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Lecture 4: Random k-SAT II

1 Review of Random k-SAT Problem

Recall that we are studying the random k-SAT problem. In this setting, we have a random
Boolean formula F : {0, 1}n → {0, 1} acting on n Boolean input values z1, · · · , zn. So we
can think of the formula as the function F where given an entry z in the n-dimensional
hypercube, F returns true or false for that z vector. The Boolean formula is composed of
m clauses, each depending on k of the input zi values. A single clause is a “or” (∨) product
of k possibly negated zi values,

Cj = ((¬)zij,1 ∨ · · · ∨ (¬)zij,k) (1)

where {ij,1, · · · , ij,k} ⊂ {1, · · · , n} is a size-k selection of indices which appear in the clause.
The overall F function is then the “and” (∧) product of these m clauses,

F (z) = C1(z) ∧ · · · ∧ Cm(z) (2)

The function F is constructed randomly in uniform choice of subsets {ij,1, · · · , ij,k} for
each clause and uniform choice of negations within each clause (i.e., do we use zij,1 or ¬zij,1
in the clause). The question is, for a given F , does there exist an element of the hypercube
z such that F (z) = 1. In other words, does there exist a set of truth assignments for the zi
which satisfy F and evaluate to 1 or true. If so, F is said to be satisfiable; if not, F is said
to be unsatisfiable.

The relationship depends on the relative sizes of m (the number of clauses) and n (the
number of boolean inputs to the formula). Say m = αn. The conjecture is that for each
value of k, there is a threshold α∗ = α(∗k) such that

• If α > α∗, then F is unsatisfiable w.h.p.

• If α < α∗, then F is satisfiable w.h.p.

2 k = 2 Simple Case

As we will later see, the threshold for k = 3 based on current research and empirical simula-
tion appears to be about α∗(3) ≈ 4.26. But first, we look at the simpler case of k = 2 where
much of the complexity is reduced.

The k = 2 case is easier to study since each clause is of the form ((¬x)∨ (¬)y) for binary
variables x and y. For such a clause to be true, say the clause (¬x ∨ y), is equivalent to

1. If x is true, then ¬x is false, so y must be true.
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2. If y is false, then ¬x must be true, or equivalently x must be false.

Thus x and y must share the same truth value in such a clause in order for the clause to
be true. More generally, a 2-SAT instance corresponds to a graph of implications between
the variables zi and their negations which show which variables must be true when others
are true. The function F is satisfiable if and only if there are no cycles in this graph that
include zi and ¬zi for some i.

We can analyze the 2-SAT problem by studying this graph structure. It turns out, in a
phase transition similar to the emergence of a giant component in an Erdős-Rényi random
graph, that the critical value is α∗(2) = 1 This “implication graph” representation also
shows that 2-SAT can be solved in polynomial time and, unlike k-SAT for k ≥ 3 (assuming
P 6= NP), belongs to the complexity class P.

3 k = 3 First Moment Method Initial Analysis

Note that going forward, we will use the notation x ∈ {0, 1}n and not z as the input variable
to the function F .

Similarly to how we analyzed the number partitioning problem, we are interested in the
event {∃x : F (x) = 1}. To study the probability that such an event will occur, we look at
the size of the set of values which would satisfy this event,

Z = #{x ∈ {0, 1}n : F (x) = 1}.

Note that Z is a random variable depending on the random assignments that construct F .
The expectation of Z is

E[Z] =
∑
x

P[x satisfies F ]

=
∑
x

m∏
j=1

P[x satisfies Cj]

=
∑
x

P[x satisfies C1]
m,

the last step following since each clause is chosen i.i.d. Then, using negation

P (x satisfies C1) = 1− P[x not satisfies C1]

= 1− 1

8

=
7

8
.

Here we use that clause Cj is the or of possibly negated zij,1 , zij,2 , zij,3 , so each has to be the
wrong value with 1

2
probability, so 1

8
is probability of not satisfying this clause. So the sum

becomes

E[Z] = 2n
(

7

8

)m
= 2n

(
7

8

)αn
=

(
2

(
7

8

)α)n
.
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The inner expression equaals 1 when α =
log( 1

2
)

log 7
8

≈ 5.19, which we will call α(1) ≈ 5.19, our

first estimate for α∗(3). This leads to the following.

Proposition 3.1. If α > α(1) ≈ 5.19, then w.h.p. F is unsatisfiable.

This follows by the same Markov’s inequality argument we have seen before.
Therefore, α∗(3), the conjectured threshold which divides satisfiablity and unsatisfiability

for k = 3, if it exists, would have to be less than or equal to this value α∗(3) ≤ α(1).
However, numerical experiments lead us to believe that α∗(3) ≈ 4.26. So there is some

“gap” in our argument. What went wrong?

4 k = 3 First Moment Method Improved Analysis

In a nutshell, Z was not the best random variable to which to apply the first moment method.
There is a better choice of counting variable which we apply the first moment method to
and get a tighter bound on the threshold.

Note that by conditional probability

E[Z] = E[Z | F is satisfiable] · P[F is satisfiable].

