pairs:main:1
M [h↓S(x)h

↓
T (x)], (10.197)

Zerr
S,T := Ẽerr

M[h
↓
S(x)h

↓
T (x)], (10.198)

Z := Zmain:1 +Zmain:2 +Zerr. (10.199)

It then suffices to prove Z � 0.

By Proposition 10.7.2, Zmain:1 is block diagonal (note that in this small case there are no

stretched forest ribbon diagrams with unequal numbers of leaves in L and R, so the block

diagonalization is exact). Define Ztied as in Corollary 10.7.6. We apply Corollary 10.7.6, but

improve the constants (to avoid truly astronomical values) by adjusting the proof to d = 6,

noting that |F(2)| = 1, |F(4)| = 4, and |F(6)| = 51, and for all 2d′ ≤ 6 and F ∈ F(2d′) we

have |µ(F)| ≤ 24. This gives

‖Zmain:1 −Ztied‖ ≤ 107‖M‖9εtree(M ; 3),

where we can note that εtree(M ; 3) = εtree(M ; 2) = εoffdiag(M), since the only good tree on

two leaves is a pair, allowing us to eliminate εtree,

= 107‖M‖9εoffdiag(M). (10.200)

We claim that the same approximate Gram factorization that held for Ztied in Theo-

rem 10.2.3 holds for Ztied + Zmain:2 in this case. Namely, as in Theorem 10.2.3, we define

Y ∈ R(
[n]
≤3)×([n]≤3) to have entries YS,T = 〈hS(V >z), hT (V >z)〉∂ . By Proposition 10.8.8, we have

Y � λmin(M)3, and we will bound ‖Ztied +Zmain:2 −Y ‖ below.

By construction Y is block diagonal. We let Y [d,d] ∈ R(
[n]
d )×([n]d ) be the diagonal block
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indexed by sets of size d. Likewise, Ztied and Zmain:2 are block diagonal, by Corollary 10.7.6

and our remark above, respectively. Denote Ztied[d,d] and Zmain:2[d,d] for their respective

diagonal blocks. We have Zmain:2[0,0] and Zmain:2[1,1] both identically zero, and Ztied[0,0] =

Y [0,0] = [1] and Ztied[1,1] = Y [1,1] = M , so it suffices to bound ‖Ztied[d,d] + Zmain:2[d,d] −

Y [d,d]‖ for d ∈ {2,3}.

For d = 2, as mentioned above, there is only one diagram consisting of two sided pairs

occurring in Zmain:2[2,2]. There are three bowtie forest ribbon diagrams in Ztied[2,2]: two

consist of two pairs, while the third consists of all four leaves connected to a � vertex.

For a given choice of σ,τ ∈ Part([2]), if either |σ | = 1 or |τ| = 1 then there is a unique

D ∈ Plans(σ , τ); otherwise, there are two plans corresponding to the two matchings of

two copies of {1,2}. Enumerating all of these terms, we find that most of them cancel in

Ztied[2,2] + Zmain:2[2,2] − Y [2,2]: see Figure 10.7 for a graphical depiction of the calculation.

We are left only with the final diagrams illustrated there. The sum of their CGMs’ norm we

can bound using the factorization of Proposition 10.13.11 and the norm bound of Proposi-

tion 10.13.13:

‖Ztied[2,2] +Zmain:2[2,2] −Y [2,2]‖ ≤ 2‖M‖4‖M + tpow1n1
>
n −M ◦2‖ = 2‖M‖4ε̃pow(M).

(10.201)

For d = 3, again as mentioned before, there are 9 diagrams in Zmain:2[3,3], each consist-

ing of two sided pairs and one non-sided pair. There are 16 bowtie forest ribbon diagrams

in Ztied[3,3]: 6 where every connected component is a pair, 9 where one connected com-

ponent is a pair and another is a star on 4 leaves, and 1 star on all 6 leaves. We first

apply Lemma 10.8.4, which controls the norm error incurred in tying any partition trans-

port ribbon diagram. We use the following minor variant of this bound, which follows upon

examining the proof of Lemma 10.8.4 for the particular case d = 3: for σ,τ ∈ Part([3]) and
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Figure 10.7: Diagrammatic manipulation of degree 4 adjustment. We show the calculation of
Ztied[2,2] + Zmain:2[2,2] − Y [2,2] (listed here in the same order they appear in the figure) and the
role of the additional diagram of Zmain:2[2,2] in adjusting the result. The reader may compare with
Figure 10.6 to see why the right-hand side is a desirable outcome whose norm we are able to bound.

D ∈ Plans(σ , τ), if D does not equal a permutation of the matrix D? :=

 1 0

0 2

, then

‖ZG(σ,τ,D) −Ztie(G(σ,τ,D))‖ ≤ 9‖M‖9(εoffdiag(M)+ ε̃pow(M)). (10.202)

This follows simply by observing that, in this case, either σ or τ contains a singleton

whereby Case 2 of that proof applies (giving the first term above), or σ = τ = {{1,2,3}}, in

which case D = [3] and Case 3 applies and immediately yields the tied diagram after the

first step, incurring error of only ‖M‖6‖M ◦3− In‖. (We do this carefully to avoid incurring

a cost of ‖M ◦2 − In‖, which we are no longer assuming we have good control over.)

Applying this bound to all partition transport ribbon diagrams in Y whose matrix D is

not a permutation of D? as above, we may form Y tied[3,3] where all of these diagrams are
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tied which, by the same counting as in Corollary 10.8.7, will satisfy

‖Y [3,3] −Y tied[3,3]‖ ≤ 108‖M‖9(εoffdiag(M)+ ε̃pow(M)). (10.203)

Now, in Ztied[3,3] + Zmain:2[3,3] − Y tied[3,3], all ribbon diagrams cancel (as in the d = 2 case)

except for 9 copies of the situation illustrated in Figure 10.7, each with an extra non-sided

pair. Therefore, applying the same argument, we obtain the same bound, multiplied by 9 for

the number of diagrams and by ‖M‖ for the extra non-sided pair. Thus:

‖Ztied[3,3] +Zmain:2[3,3] −Y tied[3,3]‖ ≤ 18‖M‖5ε̃pow(M), (10.204)

and by triangle inequality, combining this with the previous inequality we find

‖Ztied[3,3] +Zmain:2[3,3] −Y [3,3]‖ ≤ 109‖M‖9(εoffdiag(M)+ ε̃pow(M)). (10.205)

Combining (10.200), (10.201), and (10.204), we have:

λmin(Zmain:1 +Zmain:2)

≥ λmin(Y )− λmax(Ztied +Zmain:2 −Y )− λmax(Zmain:1 −Ztied)

≥ λmin(M)3 − 1010‖M‖9
(
ε̃pow(M)+ εoffdiag(M)

)
. (10.206)

It remains to bound ‖Zerr‖. Here we again use a small improvement on the general

strategy, this time that of Corollary 10.9.5 for bounding the inner error matrices ∆(σ ,τ,T),

specific to degree 6. Recall that here σ ∈ Part([`]; odd), τ ∈ Part([m]; odd), and T ∈ T (|σ |+

|τ|), for 0 ≤ `,m ≤ 3. ∆(σ ,τ,T) is indexed by
(
[n]
`

)
×
(
[n]
m

)
, and contains terms ∆T (M ; ·). We

note that if |σ | + |τ| < 4, then ∆T (M ;s) = 0 identically, so ∆(σ ,τ,T) = 0 for any T in this

case. But, when `,m ≤ 3, the only way this can be avoided and |σ | and |τ| can have the
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same parity is in one of three cases: (1) σ and τ both consist of two singletons, (2) σ and τ

both consist of three singletons, or (3) one has a single part of size 3 and the other consists

of three singletons. In any case, the matrix F from Proposition 10.9.3 may be viewed as

sparse, along whichever of the rows or columns is indexed by a partition consisting only

of singletons. Therefore, our norm bound which naively bounded ‖F ‖ ≤ ‖F ‖F can be

improved by applying Proposition 10.12.1. Repeating the argument of Corollary 10.9.5 in

this way, we find

‖∆(σ ,τ,T)‖ ≤ ‖M‖6
√
(n−1εerr(M ; 6)+n−3/2εerr(M ; 6) ·n)2

≤ 2‖M‖6n−1/2εerr(M ; 6), if σ = τ = {{1}, {2}}, (10.207)

‖∆(σ ,τ,T)‖ ≤ ‖M‖6
√
(n−3/2εerr(M ; 6)+n−4/2εerr(M ; 6) ·n+n−5/2εerr(M ; 6) ·n2)2

≤ 3‖M‖6n−1/2εerr(M ; 6), if σ = τ = {{1}, {2}, {3}}, (10.208)

‖∆(σ ,τ,T)‖ ≤
√
(n−3/2εerr(M ; 6) ·n)(n−3/2εerr(M ; 6) · 3)

≤ 3‖M‖6n−1/2εerr(M ; 6), if σ = {{1,2,3}}, τ = {{1}, {2}, {3}}

or vice-versa. (10.209)

In effect, we are able to scale εerr(M ; 6) down by an additional factor of n−1/2 using this

technique. Following the remainder of the proof of Lemma 10.6.3 with this improvement

and again slightly improving the constants as above for the specific case 2d = 6 then gives

‖Zerr‖ ≤ 1018‖M‖15n−1/2εerr(M ; 6). (10.210)
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Combining this with (10.206) then gives

λmin(Z) ≥ λmin(Zmain:1 +Zmain:2)− ‖Zerr‖

≥ λmin(M)3 − 1018‖M‖15
(
ε̃pow(M)+ εoffdiag(M)+n−1/2εerr(M ; 6)

)
≥ 0 (10.211)

by our assumption in the statement. Thus, Z � 0.

Proof of (10.190): We consider the pseudomoment matrix of the left-hand side, written

in the standard monomial basis. The term arising from Ẽid is then simply the identity matrix.

Let us write Ẑpairs:main:2 ∈ R(
[n]
≤3)×([n]≤3) for the matrix arising from Ẽpairs:main:2 (the hat serving

as a reminder that this is a pseudomoment in the standard basis rather than the harmonic

basis). Then, Ẑpairs:main:2 is blockwise a sum of CGM terms corresponding to diagrams F , each

of which consists only of pairs and has at most one sided pair. By and Propositions 10.13.12

and 10.13.13, the norm of such a CGM is at most ‖M 2‖3‖M 2‖F ≤ ‖M‖6‖M 2‖F , the oper-

ator norm terms accounting for the non-sided pairs and the Frobenius norm term for the

sided pair. The total number of such CGM terms across all blocks is 14: 2! = 2 from the

block with |S| = |T | = 2, 3 from the block with |S| = 1, |T | = 3, 3 from the block with

|S| = 3, |T | = 1, 3! = 6 from the block with |S| = |T | = 3. Therefore, we have

‖2(1− c)tpowẐ
pairs:main:2‖ ≤ 28tpow‖M‖6‖M 2‖F ≤ c

2
(10.212)

by our choice of c, concluding the proof of the claim.

Proof of (10.191): We again consider the pseudomoment matrix of the left-hand side,

written in the standard monomial basis, and the arising from Ẽid is again the identity matrix.

Let us write Ẑpairs:err ∈ R(
[n]
≤3)×([n]≤3) for the matrix arising from Ẽpairs:err. The entries of this
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matrix are as follows. First, Ẑpairs:err
S,T = 0 whenever |S| + |T | < 4, |S| and |T | have different

parity, or |S ∩ T | = 0. Also, Ẑpairs:err is symmetric. The remaining entries are given, writing

H =M 2 here to lighten the notation, by

Ẑpairs:err
{i}{i,j,k} = Ẑpairs:err

{i,j}{i,k} = −Hjk − 2HijHik, (10.213)

Ẑpairs:err
{i,j,k},{i,`,m} = −2HijHikH`m − 2HijHi`Hkm − 2HijHimHk`

− 2HikHi`Hjm − 2HikHimHj` − 2Hi`HimHjk

for j, k, `,m distinct, (10.214)

Ẑpairs:err
{i,j,k}{i,j,`} = −Hk` − 2H2

ijHk` − 2HikHi` − 2HjkHj`

− 4HijHikHj` − 4HijHi`Hjk. (10.215)

Accordingly, we find the entrywise bounds

|Ẑpairs:err
{i}{i,j,k}| ≤ 3εoffdiag(M 2) (10.216)

|Ẑpairs:err
{i,j}{i,k}| ≤ 3εoffdiag(M 2) if j, k distinct, (10.217)

|Ẑpairs:err
{i,j}{i,j}| ≤ 3 (10.218)

|Ẑpairs:err
{i,j,k},{i,`,m}| ≤ 12εoffdiag(M 2)3 if j, k, `,m distinct, (10.219)

|Ẑpairs:err
{i,j,k},{i,j,`}| ≤ 15εoffdiag(M 2) if k, ` distinct, (10.220)

|Ẑpairs:err
{i,j,k},{i,j,k}| ≤ 15. (10.221)

Let us write Ẑpairs:err[`,m] for the submatrix of Ẑpairs:err indexed by |S| = ` and |T | = m. By

the Gershgorin circle theorem, we then find the bounds

‖Ẑpairs:err[2,2]‖ ≤ 3+ 6nεoffdiag(M 2) (10.222)

‖Ẑpairs:err[3,3]‖ ≤ 15+ 45nεoffdiag(M 2)+ 36n2εoffdiag(M 2)3, (10.223)
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and by the “rectangular Gershgorin” bound of Proposition 10.12.1

‖Ẑpairs:err[1,3]‖ ≤
√

3n2εoffdiag(M 2) · 3εoffdiag(M 2) = 3nεoffdiag(M 2). (10.224)

Finally, by Proposition 10.12.4, we combine these bounds to find

‖Ẑpairs:err‖ ≤ ‖Ẑpairs:err[2,2]‖ + ‖Ẑpairs:err[3,3]‖ + 2‖Ẑpairs:err[2,2]‖

≤ 18+ 57nεoffdiag(M 2)+ 36n2εoffdiag(M 2)3. (10.225)

Therefore,

‖2(1− c)tpowẐ
pairs:err‖ ≤ 114tpow(1+nεoffdiag(M 2)+n2εoffdiag(M 2)3) ≤ c

2
(10.226)

by the definition of c, concluding the proof of the claim.

10.12 Miscellaneous Bounds

We collect here some simple technical results we have used in the proofs above.

10.12.1 Matrix Inequalities

We first give the following matrix norm inequality that is effective for sparse matrices. Recall

that the ∞-norm of a matrix is defined as ‖A‖∞ = maxx≠0 ‖Ax‖∞/‖x‖∞ = maxi
∑
j |Aij|.

