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Lecture 2: Integer partitioning II

1 First moment method by integration

Recall that we left off planning to compute the expectation of the random variable

Z := #

{
x ∈ {±1}n : 〈x,a〉 = 0

}
. (1)

Normally what we would do, and what we will do later for other problems, is to expand
Z into a sum of indicators like in the last lecture and compute from there. But, in the
special case of integer partitioning, it turns out that it is possible to get much more precise
information using the following beautiful trick.

Define the function

F (t) :=
n∏
j=1

(eiajt + e−iajt). (2)

This is a random function, inheriting its randomness from the aj. Consider two manipulations
of this function: on the one hand, by Euler’s formula eix = cosx+ i sinx,

F (t) = 2n
n∏
j=1

cos(ajt), (3)

a real-valued function. On the other hand, expanding the product,

F (t) =
∑

x∈{±1}n
exp

(
it

n∑
j=1

xjaj

)
=
∑
d∈Z

eidt#

{
x ∈ {±1}n : 〈x,a〉 = d

}
. (4)

Thus, F (t) is a kind of generating function of the numbers of x achieving different values
of the “discrepancy” or “objective function” 〈x,a〉. We can extract these counts by using
the Fourier transform, which amounts to the following observation.

Proposition 1.1 (Orthogonality of Fourier modes). For any d ∈ Z,

1

2π

∫ π

−π
eidt dt =

{
1 if d = 0
0 if d 6= 0

}
. (5)

Proof. Use Euler’s formula and calculate the integrals of sine and cosine directly.
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In particular, we may extract Z from F (t) by computing

Z =
1

2π

∫ π

−π
F (t) dt =

2n

2π

∫ π

−π

n∏
j=1

cos(ajt) dt. (6)

Taking the expectation, we may exchange the integral and expectation, and then use that
the aj are i.i.d., to observe that

EZ =
2n

2π

∫ π

−π

n∏
j=1

E cos(ajt) dt =
2n

2π

∫ π

−π
(E cos(a1t))

n dt. (7)

Let us define

f(t) := E cos(a1t)

=
1

B

B−1∑
a=0

cos(at)

=
1

2B

B−1∑
a=0

(eiat + e−iat)

and summing this as two geometric series, you may check that we arrive at

=
1

2B

(
1 +

sin((B − 1
2
)t)

sin(1
2
t)

)
. (8)

You may check that, extending by continuity, f(0) = 1, and this is the maximum of f(t)
over t ∈ [−π, π]; see Figure 1.

2 Laplace method

The Laplace method is a useful general analysis tool to understand integrals like this. The
idea is that, for large n, the dominant contribution to the integral will be from a small
neighborhood around t = 0. There, we can approximate f by a Taylor series:

f(0) = 1, (9)

f ′(0) = 0, (10)

and you may check with a slightly more involved calculation that

f ′′(0) = −B
2

3
+O(B). (11)

Thus, near t = 0, we have

f(t) ≈ f(0) + f ′(0)t+
f ′′(0)

2
t2 ≈ 1− B2

6
t2. (12)
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Figure 1: A plot of f(t) with B = 10.

Now, starting with our intuition that we may restrict to a small neighborhood around
t = 0, we approximate ∫ π

−π
f(t)n dt ≈

∫ ε

−ε
f(t)n dt

≈
∫ ε

−ε

(
1− B2

6
t2
)n

dt

≈
∫ ε

−ε
exp

(
−B

2n

6
t2
)
dt

Let us view this as a Gaussian integral with “effective variance” σ2 := 3/B2n� 1. Then, we
may rewrite and, since this variance is very small, expand the range of integration without
affecting the value very much,

=

∫ ε

−ε
exp

(
− t2

2σ2

)
dt

≈
∫ ∞
−∞

exp

(
− t2

2σ2

)
dt

which is the normalizing constant in the Gaussian distribution,

=
√

2πσ2

=

√
6π

B
√
n
. (13)
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Substituting into the expression we wanted to calculate,

EZ =
2n

2π

∫ π

−π
f(t)n dt ≈

√
3

2π
· 2n

B
√
n
. (14)

If we do these calculations more carefully keeping track of error terms, we arrive at the
following.

Theorem 2.1. For any B, n,

EZ = (1 +O(1/B) +O(1/n)) ·
√

3

2π
· 2n

B
√
n
, (15)

with the O(·) hiding absolute constants.

See Appendix A.6 of [MM11] for many more details about how to perform such calculations
carefully.

Consequently, we can verify one side of our prediction from last lecture.

Corollary 2.2. Suppose that B = B(n) is such that B/(2n/
√
n) = B/B∗ →∞. Then, with

high probability, there exist no perfect partitions of a1, . . . , an.

3 Minimum discrepancy in the unsatisfiable regime

Essentially the same calculation can also clarify some more details of how our problem
behaves in the situation described by Corollary 2.2. In that case, it is interesting to determine
the scaling of the minimum achievable discrepancy, the value of the optimization problem

minimize
∣∣∣∑n

j=1 xjaj

∣∣∣
subject to x ∈ {±1}n.