If, say, α = 5, we have that α∗ = 4.26 < α < α(1), thus we think F should be unsatisfiable
w.h.p. (since α > α∗) but for α = 5 the above expectation is not going to 0, it is going to
infinity. So the above analysis would not conclude that F is unsatisfiable.

The issue is that while P[F is satisfiable] may be small, EE[Z | F is satisfiable] maybe
be large, forcing the overall expectation to diverge,, even if the probability is going to 0. So,
we want a random variable which is smaller than Z to better track when the probability is
going to zero and not to unintentionally bring up the expectation.

The main idea is to only count “special” or “canonical” satisfying x that exist whenever
F is satisfiable.

Definition 4.1. x satisfying F is locally maximal if all neighbors x′ = x with one 0 flipped
to a 1 are not satisfying. That is, whenever we have:

x =
x′ =

0 1 0 1 1 0 0 1
0 1 1 1 1 0 0 1

where x is satisfying, then x′ must not be satisfying.

Basically, x is a satisfying vector which has more 1’s than any immediate neighbors which
are also satisfying.

We then consider

Y = #{x : x satisfies F and x is locally maximal}

Proposition 4.2. If F is satisfiable, then there exists a locally maximal x that satisfies x.
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Proof. If F is satisfiable, there is one x which satisfies F . Take that x and go through the
0 values and try to flip them to 1 to get a new ′. If this new x′ still satisfies F , then set
x = xprime and repeat this process. Eventually, we will get to an x which is all 1, or none
of the remaining 0’s can be flipped to a 1 while still satisfying F . Thus we terminate at a
locally maximal satisfying x.

The set which Y counts is a subset of the set that Z counted, thus Y ≤ Z.
By the same Markov’s inequality argument as before, if E[Y ]→ 0, then w.h.p. there does

not exist a locally maximal satisfying x, and so by the Proposition w.h.p. F is unsatisfiable.
So we study the expected value of Y ,

E[Y ] =
∑
x

P[x satisfies F and x is locally maximal]

Claim 1. If x is locally maximal, and some xi = 0 for some i, then there must exist some
“blocking” clause C = C(i) that is false under x′ where we flip xi and leave the rest the same.

This blocking clause must be of the form

C = (¬xi) ∨ (· · · ) ∨ (· · · )

where the first term is true under x, and the other terms are false under x. Thus if we tried
to flip xi this first term would become false, the rest are false, and thus clause would be false
and we do not satisfy F anymore.

We then have

P[x satisfies F and x is locally maximal]

=P[x satisfies F ] · P[x locally maximal | x satisfies F ].

We already determined the marginal probability PP [x satisfies F ] = (7
8
)m before, thus this

conditional probability term can only decrease the joint probability (we are multiplying by
a term between 0 and 1) and thus we will have a reduced probability and thus a reduced
overall expectation.

We now calculate

P[x locally maximal | x satisfies F ]

=P[there exists a blocking clause in F for every index i where xi = 0 | x satisfies F ]

By the above structure of blocking clauses, each clause can only block at most one index i,
and so it is reasonable to believe that each i with xi = 0 getting blocked by some clause are
negatively correlated events. Based on this intuition, we claim (without further justification)
that

P[there exists a blocking clause in F for every index i where xi = 0 | x satisfies F ]

≤
∏
i:xi=0

P[there exists a clause in F blocking index i | x satisfies F ]

=
∏
i:xi=0

(1− P[C does not block i | x satisfies C]m),
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in the last step again using that the clauses are i.i.d.
We now study P (C does not block i|x satisfies C). By Bayes’s rule,

P[C does not block i | x satisfies C] = 1− #{C : C blocks i, x satisfies C}
#{C : x satisfies C}

= 1−
(
n
2

)
7
8
· 23
(
n
3

)
Putting all this together, we have

P[x satisfies F and x is locally maximal) ≤
(

7

8

)m( ∏
i:xi=0

(
1−

(
1−

(
n
2

)
7
(
n
3

))m))

=

(
7

8

)m(
1−

(
1−

(
n
2

)
7
(
n
3

))m)#{i:xi=0}

Note that, for k fixed and n large,(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
≈ nk

k!
,

and therefore (
n
2

)
7
(
n
3

) ≈ 3

7n
.

Plugging this in, the above simplifies to

(
7

8

)m(
1−

(
1−

(
n
2

)
7
(
n
3

))m)#{i:xi=0}

≈
(

7

8

)m (
1− e−

3
7
α
)#{i:xi=0}

.

We sum over all x, and, using that the above quantity depends only on the number of 0’s in
x, we may reduce and use the binomial theorem,

E[Y ] ≤
n∑
f=0

(
n

f

)(
7

8

)m (
1− e−

3
7
α
)f

=

(
7

8

)αn
(2− e−

3
7
α)n =

[(
7

8

)α
(2− e−

3
7
α))

]n
.

As in the first calculation, we are interested in the α for which the inner quantity equals 1.
Before, this quantity was 2

(
7
8

)α
, while now we an additional additive term of e−

3
7
α, which

will decrease this quantity and make it equal 1 for a smaller α. It turns out that this value
is approximately α(2) ≈ 4.67 < 5.19 = α(1), so this adjustment indeed improves the first
moment method.
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