Proposition 10.12.1. Let A ∈ Rm×n. Then,

‖A‖ ≤
√
‖A‖∞‖A>‖∞ =

√√√√√
 m

max
i=1

n∑
j=1

|Aij|
 n

max
j=1

m∑
i=1

|Aij|
. (10.227)
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Proof. We have ‖A‖ = σmax(A) =
√
λmax(AA>). By the Gershgorin circle theorem, we may

bound λmax(AA>) ≤ ‖AA>‖∞. Since the ∞-norm on matrices is induced as an operator

norm by the `∞ vector norm, it is submultiplicative, whereby ‖AA>‖∞ ≤ ‖A‖∞‖A>‖∞.

Remark 10.12.2. This inequality is tight for any A ∈ {0,1}m×n where every row has exactly

one 1, but every column can have arbitrary numbers of 1’s. The extremes in this class of

matrices are the identity on the one hand, and 1e>k on the other (for a standard basis vector

ek).

The following result on block matrix norms will also be useful.

Proposition 10.12.3. Suppose A ∈ Rm×n is partitioned into a× b blocks A[k,`] ∈ Rmk×n` for

k ∈ [a] and ` ∈ [b], where
∑a
k=1mk = m and

∑b
`=1n` = n. Let Ã ∈ Ra×b have entries

Ãk` = ‖A[k,`]‖. Then, ‖A‖ ≤ ‖Ã‖.

Proof. If x ∈ Rm and y ∈ Rn are partitioned into vectors xk and y` with compatible sizes

to the blocks of A, then we have

|x>Ay| =
∣∣∣∣∣∣∑k,`x>kA[k,`]y`

∣∣∣∣∣∣ ≤∑k,` ‖xk‖2‖y`‖2‖A[k,`]‖. (10.228)

If ‖x‖ = ‖y‖ = 1, then the right-hand side is a bilinear form of unit vectors with Ã, and the

result follows.

The following other relative of the Gershgorin circle theorem gives a straightforward

bound on block matrix norms.

Proposition 10.12.4. Suppose A ∈ Rm×n is partitioned into blocks A[k,`] ∈ Rmk×n` where∑
mk =m and

∑
n` = n. Then, ‖A‖ ≤∑k,` ‖A[k,`]‖.

Proof. If x ∈ Rm and y ∈ Rn are partitioned into vectors xk and y` with compatible sizes
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to the blocks of A, then we have

|x>Ay| =
∣∣∣∣∣∣∑k,`x>kA[k,`]y`

∣∣∣∣∣∣ ≤∑k,` ‖xk‖2‖y`‖2‖A[k,`]‖. (10.229)

Thus, lettingA′ be the matrix of norms of the blocks ofA, we have ‖A‖ ≤ ‖A′‖. The result

then follows since if ‖v‖ = ‖w‖ = 1, then v>A′w ≤ (maxk |vk|)(max` |w`|)(
∑
k,` |A′k`|) ≤∑

k,` |A′k`|.

10.12.2 Combinatorial Bounds

We next prove several coarse bounds on combinatorial quantities arising in our arguments.

We begin with bounds on the coefficients of forests that arise in our calculations. The only

tool required for these is that (a+ b)! ≥ a!b!, which follows from observing that
(
a+b
a

)
≥ 1.

Proposition 10.12.5. For any F ∈ F(d), |µ(F)| ≤ (3d)!.

Proof. We have

|µ(F)| =
∏
v∈V�

(deg(v)− 2)!

≤
∑
v∈V

deg(v)

!

≤
(

2 · 3
2
d
)

!, (10.230)

the last step following by Corollary 10.12.10.

Proposition 10.12.6. For any F ∈ F(d,d) a balanced bowtie forest ribbon diagram, |ξ(F)| ≤

(d− 1)!d! ≤ d2d.
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Proof. We have

|ξ(F)| =
∏

C∈conn(F)
C balanced bowtie

on 2k leaves

(k− 1)!k!

≤
( ∑

C∈conn(F)
C balanced bowtie

on 2k leaves

(k− 1)
)

!

( ∑
C∈conn(F)

C balanced bowtie
on 2k leaves

k
)

!

= (d− |conn(F)|)!d!

≤ (d− 1)!d!, (10.231)

completing the proof.

We next give some bounds on the cardinalities of various sets of combinatorial objects

arising in our analysis.

Proposition 10.12.7. |Part([d])| ≤ dd.

Proof. For d ≤ 5, the inequality may be verified directly. Assuming d ≥ 6, we begin with

a “stars and bars” argument: all partitions of [d] may be obtained by writing the num-

bers 1, . . . , d in some order, and then choosing some subset of the d− 1 possible positions

between two numbers where a boundary between parts of the partition may be placed.

Therefore, |Part([d])| ≤ 2dd!. For d ≥ 6, we have d! ≤ (d/2)d, and the result follows.

We note that the numbers |Part([d])| are known as the Bell numbers, for which many more

precise asymptotics are known [BT10]. We prefer to give a simple hands-on proof here,

which matches the correct coarse scaling log |Part([d])| = Θ(d logd).

Proposition 10.12.8. For any σ,τ ∈ Part([d]), |Plans(σ , τ)| ≤ d!.

Proof. For every D ∈ Plans(σ , τ), there exists a bijection f : [d] → [d] for which DA,B =

#{i ∈ A : f(i) ∈ B}. Therefore, the total number of such D is at most the total number of

bijections of [d] with itself, which is d!.
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The following simple and general result gives a bound on the number of vertices in a tree if

the degrees of internal vertices are bounded below.

Proposition 10.12.9. Suppose T = (V , E) is a tree with ` leaves. Assume that, for any internal

vertex v of T , deg(v) ≥ k ≥ 3. Then,

|V | < k− 1
k− 2

`. (10.232)

Proof. We count the number of edges |E| in two ways, and then apply the degree bound:

|E| = |V | − 1

= 1
2

∑
v∈V

deg(v)

≥ 1
2

(
` + k(|V | − `))

= k
2
|V | − k− 1

2
`. (10.233)

Solving for |V |, we have

|V | ≤ k− 1
k− 2

` − 2
k− 2

, (10.234)

and the result follows.

Corollary 10.12.10. For any F ∈ F(d), the number of vertices and edges in F are both at

most 3
2d, and the number of � vertices is at most 1

2d.

This allows us to bound the number of good forests, as follows.

Proposition 10.12.11. For d even, (d/2)! ≤ |F(d)| ≤ 2(3
2d)

3
2d.

Proof. For the lower bound, we simply note that any matching of 1, . . . , d/2 with d/2 +

1, . . . , d corresponds to a distinct element of F(d) consisting of the corresponding forest
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all of whose connected components are pairs. Since there are (d/2)! such matchings, the

bound follows.

For the upper bound, Theorem 4.1 of [Moo70], attributed there to Rényi, gives the fol-

lowing explicit formula for the number of labelled forests on n nodes with k connected

components, which we denote fn,k (this is a generalization of Cayley’s well-known formula

counting labelled trees, which is the case k = 1):

fn,k =
(
n
k

) k∑
i=0

(
−1

2

)i
(k+ i) i!

(
k
i

)(
n− k
i

)
nn−k−i−1 (10.235)

from which by coarse bounds we find

≤ n
k

k!

k∑
i=0

k+ i
2i

k!
(k− i)!

ni

i!
nn−k−i−1 (10.236)

= nn−1
k∑
i=0

k+ i
2i(k− i)! i! (10.237)

≤ 2nn−1, (10.238)

where the final inequality may be checked by verifying by hand for k ≤ 4, and for k ≥ 5

bounding the inner term by 2k/(bk/2c)!(dk/2e)! ≤ 2. Thus the number of labelled forests

on n nodes with any number of connected components, which equals
∑n
k=1 fn,k, is at most

2nn. By Corollary 10.12.10, the total number of vertices in F ∈ F(d) is at most 3
2d. Since

there are no isolated vertices in such F , we may always view F as embedded uniquely into a

fully labelled forest on exactly 3
2d vertices by adding isolated vertices and labelling internal

vertices with any deterministic procedure. Thus, |F(d)| is at most the number of labelled

forests on 3
2d vertices, and the result follows.

We include the lower bound above to emphasize that the upper bound correctly identifies

the coarse behavior log |F(d)| = Θ(d logd). This suggests that, without much more careful
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proof techniques, the dd behavior of the leading factor in the condition of Theorem 10.2.3

cannot be improved.

10.13 Calculus of Contractive Graphical Matrices

Finally, we present some general tools for working with contractive graphical matrices

(henceforth CGMs, as in the main text). In fact, to make some technicalities easier to work

around, we use a more general definition, which allows different edges of a ribbon diagram

to be labelled with different matrices and also allows for the left and right index subsets to

overlap.

Definition 10.13.1 (Generalized ribbon diagram). Let G = ((L ∪ R) t V�, E) be a graph

with two types of vertices, • and �, whose subsets are V • = L ∪ R and V�. Suppose that

G is equipped with labellings κL : L → [|L|] and κR : R → [|R|]. Suppose that for every

e = {x,y} ∈ E, we have a matrix M (x,y) ∈ Rn(x)×n(y), for some n : V → N, which satisfies

M (y,x) =M (x,y)> . Note that n is determined by the collection of matrices M (x,y), provided

that their dimensions satisfy the appropriate equalities. We call such a collection of matrices

a compatible matrix labelling of the edges of G, noting that a matrix is associated to each

oriented edge in such a labelling. For the course of this appendix, we call such labelled G a

ribbon diagram, instead of the weaker definition from the main text.

Definition 10.13.2 (Generalized CGM). Let G be a ribbon diagram. Given a ∈∏v∈V�[n(v)],

s ∈ ∏i∈[|L|][n(κ−1
L (i))], and t ∈ ∏j∈|R|[n(κ−1

R (j))] such that, for all i ∈ L ∩R, s(κL(i)) =

t(κR(j)), define fa,s,t : V → N by

fa,s,t(x) =


s(κL(x)) if x ∈ L,

t(κR(x)) if x ∈ R,

a(x) if x ∈ V�.

(10.239)
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Note that we always have fa,s,t(x) ∈ [n(x)]. Then, the contractive graphical matrix associ-

ated to the ribbon diagram G labelled by the matrices M (x,y) has entries

ZGs,t =
∏

i∈L∩R
1{s(κL(i)) = t(κR(i))}

∑
a∈∏v∈V�[n(v)]

∏
{x,y}∈E

M(x,y)
fa,s,t(x),fa,s,t(y). (10.240)

We note that, for the purposes of this appendix, we always will think of CGMs as being

labelled by tuples rather than sets. Since set-indexed CGMs are submatrices of tuple-indexed

ones, all norm bounds will immediately be inherited by the set-indexed CGMs encountered

in the main text.

The general goal we pursue in the following sections is to develop some general tools for

connecting the graphical structure of a ribbon diagram and the matrix structure of its CGM.

10.13.1 Connected Components and Tensorization

We first consider the effect of a diagram being disconnected on the CGM. In this case, it is

simple to see that the expression (10.240) factorizes, and therefore the CGM decomposes

as a tensor product. We give a precise statement below, taking into account the ordering of

indices.

Proposition 10.13.3. Let G = ((L∪R)t V�, E) be a ribbon diagram with connected compo-

nents G1, . . . , Gm, where V(G`)∩L =: L` and V(G`)∩R =:R`. Define κL` : L` → [|L`|] and

κR` :R` → [|R`|] to be the labellings inherited from κL and κR, i.e.,

κL`(i) := #{i′ ∈ L` : κL(i′) ≤ κL(i)}, (10.241)

κR`(j) := #{j′ ∈ R` : κR(j′) ≤ κR(j)}. (10.242)

Equipped with these labellings, view G1, . . . , Gm as ribbon diagrams. Let πL ∈ Sym(|L|) and
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πR ∈ Sym(|R|) be the permutations with

(πL(1), · · · , πL(|L|))

=
(
κL(κ−1

L1
(1)), . . . , κL(κ−1

L1
(|L1|)), . . . , κL(κ−1

Lm(1)), . . . , κL(κ
−1
Lm(|Lm|))

)
(πR(1), · · · , πR(|R|))

=
(
κR(κ−1

R1
(1)), . . . , κR(κ−1

R1
(|R1|)), . . . , κR(κ−1

Rm(1)), . . . , κR(κ
−1
Rm(|Rm|))

)

Let σL ∈ Sym([n]|L|) map (a1, . . . , a|L|) , (aπ−1
L (1)

, . . . , aπ−1
L (|L|)) and σR ∈ Sym([n]|R|) map

(a1, . . . , a|R|) , (aπ−1
R (1), . . . , aπ−1

R (|R|)). Finally, let ΠL ∈ R[n]
|L|×[n]|L| and ΠR ∈ R[n]

|R|×[n]|R|

be the permutation matrices of σL and σR, respectively. Then,

ZG = ΠL
( mO
`=1

ZG`
)
Π>R.

This fact will be most useful when bounding the difference in operator norm incurred by

replacing each connected component Gi by some other diagram in terms of the differences

of the smaller CGMs corresponding to each connected component taken in isolation.

Proposition 10.13.4. Let G be a ribbon diagram with connected components G1, . . . , Gm,

where V(G`)∩L = L` and V(G`)∩R = R`. Suppose H1, . . . ,Hm are other ribbon diagrams

on (L`,R`, V�(G`)), and write H for the union diagram of the Hi. Then,

‖ZG −ZH‖ ≤
m∑
`=1

‖ZG` −ZH`‖
`−1∏
`′=1

‖ZH`‖
m∏

`′=`+1

‖ZG`‖. (10.243)

Proof. Following the notation of Proposition 10.13.3, we can write a telescoping sum,

ZG −ZH = ΠL
 m∑
`=1

`−1O
`′=1

ZH`′ ⊗ (ZG` −ZH`)⊗
mO

`′=`+1

ZG`′

ΠR (10.244)

The bound then follows by the triangle inequality and the tensorization of the operator
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norm.

10.13.2 Splitting

We describe two operations on a ribbon diagram, which we call “splittings,” that add edges

to the diagram without changing the associated CGM. Later this will allow us to perform

some regularizing operations on a ribbon diagram’s graph structure when making argu-

ments about its CGM.

The first type of splitting lets us expand a diagram and thereby eliminate the intersection

of L and R by adding redundant vertices and suitable adjacencies.