(16)

To that end, we calculate expectations of

Zd := #

{
x ∈ {±1}n : 〈x,a〉 = d

}
. (17)

By the same argument as for Z = Z0,

Zd =
1

2π

∫ π

−π
e−idtF (t) dt =

2n

2π

∫ π

−π
cos(dt)

n∏
j=1

cos(ajt) dt, (18)

where we may take the real part since we know Zd is real, and taking expectations we find

EZd =
2n

2π

∫ π

−π
cos(dt)f(t)ndt. (19)

Near t = 0, we have the Taylor approximation cos(dt) ≈ 1 − d2

2
t2. Since f(t) ≈ 1 − B2

6
t2,

so long as d� B, we will have in the Laplace method calculation that cos(dt) is effectively
equal to 1 in the interval [−ε, ε] on which f(t)n is not negligibly small. Making this reasoning
precise, one may confirm that
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Theorem 3.1. For any B, n, d,

EZd = (1 +O(d/B) +O(1/n)) ·
√

3

2π
· 2n

B
√
n
, (20)

with the O(·) hiding absolute constants.

What does this tell us about the minimum discrepancy? We have, for D � B,

E[#{x ∈ {±1}n : |〈x,a〉| ≤ D}] = E
D∑

d=−D

Zd ≈ 2D ·
√

3

2π
· 2n

B
√
n
. (21)

On the other hand, whenever |〈x,a〉| = d then |〈−x,a〉| = d as well, so we might intuit that
the D for which there typically exists a x with |〈x,a〉| = D makes the above quantity equal
to 2.1 This gives

D =

√
2π

3

B
√
n

2n
. (22)

Thus we are led to the following conjecture.

Conjecture 3.2. Suppose B = B(n) is such that B/(2n/
√
n) = B/B∗ →∞. Then,{

minimize
∣∣∣∑n

j=1 xjaj

∣∣∣
subject to x ∈ {±1}n

}
= (1 + o(1))

√
2π

3

B
√
n

2n
. (23)

Of course, it would also be reasonable to more conservatively conjecture the above without
a specific constant, but we will see in the next lecture that this constant is correct and has
an intuitive interpretation in terms of the “random energy model.”

4 Second moment method

Let us now turn to trying to show the converse statement to Corollary 2.2, that if B/B∗ → 0
then with high probability there exist perfect partitions of a1, . . . , an.

Actually, this attempt would be doomed to fail from the outset: what we wrote above
simply is not true. That is because we always have

∑n
j=1 xjaj ≡

∑n
j=1 aj (mod 2), and so a

perfect partition can only exist if
∑n

j=1 aj is even, which will only happen with probability

about 1
2
. We should revise our notion of “perfect partition” in light of this observation: in

the notation of the previous section, what is reasonable to expect is that Z0 + Z1 ≥ 1 with
high probability (i.e., there exists a x with |〈x,a〉| ∈ {0, 1}), not Z = Z0 ≥ 1 with high
probability.

However, let us proceed and see where our argument would break down even if we had
not made this observation “from outside” of our moment calculations. In either case, the
main tool for proving this kind of result is the following.

1This is admittedly a flimsy heuristic argument, but surprisingly gives the right result!
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Proposition 4.1 (Basic second moment method). Suppose Z ≥ 0 is a real-valued random
variable. Then,

P[Z > 0] ≥ (EZ)2

EZ2
= 1− Var[Z]

EZ2
. (24)

Proof. Using the Cauchy-Schwarz inequality,

EZ = EZ1{Z > 0} ≤
√

(EZ2)(E1{Z > 0}2) =
√

(EZ2)(P[Z > 0]), (25)

and rearranging gives the result.

To use this, our main task is to compute EZ2. Let us sketch how to do this; for further
details you can see Section 14.5 of [MM11]. Squaring our integral representation of Z and
rearranging,

Z2 =

(
2n

2π

)2 ∫ π

−π

∫ π

−π

n∏
j=1

cos(ajs) cos(ajt) ds dt. (26)

Again by independence of the aj, we have

EZ2 =

(
2n

2π

)2 ∫ π

−π

∫ π

−π
(E cos(a1s) cos(a1t)︸ ︷︷ ︸

g(s,t)

)n ds dt. (27)

Though it is a little more cumbersome, you can still write a closed formula for g(s, t) and
verify that its maximum is at (s, t) = (0, 0), where g(0, 0) = 1. We may then use a two-
dimensional version of the Laplace method: we have ∇g(0, 0) = 0 since the origin is a
maximum, and so the two dimensional Taylor expansion says that, near (0, 0),

g(s, t) ≈ 1 +

[
s
t

]>
∇2g(0, 0)

[
s
t

]
, (28)

where ∇2g(0, 0) is the Hessian matrix, which is negative-definite (again since the origin is a
local maximum). We may then go through the previous derivation again, now working with
a two-dimensional Gaussian integral; we omit the details, but ultimately you will find

EZ2 = 2(1 + o(1))(EZ)2. (29)

(Here, importantly, the o(1) term only satisfies that asymptotic so long as EZ ∼ B∗/B →∞;
the actual bound we can obtain on it when doing the Laplace method carefully is O(1/EZ).)

It is here that we see the reflection of the parity issue mentioned above in our moment
arguments: with this kind of asymptotic, the best that Proposition 4.1 can tell us is

P[Z > 0] ≥ 1

2
+ o(1), (30)

which is exactly what our parity reasoning told us to expect! To repair the situation, one
may do the same calculation with Z1 as with Z = Z0, and note that only one of Z0 and Z1

can be positive. Combining these results, we would find the following.

Theorem 4.2. Suppose that B = B(n) is such that B/(2n/
√
n) = B/B∗ → 0. Then, with

high probability, there exists x ∈ {±1}n such that
∑n

j=1 xjaj ∈ {0, 1}.
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