Proposition 10.13.5 (Intersection splitting). Let G = ((L∪R)t V�, E) be a ribbon diagram

with (M (x,y)) a compatible labelling of its edges. Write L ∩ R = {v1, . . . , vn}. Let G′ be

another labelled ribbon diagram, formed by adding new vertices {v′1, . . . , v′n} to G, setting

V�(G′) = V�(G), L(G′) = L(G), and R(G′) = R(G) \ L(G)∪ {v′1, . . . , v′n}, and adding edges

{vi, v′i} labelled by the matrix In(vi) for each i ∈ [n]. Then, ZG = ZG′ .

The second type of splitting lets us represent a factorization of a matrix labelling an

edge by subdividing that edge with intermediate vertices.

Proposition 10.13.6 (Edge splitting). Let G = ((L ∪ R) t V�, E) be a ribbon diagram with

(M (x,y)) a compatible labelling of its edges. Suppose x ∼ z in G, and there exist matricesA ∈

Rn(x)×n,B ∈ Rn×n(z) such that M (x,z) = AB. Let G′ be another labelled ribbon diagram,

with L(G′) = L(G), R(G′) = R(G), V�(G′) = V�(G)∪ {y} for a new vertex y , and E(G′) =

E(G)∪ {{x,y}, {y,z}}. Let {x,y} in G′ be labelled with the matrix M (x,y) =A, and {y,z}

be labelled with the matrix M (y,z) =B. Then, ZG = ZG′ .

Note that, as an especially useful special case, we may always take n = n(x),A = In(x), and

B =M (x,z). This particular technique allows us to adjust the graph of the ribbon diagram

without needing to find any special factorization of M (x,z).
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10.13.3 Pinning, Cutting, and Direct Sum Decomposition

We next explore special operations that may be performed on the following special type of

� vertex in a ribbon diagram.

Definition 10.13.7 (Pinned vertex). In a ribbon diagram G = ((L∪R)tV�, E) with dimension

labels n : V → N, we call a vertex v ∈ V� pinned if n(v) = 1.

Any edge one of whose endpoints is a pinned vertex must be labelled with a vector, and in

the formula (10.240) there is effectively no summation corresponding to a pinned vertex,

since [n(v)] = {1} whereby the vertex’s assigned index is always the same—this is the

reason for the term “pinned.”

In terms of manipulations of the ribbon diagram G, the important special property of a

pinned vertex is that it allows the diagram to be “cut” at that vertex without changing the

resulting CGM.

Proposition 10.13.8 (Cutting). Let G = ((L∪R)tV�, E) be a ribbon diagram, and let v ∈ V�

be pinned. Suppose deg(v) = m, enumerate the neighbors of v as w1, . . . ,wm, and suppose

these edges are labelled with vectors mi ∈ Rn(wi) for i = 1, . . . ,m. Let G′ be another ribbon

diagram, formed by removing v from G and adding new vertices v′1, . . . ,v′m to V�, with

n(v′i) = 1, v′i adjacent to only wi, and this edge labelled by mi. Then, ZG = ZG′ .

Note that, after splitting, every pinned vertex has degree 1. In our case, when we work with

tree ribbon diagrams, this means that every pinned vertex is a leaf of the resulting forest, a

property that will be important in our analysis.

Finally, we show two ways that pinned vertices arise naturally from matrix-labelled rib-

bon diagrams where no vertex has dimension label 1 to begin with. The first, simpler situa-

tion is where an edge is labelled with a rank 1 matrix.
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Proposition 10.13.9. Let G = ((L∪R)tV�, E) be a ribbon diagram, and suppose {v,w} ∈ E

is labelled withM (v,w) = xy>. Let G′ be formed by adding a vertex x along this edge between

v and w, setting n(x) = 1, and setting M (v,x) = x and M (x,w) = y. Then, ZG = ZG′ .

Proof. The result follows from applying Proposition 10.13.6 to the edge {v,w} using the

given rank one factorization.

The second, perhaps more natural, situation is that the CGM of any ribbon diagram with

L∩R ≠∅ may be written as a direct sum of CGMs with those vertices pinned (that is, as a

block diagonal matrix with these CGMs as the diagonal blocks).

Proposition 10.13.10 (Direct sum decomposition). Let G = ((L ∪ R) t V�, E) be a ribbon

diagram, and enumerate L ∩ R = {v1, . . . , vm}. Given a ∈ ∏m
i=1[n(vi)], let G[a] be the

diagram formed by moving each vi to V�, letting n(vi) = 1, and labelling each edge incident

with vi, say {vi, x}, with the vector (vi,x) equal to the aith row of M (vi,x). If there is an edge

between vi and vj , then in G[a] it is labelled with the constant M
(vi,vj)
aiaj . Then, there exist

permutation matrices ΠL and ΠR such that

ZG = ΠL

 ⊕
a∈∏mi=1[n(vi)]

ZG(a)

Π>R. (10.245)

While formally a pinned vertex is a � vertex, in this setting we see that it behaves more like

a • vertex whose index is fixed instead of varying with the matrix indices.

10.13.4 Factorization

We now arrive at perhaps the most useful and important manipulation of CGMs via rib-

bon diagrams. Namely, certain graphical decompositions of ribbon diagrams correspond to

factorizations of CGMs into products of simpler CGMs.
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Proposition 10.13.11. Let G = (V , E) be a ribbon diagram with V = (L ∪R)t V�. Suppose

that V admits a partition V = At B t C , such that the following properties hold:

1. L ⊆ A.

2. R ⊆ C .

3. ∂outA, ∂outC ⊆ B.

(Here ∂out denotes the “outer boundary” of a set, those vertices not in the set but with a

neighbor in the set.) Suppose also that the edges within B admit a partition E(B, B) = EA t

EB t EC , where EA ⊆ E(∂outA, ∂outA) and EC ⊆ E(∂outC, ∂outC). Define the following ancillary

ribbon diagrams:

1. G[A] with vertex triple (L, ∂outA,A \ L) and edges E(A,A∪ ∂outA)∪ EA;

2. G[B] with vertex triple (∂outA, ∂outC,B \ ∂outA \ ∂outC) and edges EB ; and

3. G[C] with vertex triple (∂outC,R, C \R) and edges E(C,C ∪ ∂outC)∪ EC .

In these diagrams, ∂outA and ∂outC are given arbitrary labellings, but the same labelling each

time that they appear in different diagrams. Then,

ZG = ZG[A]ZG[B]ZG[C]. (10.246)

Proof. The proof is a direct verification by expanding the matrix multiplications and defini-

tions of the CGMs involved. Note that, by assumption, since A and C are disjoint and L ⊆ A

and R ⊆ C , we must have L∩R = ∅. We have

(ZG[A]ZG[B]ZG[C])s,t =
∑

a∈[n]∂outA

c∈[n]∂outC

ZG[A]s,a ZG[B]a,c Z
G[C]
c,t . (10.247)
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Given a ∈ [n]∂outA,a′ ∈ [n]A\L,b ∈ [n]B\∂outA\∂outC ,c ∈ [n]∂outC ,c′ ∈ [n]C\R such that for

x ∈ ∂outA∩ ∂outC we have a(x) = c(x), let us define g = ga,a′,b,c,c′,s,t : V� → [n] by

g(x) :=



s(κL(x)) if x ∈ L,

t(κR(x)) if x ∈ R,

a(x) if x ∈ ∂outA,

a′(x) if x ∈ A \ L,

b(x) if x ∈ B \ ∂outA \ ∂outC,

c(x) if x ∈ ∂outC,

c′(x) if x ∈ C \ R.

(10.248)

We then compute

(ZG[A]ZG[B]ZG[C])s,t =
∑

a∈[n]∂outA

a′∈[n]A\L
c∈[n]∂outC

c′∈[n]C\R

∏
{x,y}∈E(A,A∪∂outA)∪EA

M(x,y)
g(x),g(y)

∏
{x,y}∈E(C,C∪∂outC)∪EC

M(x,y)
g(x),g(y)

∏
x∈∂outA∩∂outC

1{a(x) = c(x)}
∏

{x,y}∈EB
M(x,y)
g(x),g(y)

=
∑

a∈[n]V�

∏
{x,y}∈E

M(x,y)
fa,s,t(x),fa,s,t(y)

= ZGs,t, (10.249)

completing the proof.

10.13.5 General-Purpose Norm Bounds

Our first application is to prove general-purpose bounds on the norms of CGMs based on

ribbon diagram structure and the norms of constituent labelling matrices.

First, we show that norms multiply over connected components, as we have alluded to
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in Remark 10.4.5 in the main text. This is a direct application of Proposition 10.13.3.

Proposition 10.13.12. Let G be a ribbon diagram with connected components G1, . . . , Gm, as

in Proposition 10.13.3. Then, ZG =∏m
`=1 ‖ZG`‖.

The following bound is less trivial and is used repeatedly in our arguments.

Proposition 10.13.13. Let G = (V , E) be a ribbon diagram with V = (L ∪R)t V�. Suppose

that V admits a partition V = V1 t · · · t Vm with m ≥ 2, such that V1 = L, Vm = R, and the

following properties hold:

1. For every v ∈ V1 = L, there exists some k > 1 such that v has a neighbor in Vk.

2. Every v ∈ Vm = R, there exists some k < m such that v has a neighbor in Vk.

3. For every 1 < j < m and every v ∈ Vj , there exist i < j < k such that v has a neighbor

in Vi and a neighbor in Vk.

Then,

‖ZG‖ ≤
∏

{x,y}∈E
‖M (x,y)‖. (10.250)

Proof. Note that, by repeatedly applying Proposition 10.13.6 with edges labelled by an iden-

tity matrix, we may furthermore assume without loss of generality that every edge of G is

either between two vertices of Vi, or between one vertex of Vi and one vertex of Vi+1 for

some i. Under this assumption, the three conditions in the statement may be rewritten as

follows:

1. For every v ∈ V1 = L, v has a neighbor in V2.

2. Every v ∈ Vm = R, v has a neighbor in Vm−1.

3. For every 1 < j < m and every v ∈ Vj , v has a neighbor in Vj−1 and a neighbor in Vj+1.
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Next, we proceed by induction on m. Suppose first that m = 2. Then, the assumptions

imply that V� = ∅ and L ∩ R = ∅. Let us enumerate the edges within L, within R, and

between L and R as follows:

E(L,L) = {{i(1)1 , i
(2)
1 }, . . . , {i(1)a , i(2)a }} for i(k)` ∈ L, (10.251)

E(R,R) = {{j(1)1 , j
(2)
1 }, . . . , {j(1)b , j(2)b }} for j(k)` ∈ R, (10.252)

E(L,R) = {{i1, j1}, . . . , {ic, jc}} for i` ∈ L and j` ∈ R. (10.253)

Then, we have

ZGs,t =
a∏
`=1

M
(i(1)` ,i

(2)
` )

s(κL(i(1)` )),s(κL(i
(2)
` ))

b∏
`=1

M
(j(1)` ,j(2)` )

t(κR(j(1)` )),t(κR(j(2)` ))

c∏
`=1

M(i`,j`)
s(κL(i`)),t(κR(j`)). (10.254)

Let us define an ancillary matrix

ẐGs,t :=
c∏
`=1

M(i`,j`)
s(κL(i`)),t(κR(j`)). (10.255)

Then, we may write ZG = DLẐGDR, for suitable diagonal matrices DL and DR having

entries equal to the first two products above, respectively. Since every entry of a matrix is

bounded by the matrix norm, we then have

‖ZG‖ ≤ ‖DL‖ · ‖ẐG‖ · ‖DR‖ ≤ ‖ẐG‖
∏

{x,y}∈E(L,L)∪E(R,R)
‖M (x,y)‖. (10.256)

For the remaining factor, by taking a singular value decomposition, we can factorize

each labelling matrix as M (x,y) = U (x,y)>V (x,y) such that ‖M (x,y)‖ = ‖U (x,y)‖ · ‖V (x,y)‖

(by including the factor of the singular values in either of the singular vector matrices).

Writing u(x,y,i) for the columns of U (x,y) and v(x,y,i) for the columns of V (x,y), we then
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have M(x,y)
ij = 〈u(x,y,i),v(x,y,j)〉. Therefore,

ẐGs,t =
c∏
`=1

〈
u(i`,j`,s(κL(i`))),v(i`,j`,t(κR(j`)))

〉
=
〈 cO
`=1

u(i`,j`,s(κL(i`))),
cO
`=1

v(i`,j`,t(κR(j`)))
〉
.

(10.257)

This writes ẐG = UG>V G, so we have ‖ẐG‖ ≤ ‖UG‖ · ‖V G‖. We then compute

(UG>UG)s,s′ =
c∏
`=1

(U (i`,j`)>U (i`,j`))s(κL(i`)),s′(κL(i`))

=
∏
i∈L

∏
j∼i
(U (i,j)>U (i,j))s(κL(i)),s′(κL(i)). (10.258)

Thus, UG>UG is the tensor product over i ∈ L of the Hadamard products over j ∼ i of

U (i,j)>U (i,j). Since the operator norm is multiplicative over tensor products and submulti-

plicative over Hadamard products, and every i ∈ L has a neighbor j ∈ R, we find

‖UG>UG‖ ≤
∏
i∈L

∏
j∼i
‖U (i,j)>U (i,j)‖, (10.259)

whereby

‖UG‖ ≤
∏
i∈L

∏
j∼i
‖U (i,j)‖ =

∏
{i,j}∈E

‖U (i,j)‖. (10.260)

Repeating the same argument for V G and multiplying the results together, we have

‖ZG‖ ≤ ‖UG‖ · ‖V G‖ ≤
∏

{i,j}∈E
‖U (i,j)‖ · ‖V (i,j)‖ =

∏
{i,j}∈E

‖M (i,j)‖, (10.261)

completing the argument for m = 2.

For the inductive step, if we have the result for m and are given a decomposition of G

intom+1 sets, the result follows by applying the factorization of Proposition 10.13.11 with

A = V1, B = V2, and C = V3t· · ·tVm, and using that ‖ZG[A]‖ and ‖ZG[B]‖may be bounded

using the m = 2 case.
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To see that the connectivity requirements are important for this argument, one may consider

the simple case where G has isolated vertices in L or R: if so, then the associated CGM is

the tensor product of an all-ones matrix with the CGM associated to G with the isolated

vertices removed. The norm of this all-ones matrix is polynomial in n, whereby the best

bound of the type (10.250) that we could hope for would depend on n, spoiling many of

our applications. Other cases where the connectivity requirements fail reduce to a similar

situation after sufficiently many applications of the factorization of Proposition 10.13.11.
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11 | Applications of Lifting Theorems

Finally, we give applications of our lifting theorems. As we expect from the previous chapter,

these results do not achieve the “gold standard” of proving SOS lower bounds of arbitrary

constant degree for the SK Hamiltonian, where we wish to lift low-rank matrices. How-

ever, we provide some ancillary results suggesting that our construction is correct in other

high-rank settings, and take this as additional evidence that it gives a correct first-order

approximation to a pseudomoment construction, which must likely be corrected with more

detailed considerations to work for the low-rank case.

Summary and References This chapter is based on the parts not discussed earlier of the

reference [Kun20b]. The following is a summary of our main results in this chapter.

1. (Theorem 11.2.1) The sum-of-forests pseudomoments built from the Gram matrix of

the simplex ETF approximately recover the Grigoriev-Laurent pseudomoments, and

give an enumerative combinatorial interpretation of their leading-order behavior.

2. (Theorem 11.3.1) The sum-of-forests pseudomoments give an extension of random

high-rank projection matrices to pseudomoments of arbitrary constant degree.

3. (Theorem 11.4.1) A tight degree 6 SOS lower bound for the SK Hamiltonian.

Prior Work The work [MRX20], concurrent with [KB20], also proved a degree 4 lower

bound, while the work [GJJ+20], concurrent with [Kun20b], also proved a stronger de-
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gree Ω(nε) lower bound. Both other results used the pseudocalibration construction of

[BHK+19]. The master’s thesis [dB19] explored techniques for degree 4 lower bounds simi-

lar to our own, avoiding pseudocalibration.

11.1 Pattern Diagrams

We first introduce the following device for counting arguments involving the patterns of

equal and unequal entries labelling a CGS diagram in the summations we will encounter.

Definition 11.1.1 (Pattern diagram). Suppose F = (V • t V�, E) is a diagram, s ∈ [n]|V•|, and

a ∈ [n]V� . Let the associated pattern diagram, denoted pat(F,s,a), be the graph G with

two types of vertices, • and � (as for diagrams), formed by starting with G and identifying

all v whose value of fs,a(v) is equal, where if we identify a • vertex with either a • or a �

vertex then the result is a • vertex, but if we identify two � vertices then the result is again

a � vertex. We then remove all self-loops from pat(F,s,a) (but allow parallel edges). The

graph G is also equipped with a natural labelling inherited from s and a, which we denote f ,

sometimes writing (G, f ) = pat(F,s,a).

Finally, if F1, . . . , Fm are diagrams, and si ∈ [n]|V•(Fi)| and ai ∈ [n]V�(Fi), then we let

pat((F1,s1,a1), . . . , (Fm,sm,am)) be the graph formed by applying the above identification

procedure to the disjoint union of the Fi, each labelled by si and ai.

Definition 11.1.2. Let Pat≤2d(m) be the set of unlabelled pat((T1,s,a1), . . . , (Tm,s,am)) that

occur for Ti ∈ T (2d′), s ∈ [n]2d′ , and ai ∈ [n]V�(T) for some choice of 1 ≤ d′ ≤ d. We

emphasize that we force s to be the same in all inputs here.

The way we will use this is by considering the pattern diagram G of any term in any CGS

quantity, whose magnitude scales, depending on the behavior of the entries of M , as

n−γ|E(G)|. On the other hand, the number of terms sharing a given pattern diagram is es-
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sentially n|V�(G)|. Grouping terms by pattern diagram allows us to take advantage of the

tradeoff between these two quantities.

In particular, we will want to use this to analyze the quantities εtree and εerr, so we define

the following subsets of pattern diagrams.

Definition 11.1.3. Let Pat≤2d
tree (m) ⊆ Pat≤2d(m) be the set of unlabelled pattern diagrams

pat((T1,s,a1), . . . , (Tm,s,am)) that occur for Ti ∈ T (2d′), s ∈ [n]2d′ , and ai ∈ [n]V�(T),

such that either the entries of s are not all equal, or s1 = · · · = s2d′ = j but not all of the

entries of ai equal j for all i, for some 1 ≤ d′ ≤ d.

Definition 11.1.4. Let Pat≤2d
err (m) ⊆ Pat≤2d(m) be the set of unlabelled pattern diagrams

pat((T1,s,a1), . . . , (Tm,s,am)) that occur for Ti ∈ T (2d′), s ∈ [n]2d′ , and ai ∈ [n]V�(T),

such that ai is (Ti,s)-loose for all i, for some choice of 1 ≤ d′ ≤ d.

The following two simple facts will be useful throughout; we will introduce other combi-

natorial properties as needed in our arguments.

Proposition 11.1.5. All diagrams in Pat≤2d(m) are connected for any d ≥ 1 and m ≥ 1.

Proposition 11.1.6. |Pat≤2d(m)| ≤ (3md)9md.

Proof. Every G ∈ Pat≤2d(m) is connected, and has at most 3md vertices and 3md edges

by Corollary 10.12.10 since this holds for each Ti ∈ T (2d′) for any d′ ≤ d and G can have

only fewer vertices and edges than the disjoint union of the Ti. Generally, the number of

connected graphs on at mostm ≥ 2 vertices, with at most n edges for n ≥m, and equipped

with a partition of the vertices into two parts is at most 2m · (m2)n ≤m3n, where we ignore

that there may be fewer vertices or edges by allowing “excess” vertices and edges to be

added to different connected components that we may ignore.
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11.2 Warmup 1: Grigoriev-Laurent Pseudomoments

As a first application of Theorem 10.2.3, we show that we can recover a “soft version” of the

pseudomoments studied in Chapter 9.

Theorem 11.2.1. Let α = α(n) = (log logn)−50. Then, for all n sufficiently large, exists there

Ẽ a degree 1
100 logn/ log logn pseudoexpectation satisfying

Ẽ

∏
i∈S
xi

 = 1{|S| even} ·
(
(−1)|S|/2(|S| − 1)!!
(n/(1−α))|S|/2 +O|S|

(
1

n|S|/2+1

))
, (11.1)

Ẽ[xx>] =
(

1+ 1−α
n− 1

)
In − 1−α

n− 1
1n1

>
n. (11.2)

This is weaker than the original statement; most importantly, it only gives a pseudoexpec-

tation Ẽ with Ẽ[(1>nx)2] ≈ αn, and thus does not show that the parity inequality above

fails for Ẽ. However, it has two important qualitative features: (1) it implies that we need

only add to Ẽ[xx>] an adjustment with operator norm o(1) to obtain an automatically-

extensible degree 2 pseudomoment matrix, and (2) it gives the correct leading-order behav-

ior of the pseudomoments. Elaborating on the latter point, our derivation in fact shows how

the combinatorial interpretation of (|S|−1)!! as the number of perfect matchings of a set of

|S| objects is related to the appearance of this quantity in the Grigoriev-Laurent construc-

tion. While in the original derivation this arises from a somewhat technical induction, in

our derivation, this coefficient simply comes from counting the diagrams of F(|S|) making

leading-order contributions, which are the diagrams of perfect matchings.

In the proof we will use the following more detailed bounds on pattern diagrams.

Proposition 11.2.2. If G = (V • t V�, E) ∈ Pat≤2d
tree (1), then |E| ≥ |V •| + |V�| − 1{|V •| > 1}.

Proof. We consider two cases. If |V •| > 1, then the result follows since G is connected by

Proposition 11.1.5. If |V •| = 1, then since the initial diagram G is formed from by identifying
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vertices is a tree, all leaves of that tree are identified in forming G, and G has more than

one vertex, G must have a cycle. Therefore, in this case, |E| ≥ |V •| + |V�|, completing the

proof.

Proposition 11.2.3. If G = (V • t V�, E) ∈ Pat≤2d
err (1), then |E| ≥ |V •| + |V�|.

Proof. Suppose for the sake of contradiction that this is not the case. Since T is connected,

by Proposition 11.1.5 G is connected as well, and if |E| ≤ |V •|+|V�|−1 then in fact equality

holds and G is a tree, in particular having no parallel edges. On the other hand, if a is

(T ,s)-loose, then there exists some index i ∈ [n] and a � vertex v in the minimal spanning

subtree of {w ∈ V • : sκ(w) = i} such that av ≠ i. Thus there must exist some � vertex v′

in this minimal spanning subtree with at least two neighbors w1,w2 such that fs,a(w1) =

fs,a(w2) = i but av′ ≠ i. The � vertex of G to which v′ is identified will then be incident

with a pair of parallel edges, giving a contradiction.

Proof of Theorem 11.2.1. We will set

M :=
(

1+ 1−α
n− 1

)
In − 1−α

n− 1
1n1

>
n (11.3)

and take Ẽ = ẼM . We first use Theorem 10.2.3 to show that Ẽ is a degree 2d pseudoexpec-

tation.

For the simpler incoherence quantities, we directly bound

εoffdiag(M) ≤ 1
n− 1

, (11.4)

εcorr(M) ≤
(

2
(

1
n− 1

)2

+ (n− 2)
(

1
n− 1

)4
)1/2

≤ 2
n− 1

, (11.5)

εpow(M) ≤ (n− 1)
(

1
n− 1

)2

= 1
n− 1

. (11.6)

For εtree, we group terms according to their pattern diagram. A given G = ((V •, V�), E)
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can occur in at most n|V�| terms, and each term contributes at most (n − 1)−|E|. We then

have

εtree(M ; 2d) = max
0≤d′≤d

max
T∈T (2d′)

max
s∈[n]2d′

∣∣∣ZT (M ;s)− 1{s1 = · · · = sn}
∣∣∣

≤
∑

G=((V•,V�),E)∈Pat≤2d
tree (1)

n|V
�|(n− 1)−|E|

≤
∑

G=((V•,V�),E)∈Pat≤2d
tree (1)

n|V
�|(n− 1)−|V

|�|−|V•|+1{|V•|>1} (Proposition 11.2.2)

≤ 23d

n− 1

∑
G=((V•,V�),E)∈Pat≤2d

tree (1)

1 (Corollary 10.12.10)

≤ (3d)
12d

n− 1
. (Proposition 11.1.6)

For εerr, we follow the same strategy. The main additional observation is that |set(s)| is

always simply the number of • vertices in pat(T ,s,a), regardless of T or a. Thus we find

εerr(M ; 2d) = max
0≤d′≤d

max
T∈T (2d′)

max
s∈[n]2d′

n|set(s)|/2
∣∣∣∣∣ ∑

a∈[n]V�
a (T ,s)-loose

∏
(v,w)∈E(T)

Mfs,a(v)fs,a(w)

∣∣∣∣∣
≤

∑
G=(V•tV�,E)∈Pat≤2d

err (1)

n|V
•|/2 ·n|V�|(n− 1)−|E|

≤
∑

G=(V•tV�,E)∈Pat≤2d
err (1)

n|V
•|/2+|V�|(n− 1)−|V

•|−|V�| (Proposition 11.2.3)

≤ 26d
√
n

∑
G=(V•tV�,E)∈Pat≤2d

err (1)

1 (Corollary 10.12.10)

≤ (3d)
15d

√
n

. (Proposition 11.1.6)

(This may be sharpened to O(n−1) by considering the case k = 1 separately, but that would

not change the final result significantly.)

Combining these results, we find ε(M ; 2d) ≤ 2(3d)15dn−1/2. Thus, since λmin(M) ≥ α

and ‖M‖ ≤ 2, the result follows so long as α ≥ 64(12d)47n−1/2d. If d = logn/100 log logn,

378



then we have

64(12d)47n−1/2d = 64

(
12 logn

100 log logn

)47

(logn)−100/2 ≤ 64

(
3

20 log logn

)50

, (11.7)

so with α = (log logn)−50 it follows that ẼM is a degree 2d pseudoexpectation.

It remains to verify (11.1), which gives the leading order behavior of the pseudomoments:

Ẽ

∏
i∈S
xi

 = 1{|S| even} ·
(
(−1)|S|/2(|S| − 1)!!
(n/(1−α))|S|/2 +O|S|

(
1

n|S|/2+1

))
. (11.8)

We claim that the leading order part is exactly the sum of the terms µ(F) ·ZF(M ;S) for F a

forest where every connected component is two • vertices connected by an edge (a “pair”),

since there are (|S|−1)!! such perfect matchings. Thus it suffices to bound the contributions

of all other terms.

We use pattern graphs once again, now noting that, since we are assuming S is a set, no •

vertices will be identified with one another. Suppose F is a good forest and G = pat(F,s,a)

where all indices of s are distinct. We then have |E(G)| ≥ 2|V�(G)| + 1
2 |V •(G)|, because

|E(G)| = 1
2

∑
v deg(v), and every � vertex in G after the identification procedure will still

have degree at least 4 and every • vertex will still have degree at least 1 since no • vertices

are identified. Moreover, if |V�(G)| = 0, then the above inequality is tight if and only if F

is a perfect matching to begin with. Therefore, if F is not a perfect matching, then, writing

for the moment Pat2d
F for the pattern graphs arising as any pat(F,s,a) for F ∈ F(2d) (with
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forests rather than trees), we find

|ZF(M ;S)| ≤
∑

G=(V•tV�,E)∈Pat|S|F
|V•|=|S|

n|V
�|(n− 1)−|E|

≤
∑

G=(V•tV�,E)∈Pat|S|F
|V•|=|S|

n|V
�|(n− 1)−2|V�|−|V•|/2−1{|V�|=0}

≤ n−|V•|/2−1
∑

G=(V•tV�,E)∈Pat|S|F
|V•|=|S|

1. (11.9)

Finally, since the remaining counting coefficient, maxF∈F(|S|) |µ(F)|, and |F(|S|)| all depend

only on |S|, the result follows. (Bounding the remaining combinatorial coefficient and using

Propositions 10.12.5 and 10.12.11 here can give a weak quantitative dependence on |S| as

well.)

11.3 Warmup 2: Lifting Random High-Rank Projectors

We also consider a random variant of the setting of Laurent’s theorem, where the special

subspace spanned by 1n is replaced with a random low-dimensional subspace. This is also

essentially identical to the setting we would like to treat to give SOS lower bounds for the

SK Hamiltonian, except for the dimensionality of the subspace.

Theorem 11.3.1. Suppose m : N → N is an increasing function with log(n) � m(n) �

n/ logn as n→∞. Let V be a uniformly random (n−m)-dimensional subspace of Rn. Then,

with high probability as n → ∞, there exists Ẽ a degree 1
300 log(n/m)/ log logn pseudoexpec-
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tation satisfying

Ẽ[〈x,v〉2]
‖v‖2

∈
[

1,1+ 4
m
n

]
for all v ∈ V \ {0}, (11.10)

Ẽ[〈x,v〉2]
‖v‖2

∈
[

0,
1

(log logn)32
+ 4
m
n

]
for all v ∈ V⊥ \ {0}. (11.11)

As in the case of our version of Laurent’s theorem, this result does not imply an SOS integral-

ity gap that is in itself particularly interesting. Indeed, results in discrepancy theory have

shown that hypercube vectors can avoid random subspaces of sub-linear dimension (V⊥, in

our case) unusually effectively; see, e.g., [TMR20] for the recent state-of-the-art. Rather, we

present this example as another qualitative demonstration of our result, showing that it is

possible to treat the random case in the same way as the deterministic case above, and that

we can again obtain an automatic higher-degree extension after an adjustment with operator

norm o(1) of Ẽ[xx>] from a random projection matrix.

To handle this random case, we will need some more involved tools that we introduce

now. Our main probabilistic tool for controlling the more complicated incoherence quanti-

ties will be the following family of hypercontractive concentration inequalities, which state

(in the case we will use) that low-degree polynomials of independent gaussian random vari-

ables concentrate well.

Proposition 11.3.2 (Theorem 5.10 of [Jan97]). Let p ∈ R[x1, . . . , xn] be a polynomial with

deg(p) ≤ D. Then, for all q ≥ 2,

(E|p(g)|q)1/q ≤ (q − 1)D/2 · (E|p(g)|2)1/2 (11.12)

The consequence we will be interested in is the following convenient tail bound, which

reduces analyzing the concentration of a polynomial to computing its second moment.

Corollary 11.3.3. Let p ∈ R[x1, . . . , xn] be a polynomial with deg(p) ≤ D. Then, for all
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t ≥ (2e2)D/2,

P
[
‖p(g)‖2

2 ≥ t · E‖p(g)‖2
2

]
≤ exp

(
−D
e2
t2/D

)
. (11.13)

Proof. By Proposition 11.3.2, for any q ≥ 2,

P[|p(g)| ≥ t(E|p(g)|2)1/2] = P[|p(g)|q ≥ tq(E|p(g)|2)q/2]

≤ t−q(E|p(g)|2)−q/2E|p(g)|q

≤ t−q(q − 1)qD/2

≤ (qD/2/t)q,

and setting q := t2/D/e2 ≥ 2 we have

= exp
(
−D
e2
t2/D

)
, (11.14)

completing the proof.

We will also use the following standard tail bounds on χ2 random variables and rectan-

gular Gaussian random matrices.

Proposition 11.3.4 (Lemma 1 of [LM00]). Let g ∼N (0,In). Then,

P
[∣∣‖g‖2 −

√
n
∣∣ ≥ t] ≤ 2 exp

(
−t

2

2

)
. (11.15)

Proposition 11.3.5 (Corollary 7.3.3 and Exercise 7.3.4 of [Ver18]). LetG ∈ Rm×n withm ≥ n

have i.i.d. entries distributed as N (0,1). Let σ1(G) ≥ · · · ≥ σn(G) ≥ 0 denote the ordered

singular values of G. Then,

P
[√
m−√n− t ≤ σn(G) ≤ σ1(G) ≤

√
m+√n+ t] ≥ 1− 4 exp(−Ct2) (11.16)
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for a universal constant C > 0.

We will also need some more specific combinatorial preliminaries, which describe how to

compute expectations of gaussian polynomials like those that will wind up associated with

pattern graphs in our calculations.

Definition 11.3.6. A cycle cover of a graph G is a partition of the edges into edge-disjoint

cycles. We denote the number of cycles in the largest cycle cover of G by cmax(G).

Proposition 11.3.7. Let G = (V , E) be a graph, and for each v ∈ V draw gv ∼ N (0,Ik)

independently. Then,

E

 ∏
(v,w)∈E

〈gv ,gw〉
 = ∑

C cycle cover of G
k|C| ≤ |E||E|kcmax(G). (11.17)

Proof. The first equality is proved in Section 4 of [MR11]. The inequality follows from the

fact that the number of cycle covers of G is at most the number of partitions of the edges

of G, which is at most |E||E| by Proposition 10.12.7.

As a historical remark, we note that essentially the same results, though in somewhat dif-

ferent language, are given in the earlier paper [LR01].

Proposition 11.3.8. Suppose G = (V , E) is a connected graph with no self-loops, but possibly

with parallel edges. Then, |V | + cmax(G)− 1 ≤ |E|, with equality if and only if G is an inflated

tree—a tree where every edge has been replaced with a cycle.

Proof. Let C be a maximum cycle cover of G. Let G′ be the graph formed by removing an

arbitrary edge from every cycle in C . Then, |E(G′)| = |E| − cmax(G) and |V(G′)| = |V |.

Moreover, G′ is connected, since there is a path in G′ between the endpoints of each edge

that was removed (along the remaining edges of the corresponding cycle). Thus, |E(G′)| ≥

|V(G′)| − 1, and substituting gives |E| − cmax(G) ≥ |V | − 1.
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Equality holds if and only if G′ is a tree. If G is an inflated tree, this will clearly be the

case. Suppose now that G′ is a tree; we want to show that G is an inflated tree. If two

edge-disjoint cycles intersect in more than one vertex, then after one edge is removed from

each cycle, there still exists a cycle among their edges. Therefore, if G′ is a tree, then any

two cycles of C can intersect in at most one vertex. Moreover, again because G′ is a tree,

there can exist no further cycle of G including edges from more than one of the cycles of

C . Therefore, the graph formed by collapsing each cycle of C to an edge must be a tree,

whereby G is an inflated tree.

Proof of Theorem 11.3.1. Let g1, . . . ,gm ∼N (0,In) be a collection of independent gaussian

vectors coupled to V⊥ such that V⊥ = span(g1, . . . ,gm). Let us define

α := (log logn)−32, (11.18)

which will play a similar role here to that of α in the proof of Theorem 11.2.1. Define

M (0) := (1−α/2) 1
n
∑m
i=1 gig

>
i , letD be the diagonal matrix with diag(D) = diag(M (0)), and

define M := I +D −M (0). We will then take Ẽ = ẼM for this choice of M (which we note

satisfies diag(M) = 1n by construction).

We first establish a preliminary asymptotic on the eigenvalues of M (0). Let λ1(M (0)) ≥

λ2(M (0)) ≥ · · · ≥ λn(M (0)) ≥ 0 be the ordered eigenvalues of M (0). Then, λm+1(M (0)) =

· · · = λn(M (0)) = 0 almost surely. We note that
√
m/n � 1/

√
logn � α, whereby the

concentration inequality of Proposition 11.3.5 implies that, with high probability as n→∞,

1−α ≤ λm(M (0)) ≤ · · · ≤ λ1(M (0)) ≤ 1− 1
3
α. (11.19)
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We next control the entries of D. These are

Dii =
(

1− α
2

)
1
n

m∑
j=1

(gj)2i , (11.20)

where the law of the inner sum is χ2(m). By the concentration inequality of Proposi-

tion 11.3.4, we have that P[Dii ≥ 4mn ] ≤ exp(−n), and since m � logn by assumption,

upon taking a union bound we have that, with high probability, 0 �D � 4mn In.

We next establish the projection-like behavior of M . Suppose first that v ∈ V . Since the

row space of M (0) is V⊥, we have, on the event that the bound for D above holds,

‖v‖2 ≤ v>Mv = ‖v‖2 + v>Dv ≤
(

1+ 4
m
n

)
‖v‖2 (11.21)

Now, suppose v ∈ V⊥. Then, on the event that the bound for M (0) above holds, we have

that since v is in the subspace spanned by the top m eigenvectors of M (0),

v>Mv = ‖v‖2 + v>Dv − v>M (0)v> ≤ ‖v‖2 + 4
m
n
‖v‖2 − (1−α)‖v‖2 =

(
4
m
n
+α

)
‖v‖2.

(11.22)

We now take up the main task of showing that ẼM is a pseudoexpectation of the required

degree. Note that the above results imply that λmin(M) ≥ 1 − λmax(M (0)) ≥ α/3, giving

the necessary control of the smallest eigenvalue. It remains to control the incoherence

quantities.

Writing h1, . . . ,hn ∈ Rm for the vectors hi = ((gj)i)nj=1, we note that, for i ≠ j, we have

Mij = −(1 − α) 1
n〈hi,hj〉, and the hi are independent and identically distributed with law

N (0,Im). Since for any fixed i ≠ j the law of 〈hi,hj〉 is the same as that of ‖hi‖2(hj)1 (by
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orthogonal invariance of gaussian vectors), using Proposition 11.3.4 again we may bound

P
[

1
n
|〈hi,hj〉| ≥ t

]
≤ P[‖hi‖2 ≥ 2

√
m]+ P

[
|(hj)1| ≥ tn

2
√
m

]
≤ exp

(
−m

2

)
+ exp

(
−t

2n2

8m

)
(11.23)

Recall that we have assumed m� logn. Therefore, taking a union bound over these events

for {i, j} ∈
(
[n]
2

)
we find that, with high probability as n → ∞, the simpler incoherence

quantities will satisfy

εoffdiag(M) ≤ 5

√
m logn
n2

, (11.24)

εcorr(M) ≤ 25

(
2
m logn
n2

+ (n− 2)
m2 log2n
n4

)1/2

≤ 50

√
m logn
n2

. (11.25)

For εpow, we observe that by the above reasoning with high probability M � 0, and thus

|Mij| ≤ 1 for all i ≠ j. On this event, we have

εpow(M) ≤ max
i∈[n]

∑
j≠i

M2
ij ≤

1
n2

max
i∈[n]

h>i

∑
j≠i

hjh
>
j

hi ≤ 1
n2

∥∥∥∥∥∥
n∑
i=1

hih
>
i

∥∥∥∥∥∥max
i∈[n]

‖hi‖2
2. (11.26)

By the calculations above, with high probability we have both ‖hi‖2
2 ≤ 4m for all i ∈ [n] and

‖∑ni=1hih
>
i ‖ = ‖

∑m
i=1 gig

>
i ‖ = n

1−α‖M (0)‖ ≤ 2n. Thus we find that, with high probability,

εpow(M) ≤ 8
m
n
. (11.27)

Finally, for εtree and εerr we will use pattern diagrams together with hypercontractivity.

We begin with εtree. Examining one term in the maximization, for a given T ∈ T (2d′) and

386



s ∈ [n]2d′ , we have

ZT (M ;s)− 1{s1 = · · · = sn}

=
∑

a∈[n]V�with s,a not all equal

∏
(v,w)∈E(T)

Mfs,a(v)fs,a(w)

=
∑

a∈[n]V�with s,a not all equal
(G,f )=pat(T ,s,a)

∏
(v,w)∈E(G)

Mf(v),f (w)

and since the pattern diagram is constructed to have all edges between vertices with differ-

ent indices, we may expand this in terms of the hi,

=
∑

a∈[n]V�with s,a not all equal
(G,f )=pat(T ,s,a)

(
−1−α

n

)|E(G)| ∏
(v,w)∈E(G)

〈hf(v),hf(w)〉. (11.28)

Towards applying the hypercontractive inequality, we compute the second moment:

E[(ZT (M ;s)− 1{s1 = · · · = sn})2]

=
∑

a1,a2∈[n]V�with s,a1 not all equal
and s,a2 not all equal

(G,f )=pat((T ,s,a1),(T ,s,a2))

(
−1−α

n

)|E(G)|
E

 ∏
(v,w)∈E(G)

〈hf(v),hf(w)〉


and simplifying the remaining expectation using Proposition 11.3.7 and bounding the first

term,

≤ (6d)6d
∑

a1,a2∈[n]V�with s,a1 not all equal
and s,a2 not all equal

G=pat((T ,s,a1),(T ,s,a2))

1{G has a cycle cover}n−|E(G)|mcmax(G),
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where we note that the expression does not depend on the labelling f of the vertices of G

anymore. Now, as before, we group terms according to the graph G, using that each occurs

at most n|V�(G)| times in the sum, and that each G arising is connected, contains at most 6d

vertices and 6d edges, and at least one • vertex:

≤ (6d)6d
∑

G=(V•tV�,E)∈Pat≤2d
tree (2)

1{G has a cycle cover}n|V�|−|E|mcmax(G)

≤ (6d)6dm
n

∑
G=(V•tV�,E)∈Pat≤2d

tree (2)

n|V
�|+cmax(G)−|E|.

Now, by Proposition 11.3.8 we have |V •| + |V�| + cmax(G)− |E| − 1 ≤ 0. If |V •| ≥ 2, then this

yields |V� + cmax(G)− |E| ≤ −1. If |V •| = 1, we argue slightly more carefully and note that

in this case, since all • vertices in both underlying trees collapsed to a single vertex, in fact

all vertices in G have degree at least 4, so G cannot be an inflated tree as in the only case

of equality for Proposition 11.3.8. Therefore, in this case we have |V�| + cmax(G)− |E| ≤ −1

again, whereby

≤ (6d)6dm
n2

∑
G=(V•tV�,E)∈Pat≤2d

tree (2)

1

and concluding with Proposition 11.1.6, we find

≤ (6d)24dm
n2
.

≤ (6d)
24d

n
. (11.29)

(Here we have been slightly more precise than strictly necessary, in anticipation of referring

to our results when discussing the SK Hamiltonian below.)

Now, we observe that ZT (M ;s) − 1{s1 = · · · = s2d′} is a polynomial of degree at most

2|E(T)| ≤ 6d (by Corollary 10.12.10) in the entries of the hi, which are i.i.d. standard gaus-
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sians. Thus we can apply the hypercontractive tail bound of Corollary 11.3.3 to find, taking

t = n1/4 ≥ (2e2)3d for n sufficiently large,

P
[
|ZT (M ;s)− 1{s1 = · · · = s2d′}| ≥ (6d)12dn−1/4

]
≤ exp(−6dn1/12d). (11.30)

Taking a union bound, since the number of choices of d′, T , and s is at most d · 2(3d)3d ·

n2d ≤ n6d for n sufficiently large, we have

P
[
εtree(M ; 2d) ≥ (6d)12dn−1/4

]
≤ n6d exp(−6dn1/12d)

≤ exp
(
6d(logn−n1/12d)

)
, (11.31)

and recalling that d ≤ 1
300 log(n/m)/ log logn from our assumption we find that the event

above holds with high probability. Also, from this same assumption we find (6d)12d ≤ n1/8

for n sufficiently large, whereby with high probability

εtree(M ; 2d) ≤ n−1/8. (11.32)

We now perform the same analysis for εerr(M ; 2d). Again examining one term with

a given T ∈ T (2d′) and s ∈ [n]2d′ , manipulating as before, and computing the second
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moment, we find

E
[( ∑

a∈[n]V�
a (T ,s)-loose

∏
(v,w)∈E(T)

Mfs,a(v)fs,a(w)

)2]

=
∑

a1,a2∈[n]V�
a1,a2 (T ,s)-loose

(G,f )=pat((T ,s,a1),(T ,s,a2))

(
−1−α

n

)|E(G)|
Ẽ

 ∏
(v,w)∈E(G)

〈hf(v),hf(w)〉


≤ (6d)6d
∑

a1,a2∈[n]V�
a1,a2 (T ,s)-loose

G=pat((T ,s,a1),(T ,s,a2))

1{G has a cycle cover}n−|E(G)|mcmax(G)

≤ (6d)6d
∑

G=(V•tV�,E)∈Pat≤2d
err (2)

1{G has a cycle cover}n|V�|−|E|mcmax(G)

We recall that |V •| = |set(s)| and |V •| + |V�| = |V |, so we may rewrite this by “forgetting”

the vertex types as

= n−|set(s)|(6d)6d
∑

G=(V ,E)∈Pat≤2d
err (2)

1{G has a cycle cover}n|V |−|E|mcmax(G)

≤ n−|set(s)|(6d)6d
m
n

∑
G=(V ,E)∈Pat≤2d

err (2)

n|V |+cmax(G)−|E|. (11.33)

Now, by Proposition 11.3.8, the inner term is at most 1 unless G is an inflated tree. We

claim that, when G = pat((T ,s,a1), (T ,s,a2)) where a1 and a2 are both (T ,s)-loose, then G

cannot be an inflated tree. To prove this, we consider two cases.

Case 1: |set(s)| = 1. In this case, as we have argued above, since the total number of

• vertices in the two initial trees taken together is at least 4 and neither of these trees is a

pair, every vertex in G will have degree at least 4, whereby G cannot be an inflated tree.

Case 2: |set(s)| > 1. Suppose, more specifically, that G = pat((T1,s,a1), (T2,s,a2)).

Since a1 is (T1,s)-loose, there exists some i ∈ [n] and some v ∈ V�(T1) such that v belongs

to the minimal spanning tree of leaves ` with sκT1(`) = i, but (a1)v ≠ i. In particular, there
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must exist two such leaves `1, `2 such that v is along the path from `1 to `2. In G, the vertex

that v is identified to—call it x—is different from the vertex that `1 and `2 are identified

to—call it y . Since |set(s)| > 1, there is some j ≠ i and a leaf `′ with sκT1(`
′) = j. Suppose

`′ is identified to a vertex z in G. Then, there is a path from x to z in G, so there are two

different paths from y to z consisting only of edges coming from T1.

On the other hand, since T2 is a tree and a2 is (T2,s)-loose, there is another path in G

from y to z and consisting of edges different from the first two paths, coming from T2.

Therefore, in G there exist three different paths between y and z; put differently, a triple

edge can be obtained as a minor of G (after discarding self-loops). On the other hand, any

minor of an inflated tree is still an inflated tree (again after discarding self-loops), and a

triple edge is not an inflated tree. Thus, G cannot be an inflated tree. This concludes the

proof of our intermediate claim.

We then conclude the main argument using Proposition 11.1.6:

E
[( ∑

a∈[n]V�
a (T ,s)-loose

∏
(v,w)∈E(T)

Mfs,a(v)fs,a(w)

)2]
≤ n−|set(s)|(6d)6d

m
n

∑
G=(V ,E)∈Pat≤2d

err (2)

1

≤ n−|set(s)|(6d)24dm
n
. (11.34)

Similarly to before, we apply Corollary 11.3.3 with t = (n/m)1/4, finding

P

[
n|set(s)|/2

∣∣∣∣∣ ∑
a∈[n]V�

a (T ,s)-loose

∏
(v,w)∈E(T)

Mfs,a(v)fs,a(w)

∣∣∣∣∣ ≥ (6d)12d(m/n)1/4
]

≤ exp(−6d(n/m)1/12d), (11.35)

and performing the same union bound calculation over all choices of d′, T , and s shows

that, with high probability,

εerr(M ; 2d) ≤ (m/n)1/8. (11.36)
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Thus, combining the results on the incoherence quantities, with high probability we have

ε(M ; 2d) ≤ 55

√
m logn
n2

+ 8
m
n
+
(

1
n

)1/8
+
(
m
n

)1/8
≤ 65

(
m
n

)1/8
. (11.37)

On this event, we work with the condition of Theorem 10.2.3, for n sufficiently large:

(12d)32‖M‖5ε(M ; 2d)1/d ≤ 64

(
12d
logn

)32

≤ 1
3
(log logn)−32 = 1

3
α ≤ λmin(M), (11.38)

concluding the proof.

11.4 Degree 6 Lower Bound for Sherrington-Kirkpatrick

Hamiltonian

We now prove our SOS lower bound for the SK Hamiltonian.

Theorem 11.4.1. For any ε > 0, for W ∼ GOE(n), limn→∞ P[SOS6(W ) ≥ (2− ε)n] = 1.

The new technical lemma we need here compared to previously controls the εpow incoher-

ence quantity from Definition 10.2.2 in the previous chapter. Recall that, in this setting, this

amounts to controlling the spectrum of M ◦2 for M a rescaled low-rank projection matrix.

Lemma 11.4.2. Let δ ∈ (0,1) and r = δn. Then, for any K > 0 there exist constants C1, C2 > 0

depending only on K and δ such that, letting h1, . . . ,hn ∼ N (0,Ir ) be independent, ai :=

isovec(hih>i − Ir ), and A ∈ Rr(r+1)/2×n have the ai as its columns,

P
[∥∥∥∥ 1
r 2
A>A− In

∥∥∥∥ ≤ C1
logn√
n

]
≥ 1− C2

nK
. (11.39)

In essence, this says that the 1
rai are approximately orthonormal. We give the proof in Sec-

tion 11.5 below using powerful general results of [ALPTJ11], as well as a related result used
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in [KB20] that gives a more direct proof for the case of M a rescaling of a genuine random

projection matrix—not just the Gaussian approximation thereof—showing how such results

can be proved even without independence assumptions.1

Proof of Theorem 11.4.1. We start out following similar steps to Theorem 11.3.1. Fix some

small δ > 0, and let V be the eigenspace spanned by the δn leading eigenvectors of W . Let

us define r := δn, following the notation from earlier. Let g1, . . . ,gr ∈ N (0,In) be a col-

lection of independent gaussian vectors coupled to V such that V = span(g1, . . . ,gr ). Define

M (0) := (1 − α/2)δ−1

n
∑r
i=1 gig

>
i . Let D be the diagonal matrix with diag(D) = diag(M (0)),

and define M := I −D +M (0).

We first control the entries of D. These are

Dii =
(

1− α
2

)
δ−1

n

r∑
j=1

(gj)2i =
(

1− α
2

)
1
r

r∑
j=1

(gj)2i . (11.40)

Applying the concentration inequality of Proposition 11.3.4 and a union bound, we find that

with high probability (1− α)In �D � (1− α/3)In. Since M (0) � 0, on this event we have

M � (α/3)In, and also ‖M −M (0)‖ = ‖In −D‖ ≤ α.

We now show that M satisfies the conditions of Theorem 10.11.2. We note that, again

writing h1, . . . ,hn ∈ Rr for the vectors hi = ((gj)i)nj=1, for i ≠ j we have Mij = (1 −

α/2) 1
r 〈hi,hj〉. Following the same calculations as in Theorem 11.3.1 (noting that we may

follow them truly verbatim, since the setting is identical except for the constant in front of

each Mij with i ≠ j), we find that we have, with high probability

εoffdiag(M) ≤ K
√

logn
n
, (11.41)

εerr(M ; 6) ≤ K. (11.42)

1I thank Ramon van Handel for suggesting that the line of work in [ALPTJ11] would be applicable here.
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Here and in the rest of this proof, we adopt the convention that K = K(δ) > 0 is a constant

that may change from line to line.

We now control εpow(M). For k ≥ 3, by the Gershgorin circle theorem and substituting

in εoffdiag(M), we note that we have

‖M ◦k − In‖ ≤ n
K

√
logn
n

3

≤ K3 log2n√
n
. (11.43)

We will take tpow = (1 − α/2)2 1
r . Let us define vectors ai := isovec(hih>i − Ir ), where the

mapping isovec : Rr×rsym → Rr(r+1)/2 is such that 〈S,T 〉 = 〈isovec(S), isovec(T )〉. We note that

〈ai,aj〉 = 〈hi,hj〉2 − ‖hi‖2 − ‖hj‖2 + r . (11.44)

Thus, writing A for the matrix with the ai as its columns and b for the vector with entries

‖hi‖2, we have

M ◦2 − In = (1−α/2)
2

r 2

(
A>A+ b1>n + 1nb

> − r1n1>n − diag(b)2
)

(11.45)

= (1−α/2)
2

r 2

(
A>A+ (b− r1n)1>n + 1n(b− r1n)> + r1n1>n − diag(b)2

)
, (11.46)

whereby with our choice of tpow we may bound

‖M ◦2 − In − tpow1n1
>
n‖

≤ (1−α/2)
2

r 2

(
‖A>A− r 2In‖ + 2n1/2‖b− r1n‖2 + ‖r 2In − diag(b)2‖

)
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By Proposition 11.3.4, with high probability for all i ∈ [n] we have |‖h‖2
i − r | ≤ r 3/4, on

which event we have ‖b−r1n‖2 ≤ r 3/4n1/2 and ‖r 2In−diag(b)2‖ ≤ 3r 7/4, which leaves only

the more interesting term,

≤
∥∥∥∥ 1
r 2
A>A− In

∥∥∥∥2

+ (3+ δ−1)r−1/4 (11.47)

Finally, by Lemma 11.4.2 the remaining term is at most K
√

log2n/n with high probability,

whereby we find with high probability

≤ Kn−1/4. (11.48)

Combining these results, we see that ε̃(M , tpow) ≤ Kn−1/4. Since by our earlier calculations

λmin(M) ≥ α/3, the condition of Theorem 10.11.2 will hold with high probability.

Now, we consider the constant c appearing in the theorem. Recall that we chose tpow ≤

Kn−1. We have ‖M‖ ≤ 1 + ‖M (0)‖ ≤ K with high probability by Proposition 11.3.5, and

‖M 2‖F ≤
√
r‖M 2‖2 ≤ r 1/2‖M‖2 ≤ Kn1/2. The only quantity it remains to control is

εoffdiag(M 2). We have

M 2 = (I −D)2 + (I −D)M (0) +M (0)(I −D)+M (0)2 , (11.49)

and thus, for i ≠ j,

|(M 2)ij| ≤ |2−Dii −Djj| |M(0)
ij | + |(M (0)2)ij|

≤ K
√

logn
n

+ |(M (0)2)ij| (11.50)

with high probability for all i ≠ j by our previous reasoning. For the remaining term, let

G ∈ Rn×r have the gi as its columns and the hi as its rows, so thatM (0) = (1−α/2)δ−1

n GG
>.

395



Then, we may write

(M (0)2)ij

= (1−α/2)2δ
−2

n2
e>i GG

>GG>ej

= (1−α/2)2δ−2 1
n2
h>i

 n∑
k=1

hkh
>
k

hj
= (1−α/2)2δ−2 1

n2

(‖hi‖2
2 + ‖hj‖2

2)〈hi,hj〉 +h>i
 ∑
k∈[n]\{i,j}

hkh
>
k

hj
 . (11.51)

In the last factor, by our previous reasoning with high probability the first summand is, in

magnitude, at most Kn3/2 logn for all i ≠ j. In the second summand, note that for each

fixed i ≠ j, the vectors hi,hj , and the matrix
∑
k∈[n]\{i,j}hkh

>
k =: B∼{i,j} are independent.

By Proposition 11.3.5, for all i ≠ j, ‖B∼{i,j}‖ ≤ Kn, and therefore also ‖B∼{i,j}‖2
F ≤ n3,

with high probability. Conditioning on the value of this matrix and applying the Hanson-

Wright inequality [RV13] for a fixed i ≠ j then shows, after a union bound, that with high

probability, |h>i B∼{i,j}hj| ≤ Kn13/8 for all i ≠ j (indeed, this will hold with any exponent

larger than 3/2). Thus we find εoffdiag(M 2) ≤ Kn−3/8 with high probability (this, in turn,

will hold with any exponent smaller than 1/2, which coincides with our expectation that we

should have εoffdiag(M 2) Ü Kεoffdiag(M) for M close to a rescaled projection matrix).

Therefore, the constant c from the statement of Theorem 10.11.2 will satisfy

c ≤ K
n

(√
n+n ·n−3/8 +n2 ·n−9/8

)
≤ Kn−1/8. (11.52)

The theorem produces Ẽ a degree 6 pseudoexpectation with Ẽ[xx>] = (1−c)M +cIn. Sup-

pose we have chosen δ small enough that, with high probability, the largest δn eigenvalues
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of W are at least 2− ε/2. Then we have, with high probability,

n−1SOS6(W ) ≥ n−1〈W , (1− c)M + cIn〉 (11.53)

≥ (1− c)n−1〈W ,M (0)〉 −α‖W ‖ − c|tr(W )| (11.54)

and since we have, with high probability, ‖W ‖ ≤ 2 + α, |tr(W )| ≤ logn, and 〈W ,M (0)〉 ≥

λr (M (0))λδn(W ) ≥ (1−α)(2− ε/2), we find on this event that

≥ (1−Kn−1/8)(1−α)(2− ε/2)−α(2+α)−Kn−1/8 logn (11.55)

and choosing α sufficiently small, depending on our choice of δ above, we will have for

sufficiently large n

≥ 2− ε, (11.56)

completing the proof.

11.5 Tensorial Sample Covariance Matrices

In this section we give the proof of Lemma 11.4.2 controlling a covariance-like matrix con-

sisting of Gaussian tensors, as well as a variant for tensors built from a matrix distributed

uniformly on the Stiefel manifold, used in [KB20] and involving a different and indepen-

dently interesting proof technique. Related questions have been studied recently in, e.g.,

[Ver20]; see also our references below.
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11.5.1 Gaussian Tensors: Proof of Lemma 11.4.2

The proof will use powerful concentration inequalities developed for low-rank sample co-

variance matrices of this kind for random vectors having a certain concentration property.

Definition 11.5.1 (Orlicz norm). Let x ∈ Rd be a random vector. For ρ ≥ 1, we define its ψρ

norm as

‖x‖ψρ := sup
y∈Rd
‖y‖2=1

inf

{
C > 0 : E

[
exp

(( |〈x,y〉|
C

)ρ)]
≤ 2

}
. (11.57)

(The specific constant 2 is not essential, but is a common convention. Note also that ψr is

the standard notation, but we switch the index variable to ρ to avoid confusion with our

dimension variable r .)

Proposition 11.5.2 (Theorem 3.3 of [ALPTJ11]). Let ρ ∈ [1,2]. Let x1, . . . ,xn ∈ Rd be inde-

pendent centered random vectors, each having finite ψρ norm, and let ψ := maxi∈[n] ‖xi‖ψρ .

Let A ∈ Rd×n have the x1, . . . ,xn as its columns. There exist universal constants C1, C2 > 0

such that, for any θ ∈ (0,1),

∣∣∣‖Ay‖2
2 − 1

∣∣∣ ≤ C1(ψ
√
d+

√
1+ θ)2

√
n
d

1+ log

√d
n

1/ρ

+ θ for all y ∈ Sd−1 (11.58)

with probability at least

1− C1 exp

−C2
√
n

1+ log

√d
n

− 2P

[
max
i∈[n]

∣∣∣‖xi‖2
2 − 1

∣∣∣ ≥ θ] . (11.59)

To apply Proposition 11.5.2, we must show that the distribution of the vectors 1
rai has

bounded ψρ norm for some ρ ∈ [1,2]. The following achieves this for ρ = 1.

Proposition 11.5.3. Let h ∼ N (0,Ir ) and a = isovec(hh> − Ir ). Then, ‖a‖ψ1 ≤ C for a

universal constant C > 0 (concretely, C = 30 suffices).
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Let us give the intuition behind this claim. Bounded ψ1 norm is a certain characterization

of subexponential distribution of the linear forms of a random vector. After centering, a

vector of squared gaussians exhibits tail decay of this order by well-known concentration

inequalities [LM00]. Thus, assuming that the highest variance components of a correspond

to the diagonal entries of hh> − Ir , our result is not surprising.

Proof of Proposition 11.5.3. Given y ∈ Rr(r+1)/2 with ‖y‖2 = 1, let us view y = isovec(Y ) for

Y ∼ Rr×rsym with ‖Y ‖F = 1. By the spectral theorem, there exist U ∈ O(r) and λ ∈ Rr such

that Y = U diag(λ)U>, ‖λ‖2 = ‖Y ‖F = 1, and ‖λ‖∞ = ‖Y ‖ ≤ 1. We have

〈a,y〉 = h>Y h− tr(Y ) =
r∑
i=1

λi
(
〈h,ui〉2 − 1

)
. (11.60)

Let λ+,λ− ∈ Rr have λ+i = max(0, λi) and λ−i = −min(0, λi), so that λ±i ≥ 0 and λ =

λ+ −λ−. Note that ‖λ±‖2 ≤ ‖λ‖2 = 1 and ‖λ±‖∞ ≤ ‖λ‖∞ ≤ 1.

We bound

∣∣〈a,y〉∣∣ ≤
∣∣∣∣∣∣
r∑
i=1

λ+i
(
〈h,ui〉2 − 1

)∣∣∣∣∣∣︸ ︷︷ ︸
K+(y)

+
∣∣∣∣∣∣
r∑
i=1

λ−i
(
〈h,ui〉2 − 1

)∣∣∣∣∣∣︸ ︷︷ ︸
K−(y)

. (11.61)

Note that 〈h,ui〉 for i ∈ [r] are r i.i.d. random variables distributed as N (0,1), since the

ui form an orthonormal basis. Suppose t ≥ 1. Then, using Lemma 1 of [LM00],

P
[∣∣〈a,y〉∣∣ ≥ 8t

]
≤ P

[∣∣〈a,y〉∣∣ ≥ 4
(
‖λ‖2

√
t + ‖λ‖∞t

)]
≤ P

[
K+(a) ≥ 2

(
‖λ‖2

√
t + ‖λ‖∞t

)]
+ P

[
K−(a) ≥ 2

(
‖λ‖2

√
t + ‖λ‖∞t

)]
≤ 4e−t. (11.62)
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Fix C > 0, then changing variables in (11.62) we find that for any b ≥ exp( 8
C ),

P

[
exp

(∣∣〈a,y〉∣∣
C

)
≥ b

]
≤ 4b−C/8. (11.63)

Integrating (11.63), we find that for any b0 ≥ exp( 8
C ) and C > 8,

E

[
exp

(∣∣〈a,y〉∣∣
C

)]
≤ b0 +

∫∞
b0

4b−C/8db

= b0 + 32b1−C/8
0

C − 8

Optimizing over b0, we find the optimal value b?0 = b8/C , whereby

E
[

exp
( |〈s,a〉|

C

)]
≤ 48/C

(
1+ 8

C − 8

)
.

We see that the above expression tends to 1 as C → ∞, and in particular is smaller than 2

for sufficiently large C . One may verify numerically that C = 30 suffices.

To control the other term appearing in (11.59), we will also need to control the norms of

the ai.

Proposition 11.5.4. For any K > 0, there exist C1, C2 > 0 such that, for any r ≥ 1, letting

h ∼N (0,Ir ) and a = isovec(hh> − Ir ),

P

∣∣∣∣ 1
r 2
‖a‖2

2 − 1
∣∣∣∣ ≥ C1

√
log r
r

 ≤ C2

rK
. (11.64)

Proof. We compute

1
r 2
‖a‖2

2 =
1
r 2

∥∥hh> − Ir∥∥2
F =

(‖h‖2√
r

)4

− 2
(‖h‖2

r

)2

+ 1
r
. (11.65)

The result then follows by applying Proposition 11.3.4 to the first and second terms.
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Proof of Lemma 11.4.2. We apply Proposition 11.5.2 to the vectors 1
rai. Note that in our

case d = r(r+1)
2 while ψ = O(1/r) by Proposition 11.5.3, whereby ψ

√
d = O(1). Taking

θ = C
√

logn
n for C sufficiently large and applying Proposition 11.5.4 then gives the result.

A very similar situation to ours is also treated as an application of [ALPTJ11] by [FJ19].

Analogous results are mentioned without proof in [AHH12] for the distribution a′ = h ⊗

h′ where h and h′ are i.i.d. standard gaussian vectors. Thus we show that the ψ1 norm

does not “see” the additional weak dependences present in our distribution. This is not

a new idea; for instance, it was shown in [Cun14] that in a suitable parameter regime the

sample covariance matrices of either of these distributions of vectors have empirical spectral

distribution converging to the same Marcenko-Pastur limit. Unfortunately, these results

are obtained with free probability techniques and thus, unlike a moment calculation, do

not directly assist in controlling the largest eigenvalue. In [AHH12] a moment calculation

is carried out for the h ⊗ h′ distribution; extending this to the h ⊗ h distribution is an

interesting challenge.

11.5.2 Haar Tensors

We also consider the analogous situation where the law of the vectors in question is asso-

ciated to the uniform or Haar measure on the Stiefel manifold. The Stiefel manifolds are

defined as follows:

Stief(n, r) := {V ∈ Rr×n : V V > = Ir}. (11.66)

In words, Stief(n, r) consists of the r×nmatrices with orthonormal rows. The Haar measure

Haar(Stief(n, r)) is the unique measure on Stief(n, r) that is invariant under the action of

O(n) on Stief(n, r) by multiplication on the right. Equivalently, Haar(Stief(n, r)) is the

measure obtained by restricting Haar(O(n)) (defined in the usual way) to the upper r × n

matrix block.
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These measures enjoy the following concentration inequality when r < n, obtained by

standard arguments from logarithmic Sobolev or isoperimetric inequalities for the special

orthogonal group SO(n), of which Stief(n, r) is a quotient when r < n (see, e.g., the discus-

sion following Theorem 2.4 of [Led01]).

Proposition 11.5.5. Suppose 1 ≤ r < n, and F : Stief(n, r) → R has Lipschitz constant at

most L when Stief(n, r) is endowed with the metric of the Frobenius matrix norm. Then, for

an absolute constant C > 0,

PV ∼Haar(Stief(n,r)) [|F(V )− EF(V )| ≥ t] ≤ 2 exp

(
−Cnt

2

L2

)
. (11.67)

We also register the following preliminary result on the moments of Haar-distributed

orthogonal matrices. The following gives the low-degree moments of Haar-distributed or-

thogonal matrices.

Proposition 11.5.6 (Lemma 9 of [CM07]). Let Q ∼ Haar(O(n)). The moment E
∏d
k=1Qikjk is

zero if any index occurs an odd number of times among either the ik or jk. The non-zero

degree 2 and 4 moments are given by

EQ2
11 =

1
n
, (11.68)

EQ4
11 =

3
n(n+ 2)

, (11.69)

EQ2
11Q2

12 =
1

n(n+ 2)
, (11.70)

EQ2
11Q2

22 =
n+ 1

(n− 1)n(n+ 2)
, (11.71)

EQ11Q12Q21Q22 = − 1
(n− 1)n(n+ 2)

. (11.72)

Our result is then as follows.

Lemma 11.5.7. Let r = δn, V ∼ Haar(Stief(n, r)), and v1, . . . ,vn ∈ Rr be the columns
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of V . Let Aorth have isovec(δ−1viv
>
i − 1

r Ir ) as its columns (recall isovec(·) is the isometric

vectorization of Definition 8.2.2). Let P1>n := In − 1
n1n1

>
n, the orthogonal projector to the

subspace orthogonal to 1n. Then,

P
[∥∥∥Aorth>Aorth −P1>n

∥∥∥ ≤ Oδ ( logn
n1/4

)]
≥ 1− exp

(
−Ωδ(n1/2)

)
. (11.73)

Proof. Note that Aorth1n = isovec(nr V V
> − n

r Ir ) = 0; thus it is impossible for Aorth to act

on Rn as an approximate isometric embedding, as we might naively expect from its weakly

dependent columns. Our argument is more natural to carry out if we remove this caveat;

therefore, let us define Aorth
0 to have columns isovec(nr viv

>
i − 1−√δ

r Ir ). One may check that

‖Aorth
0 1n‖2 = ‖1n‖2 = √n, and that

Aorth>
0 Aorth

0 =Aorth>Aorth + 1
n
1n1

>
n. (11.74)

In particular, Aorth>
0 Aorth

0 − In = Aorth>Aorth −P1⊥n , so it suffices to show the operator norm

bound of (11.67) for Aorth>
0 Aorth

0 − In.

For x ∈ Rn, let us denote Dx := diag(x) for the course of this proof. Then,

Aorth
0 x = isovec

δ−1
n∑
i=1

xiviv>i −
1−√δ
r

〈1n,x〉Ir


= δ−1isovec

(
V DxV

> − 1−√δ
n

〈1n,x〉Ir
)
. (11.75)

For x,y ∈ Rn, define

Fx,y(V ) := 〈Aorth
0 x,Aorth

0 y〉. (11.76)
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Then, recalling that P := V >V is the orthogonal projector to the row space of V ,

Fx,y(V )

= δ−2

〈
V DxV

> − 1−√δ
n

〈1n,x〉Ir ,V DyV
> − 1−√δ

n
〈1n,y〉Ir

〉

= δ−2
[

tr
(
DxPDyP

)
− 1−√δ

n
(〈1n,x〉tr(PDy)+ 〈1n,y〉tr(PDx)

)
+ δ(1−

√
δ)2

n
〈1n,x〉〈1n,y〉

]
. (11.77)

Let us denote balls in Euclidean space by

B(x, r ) := {y ∈ Rn : ‖x− y‖2 ≤ r
}
. (11.78)

Our first goal will be to obtain concentration bounds on Fx,y(V ) when V ∼ Haar(Stief(n, r))

for each fixed pair (x,y) ∈ B(0,1)2, by applying the Lipschitz concentration inequality.

Claim 1. Let x,y ∈ B(0,1). Then,

Lip(Fx,y) ≤ 4δ−2
[

min
{‖x‖∞,‖y‖∞}+ 1√

n

]
. (11.79)

Proof. For V1,V2 ∈ Stief(n, r), letting Pi = V >
i Vi, we have using (11.77) and the triangle

inequality

δ2
∣∣Fx,y(V1)− Fx,y(V2)

∣∣
= ∣∣tr

(
DxP1DyP1

)− tr
(
DxP2DyP2

)∥∥
+ (1−

√
δ)|〈1n,x〉|
n

∣∣tr(P1Dy)− tr(P2Dy)
∣∣

+ (1−
√
δ)|〈1n,y〉|
n

|tr(P1Dx)− tr(P2Dx)| ,

404



then using that |〈1n,x〉| ≤ ‖x‖1 ≤ √n and likewise for y,

≤ ∣∣tr
(
DxP1Dy (P1 −P2)

)∣∣+ ∣∣tr
(
Dx (P1 −P2)DyP2

)∣∣
+ 1√

n
(|tr((P1 −P2)Dx)| + |tr((P1 −P2)Dy)|

)
≤ (‖DxP1‖F + ‖DxP2‖F)‖Dy(P1 −P2)‖F

+ 2√
n
‖P1 −P2‖F . (11.80)

Since Pi is an orthogonal projector for i ∈ {1,2},

‖DxPi‖F =
〈
D2
x,Pi

〉1/2 ≤ (tr[D2
x])1/2 ≤ 1. (11.81)

We bound the other term by

∥∥Dy (P1 −P2)
∥∥
F =

〈
D2
y, (P1 −P2)2

〉1/2 ≤ ‖y‖∞‖P1 −P2‖F . (11.82)

Combining these observations and a symmetric argument with x and y in opposite roles

gives

|Fx,y(V1)− Fx,y(V2)| ≤ 2δ−2
[

min
{‖x‖∞,‖y‖∞}+ 1√

n

]
‖P1 −P2‖F . (11.83)

Lastly, we bound

‖P1 −P2‖F = ‖V >
1 V1 −V >

2 V2‖F

= ‖(V1 −V2)>V1 +V >
2 (V1 −V2)‖F
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where by triangle inequality

≤ ‖(V1 −V2)>V1‖F + ‖V >
2 (V1 −V2)‖F

= (tr
[
(V1 −V2)>V1V

>
1 (V1 −V2)

])1/2

+ (tr
[
(V1 −V2)>V2V

>
2 (V1 −V2)

])1/2

= 2‖V1 −V2‖F , (11.84)

where we have used that V1V
>

1 = V2V
>

2 = Ir , and the result follows.

Therefore, and what is crucial to our argument, while for the worst-case x ∈ B(0,1),

namely x = ei a standard basis vector, Fx,x will have Lipschitz constant O(1), for typical

x ∈ B(0,1), Fx,x will rather have Lipschitz constant Õ(n−1/2). Moreover, the Lipschitz

constant of Fx,y is comparable to the smaller of the Lipschitz constants of Fx,x and Fy,y.

Claim 2. For x,y ∈ B(0,1), EV ∼Haar(Stief(n,r))Fx,y(V ) = 〈x,y〉 +Oδ(n−1).

Proof. We have

δ2EFx,y(V ) = Etr
(
V DxV

>V DyV
>)

− 1−√δ
n

〈1n,x〉Etr(V >V Dy)

− 1−√δ
n

〈1n,y〉Etr(V >V Dx)

+ δ(1−
√
δ)2

n
〈1n,x〉〈1n,y〉, (11.85)

and by either the moment formulae of Proposition 11.5.6 or an argument from orthogonal

invariance of Haar measure, we have EV >V = δIn, whereby

= Etr
(
V DxV

>V DyV
>)− δ(1− δ)

n
〈1n,x〉〈1n,y〉. (11.86)
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View V ∼ Haar(Stief(n, r)) as the top r ×n block of Q ∼ Haar(O(n)). Then, expanding the

first term with the moment formulae of Proposition 11.5.6,

Etr
(
V DxV

>V DyV
>)

=
n∑

i,j=1

xiyj

 r∑
a,b=1

E
[
QaiQbiQajQbj

]
=

n∑
i=1

xiyi
(

3r
n(n+ 2)

+ r(r − 1)
n(n+ 2)

)

+
∑

1≤i<j≤n
xiyj

(
r

n(n+ 2)
− r(r − 1)
(n− 1)n(n+ 2)

)

= δ
n+ 2

(
r + 1+ r − 1

n− 1

) n∑
i=1

xiyi

+ δ
n+ 2

(
1− r − 1

n− 1

) n∑
i=1

xi

 n∑
i=1

yi


=
(
δ2 +Oδ(n−1)

)
〈x,y〉 +

(
1+Oδ(n−1)

) δ(1− δ)
n

〈1n,x〉〈1n,y〉, (11.87)

and since |〈x,y〉| ≤ ‖x‖2‖y‖2 ≤ 1 and |〈1n,x〉| · |〈1n,y〉| ≤ n, the result follows.

Combining Claim 1, Claim 2, and the concentration result Proposition 11.5.5, we find the

following corollary on pointwise concentration of Fx,y(V ).

Claim 3. There exist constants C1, C2 > 0 depending only on δ such that, for any x,y ∈

B(0,1),

PV ∼Haar(Stief(n,r))

[∣∣∣〈Aorth
0 x,Aorth

0 y〉 − 〈x,y〉
∣∣∣ ≥ C1

n
+ t

]
≤ 2 exp

(
− C2nt2

(min{‖x‖∞,‖y‖∞} +n−1/2)2

)
. (11.88)

This concludes the first part of the argument.

The remaining part of the argument is to apply a union bound of the probabilities con-

trolled in Claim 3 over suitable nets of B(0,1). We divide our task into a bound over
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sparse vectors and vectors with bounded largest entry, very similar to the technique in

[Rud08, RV08] and especially [Ver11]. Introduce a parameter ρ ∈ (0,1) to be chosen later.

Define

Bs := {y ∈ B(0,1) : ‖y‖0 ≤ ρn
}
, (11.89)

Bb :=
{
z ∈ B(0,1) : ‖z‖∞ ≤ 1√ρn

}
. (11.90)

For any x ∈ B(0,1), we define y = y(x) and z = z(x) by thresholding the entries of x,

setting yi := xi1{|xi| > 1√ρn} and zi := xi1{|xi| ≤ 1√ρn}. Then, x = y+z, y ∈ Bs , and z ∈ Bb.

Introduce another parameter γ ∈ (0,1) to be chosen later. Let Ns ⊂ Bs and Nb ⊂ Bb
be γ-nets. By a standard bound (see, e.g., Lemma 9.5 of [LT13]), we may choose |Nb| ≤

exp(2n/γ), and by the same bound applied to each choice of ρn support coordinates for an

element of Bs , we may choose

|Ns| ≤
(
n
bρnc

)
exp

(
2ρn
γ

)
≤ exp

(
2ρn
γ
+ ρn+ log

(
1
ρ

)
ρn

)
. (11.91)

To lighten the notation, let us set S := Aorth>
0 Aorth

0 − In. The following is an adaptation to

our setting of a standard technique for estimating a matrix norm over a net: we first bound

‖S‖ = max
x∈B(0,1)

|x>Sx|

≤ max
y∈Bs
z∈Bb

|(y + z)>S(y + z)|

≤ max
y∈Bs

|y>Sy| +max
z∈Bb

|z>Sz| + 2 max
y∈Bs
z∈Bb

|y>Sz|

≤ max
y∈Ns

|y>Sy| + max
z∈Nb

|z>Sz| + 2 max
y∈Ns
z∈Nb

|y>Sz| + 12γ‖S‖. (11.92)
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Rearranging this, we obtain

‖S‖ ≤ 1
1− 12γ

max
y∈Ns

|y>Sy| + max
z∈Nb

|z>Sz| + 2 max
y∈Ns
z∈Nb

|y>Sz|
 . (11.93)

Using Claim 3 and a union bound, we have that

P

[
‖S‖ ≥ 4

1− 12γ

(
C1

n
+ t

)]

≤ 2(|Nb| + |Ns| · |Nb|) exp

(
−C2

ρ
(1+√ρ)2n

2t2

)

+ 2|Ns| exp
(
−C2

2
nt2

)
≤ 3 exp

(
n
[

2
γ
(1+ ρ)+ ρ + log

(
1
ρ

)
ρ − C2

ρ
(1+√ρ)2nt

2

])

+ 2 exp

(
n
[

2ρ
γ
+ ρ + log

(
1
ρ

)
ρ − C2

2
t2

])
. (11.94)

Taking ρ = n−1/2, t = C3n−1/4 logn for a large constant C3, and γ < 1
12 a small constant, we

obtain the result.
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A | Open Problems

We briefly present several open problems motivated by the various topics discussed in the

main text.

A.1 Low-Degree Method Beyond Integrable Models

Our analysis of the low-degree likelihood ratio in Chapter 4 depended on elegant “integrabil-

ity” properties of models where we make observations drawn from convenient distributions.

In particular, we used at length the algebraic and combinatorial properties of orthogonal

polynomials of these distributions, drawing on the “umbral calculus” of Hermite polyno-

mials and various related systems of identities for other polynomial families. There are

two directions in which these distributional assumptions may be weakened. First, we may

consider well-behaved entrywise distributions with complicated correlations across entries,

such as in the random regular graph ensemble Reg(n,d). Second, we may consider i.i.d. dis-

tributions whose entrywise distributions do not belong to convenient exponential families.

Is it possible to develop techniques for the computations called for by the low-degree heuris-

tic for such situations, techniques that do not rely on detailed knowledge of the associated

orthogonal polynomials?
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A.2 Overlaps, Low-Degree Polynomials, and Statistical

Physics

We showed in Chapter 4 that the efficacy of low-degree polynomials for problems like spiked

matrix models and many generalizations thereof are governed by the overlap distribution of

the spike or signal prior, the law of 〈x1,x2〉 for x1,x2 ∼ Pn independently in the case

of a rank-one spiked matrix model. Similar distributions with overlaps of two independent

draws from a posterior distribution also arise naturally in Bayesian analyses of problems like

these, especially in their treatment with the methods of statistical physics. Can this formal

resemblance be used to show that the predictions made by statistical physics methods and

predictions based on limitations of low-degree polynomials may, for some broad class of

problems, be equivalent?

A.3 Channel Monotonicity

The result of Theorem 4.3.14 suggests two intriguing open problems further probing the

low degree method.

1. Are the channel monotonicity predictions accurate, i.e., can they be corroborated with

any other form of evidence of computational hardness? (One intriguing possibility is

average-case reductions in the style of [BR13, BB20] between different NEF-QVFs.)

2. If these predictions are accurate, then does strict inequality hold in computational cost

between any of these versions of a given problem, or does channel universality hold

(we borrow the term from [LKZ15a] but use it in a slightly different sense), where in

fact computational complexity of testing does not depend on the NEF-QVF through

which the data are observed?
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A.4 Fisher Information–Orthogonal Polynomial

Identities

As we have mentioned, the original argument of [PWBM18] derives the critical value λ∗ for

the non-Gaussian spiked matrix model we treated in Section 5.4.2 in terms of the Fisher

information in the family of translates of the distribution ρsech, while our calculation, if

we consider D = D(n) growing slowly, obtains the same predicted value using orthogonal

polynomials. It appears that the connection between these derivations lies in the summation

identity
∑
`≥0

1
(2`+1)2 = π2

8 . We suspect that there are similar identities associated to these

two approaches to calculating the critical signal-to-noise ratio in spiked matrix models for

other algebraically-convenient noise measures ρ. It would be interesting to understand what

class of summation identities arises in this way, and whether equating these two derivations

can give novel proofs of such identities.

A.5 Can Low-Degree Polynomials Explore?

The discussion in Section 5.4.2 on a non-Gaussian spiked matrix model suggests that, for

algorithms computing low-degree polynomials, there is a tension between robustness to

heavy-tailed noise distributions and optimality for specific rapidly-decaying (and, in that

case, non-Gaussian) noise distributions. In particular, we might expect low-degree polyno-

mials to have difficulty performing optimally on problems with an unknown noise distribu-

tion. For example, it was shown in [MRY18] that there is a distribution-agnostic algorithm

achieving optimal performance in a wide range of Wigner spiked matrix models, that first

identifies the noise distribution using kernel density estimation and then applies a recovery

algorithm tailored to that distribution. Since the initial phase of such an algorithm is often
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said to fall under the rubric of “exploratory data analysis,” we call this algorithmic strategy

exploration before inference. Can low-degree polynomials explore in this way?

It is easy to show that, for instance, if we draw observations from a model where the

noise is drawn with probability 1
2 from ρsech for all entries and with probability 1

2 from some

heavy-tailed ρheavy with only finitely many moments for all entries, then low-degree polyno-

mials will be suboptimal in the sense we have been considering, simply because L2(Qn) will

only contain polynomials of bounded entrywise degree. Is this an artificial example that can

be repaired, or does it indicate a more fundamental weakness of low-degree algorithms?

A.6 Sum-of-Squares and Entanglement

We have seen that the family of matrices Bn,r which is, through the results of Chapter 7,

essentially equivalent to the feasible set of degree 4 SOS over the hypercube, is also closely

related to the partial transpose operation. We explained in that chapter how this operation

is used as a test to detect entanglement of bipartite quantum states, and showed in Theo-

rem 7.3.3 that, roughly speaking, separability of matrices in Bn,r is equivalent to integrality

of pseudomoments over the hypercube. In [DPS04], the authors show that the partial trans-

pose test may be viewed as only the first of a family of entanglement criteria, and that these

criteria eventually detect any entangled state. Is there an equivalence between this “DPS

hierarchy” of entanglement criteria (or a real-valued analog thereof) and higher degrees of

SOS over the hypercube, analogous to the equivalence we have shown between “passing” the

first level of DPS and being feasible for degree 4 of SOS?1

1Not to be confused with the different and previously-known equivalence between the DPS hierarchy and
SOS over the sphere [FF20].
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A.7 Generalized Maxwell-Sylvester Representations

We have seen that even a heuristic choice of a Green’s function for an approximate Maxwell-

Sylvester representation of multiharmonic polynomials (Section 10.1.1) is a powerful tool for

deriving predictions of SOS pseudomoments. Alas, even the original Maxwell-Sylvester rep-

resentation of spherical harmonics is a somewhat obscure topic, and Clerc’s generalizations

to certain multiharmonic settings is also little-known. Thus we ask: in what generality do

Maxwell-Sylvester representations of multiharmonic polynomials exist? What is the struc-

ture of the associated Green’s functions and Kelvin transforms? As a concrete example from

the results obtained here, can the isotypic projection expressing hS(V >z) for V ∈ R(n−1)×n

the simplex frame studied in Chapter 9 (see Definition 9.3.1) be expressed through differen-

tiation of some Green’s function?

A.8 Pseudocalibration Reconciliation

Both our results using the spectral pseudomoment extensions of Chapter 8 and those of

[MRX20, GJJ+20] using pseudocalibration prove SOS lower bounds for the SK Hamiltonian.

Moreover, both constructions may be reasonably viewed as the “simplest possible” exten-

sions of degree 2 pseudomoments given by a rescaled low-rank projection matrix—spectral

extensions give the simplest extension from the point of view of a Gram factorization, while

pseudocalibration gives the simplest extension “calibrated” to the individual moments of

a planted distribution (see Section 3.2.2). It is therefore natural to conjecture that the

constructions are closely related, perhaps with spectral extensions, which appear at least

superficially simpler, giving some form of first-order approximation of pseudocalibration.

However, it remains unclear how to draw such a connection, as quite different combinato-

rial objects appear in either construction: the forest poset F(m) and its Möbius function
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drive the spectral extension construction, while evaluations of Hermite polynomials (whose

coefficients may be related to combinatorics of matchings) appear in pseudocalibration. Can

these seemingly different constructions be reconciled and given a unified interpretation?

A.9 Replicated Sum-of-Squares

A great deal of the theory surrounding the SK model and spin glass models more generally

takes advantage of studying replicas, independent copies from a Gibbs measure, and quanti-

ties such as their overlap or inner product, whose distribution and in particular its support

describes aspects of the geometry of the optimization landscape (see [MPV87, Tal10, Pan13]).

In [RS00], the authors proposed a variant of Hilbert’s seventeenth problem (on expressing

non-negative rational functions as sums-of-squares of rational functions) related to “umbral

polynomials.” In simple terms, this amounts to a variant of SOS reasoning with independent

copies of the pseudo-random variable x allowed. The authors refer to a conjecture of Rota’s

that any polynomial of moments that is non-negative for all real-valued random variables

can be written as the expectation of a sum-of-squares involving independent copies. (For

example, Var[X] = EX2 − (EX)2 ≥ 0 for all real-valued X, and Var[X] = 1
2E(X

1 − X2)2 for

independent copies Xi.) Do there exist low-degree proofs in this extended proof system that

give non-trivial bounds on the SK Hamiltonian?
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