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Lecture #9: Kac-Rice Formula for “Noisy Well”

1 The Model

Recall the Kac-Rice formula for counting critical points of “nice” functions (e.g. Gaussian
processes):

ECrit(f, A) =

∫
A

E

[
| det∇2f(x)|

∣∣∣∣ ∇f(x) = 0

]
p∇f(x)(0)dx.

We now introduce the model which we analyze (c.f. the “elastic manifold” model in
physics).

f(x) =
α

2
‖x‖2 + g(x)

where g is the some centered, stationary Gaussian process, which we explain below.
Recall from probability theory that a stochastic process Gx = g(x) is a Gaussian process

(GP) if every finite-dimensional distribution of Gx satisfies

(Gx1 , . . . , Gxm) ∼ N (µx1,...,xm ,Σx1,...,xm).

For instance, Brownian motion is a Gaussian process.
We will specifically concern ourselves with centered Gaussian processes with a very spe-

cific covariance function.

(Gx1 , . . . , Gxm) ∼ N (0,Σ)

Σij = K(xi, xj)

= K(xi − xj).

Here K(·) is a kernel function (e.g. rbf kernel). This choice of covariance ensures that our
Gaussian process is stationary, i.e.

(g(x))x∈RN
d
= (g(x− x0))x∈RN .

The particular Gaussian process we examine is given by

g(x) =
∑

i1,...,id∈[N ],s1,...,sd∈{0,1}

d∏
a=1

[cos(xia)1{si = 0}+ sin(xia)1{si = 1}]Wi1,...,id,s1,...,sd .

Here Wi1,...,id,s1,...,sd ∼ N (0, 1) are i.i.d.
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2 Applying the Kac-Rice Formula

In order to apply the Kac-Rice formula, we will need up to compute second-order information
about f(x). As a preliminary, let us first consider g(x). We have

K(x, y) = Eg(x)g(y)

=
∑

i1,...,id,s1,...,sd

d∏
a=1

[cos(xia) cos(yia)1{sa = 0}+ sin(xia) sin(yia)1{sa = 1}]

=

[
N∑
i=1

cos(xi) cos(yi) + sin(xi) sin(yi)

]d

=

[
N∑
i=1

cos(xi − yi)

]d
=: S(x, y)d

The second equality comes from staring at the terms in the expanded summation and real-
izing that if any indices are not the same, then the expectation of the term is 0.

Note that this computation shows that g(x) is indeed stationary. Also, for x = y, we
have K(x, x) = Nd.

In order to apply the Kac-Rice formula, we need to understand the joint distribution of
(f(x),∇f(x),∇2f(x)) ∈ R × RN × RN×Nsym . The derivative of a centered Gaussian process
with differentiable kernel is another Gaussian process whose kernel is just the derivative of
original kernel. We have

f(x) =
α

2
‖x‖2 + g(x)

∇f(x) = αx+ ∇g(x)

∇2f(x) = αIN + ∇2g(x).

This is a “massive Gaussian vector” say with parameters (µx,Σx). By inspection,

µx =
(α

2
‖x‖2, αx, αIN

)
Σx = Cov

(
g(x),∇g(x),∇2g(x)

)
.

It remains to compute these covariances depicted in Figure 1.

2.1 Covariance Computations

Now, taking an expectation is simply an integral. In the case of “nice” functions, we know
from elementary calculus that we are able to exchange the order of the integral and differ-
ential. Staring long enough yields the following identity.

E

[
∂ag

∂xi1 . . . ∂xia
(x)

∂bg

∂yj1 . . . ∂yjb
(y)

]
=

∂a+bK

∂xi1 . . . ∂xia∂yj1 . . . ∂yjb
(x, y).
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Figure 1: A big covariance matrix.

Using the identity above, let us compute a few blocks of the big covariance matrix.
We begin with Cov[g(x), g(x)] = Var[g(x)]. This corresponds to applying the identity

with a = b = 0. We already know that

Eg(x)2 = K(x, x) = Nd.

Now, let us consider Cov[g(x),∇g(x)]. This corresponds to applying the identity with
a = 0, b = 1. We have

Eg(x)
∂g

∂xj
=
∂K

∂yj
(x, y)

∣∣∣∣
x=y

= dS(x, y)d−1 [− sin(xj − yj)] (−1)

∣∣∣∣
x=y

= 0.

Another example is the Cov[∇g(x),∇g(x)]. We apply the identity with a = 1, b = 1 and
deduce that

E
∂g

∂xi
(x)

∂g

∂xj
(x)

=
∂2K

∂xi∂yj
(x, y)

∣∣∣∣
x=y

= d(d− 1)S(x, y)d−2 sin(xj − yj) [− sin(xi − yi)] · 1{i = j}dS(x, y)d−1 cos(xi − yi)
∣∣∣∣
x=y

.

The extra term occurring when i = j corresponds to ∂
∂xi

sin(xj − yj).
Continuing with these computations eventually fills the blocks of our big covariance

matrix as in Figure 2.
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Figure 2: A filled out covariance matrix.

Remark 2.1. The following hold.

1. ∇g(x),∇2g(x) are independent.

2. The joint distribution of (g(x),∇g(x),∇2g(x)) is identical for all x.

3. The joint distribution of ∇2f(x) is identical for all x.

Returning to the Kac-Rice formula, we have

E

[
| det∇2f(x)|

∣∣∣∣∇f(x) = 0

]
= E

[
| det∇2f(x)|

]
by independence. Moreover, the Hessian does not depend on the value of x and we can pull
this entire term out of the integral. It follows that there is some random matrix H for which

ECrit(f, A) = EH [|det(H)|]
∫
A

pN (αx,dNd−1IN )(0, . . . , 0)dx

= EH [|det(H)|]
∫
A

pN (αx,σ2IN )(0, . . . , 0)dx,
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where σ2 = dNd−1. Let us ignore the constant term and focus on the integral. This equals∫
A

[
det
(
2πσ2I

)]− 1
2 exp

[
(αx)T (σ2I)−1(αx)/2

]
dx

=

∫
A

1

αN
[
det
(
2πσ2/α2I

)]− 1
2 exp

[
(αx)T (σ2/α2I)−1(αx)/2

]
dx

=
1

αN
P{g ∈ A} g ∼ N (0, σ2/α2I)

=
1

αN
P

{
1

α
g ∈ A

}
g ∼ N (0, σ2I)

=
1

αN
P{g ∈ αA}. g ∼ N (0, σ2I).

As α→ 0, we have this is approximately

1

αN
vol(αA) =

1

αN
αN vol(A) = vol(A).

As α→∞, since probability measures are normalized,

1

αN
vol(αA)→ 0.

This agrees with out intuition that the number of critical points should tend to 0 as we
increase the parameter α. Furthermore, at α = 0, the number of critical points is completely
determined by the Lebesgue measure of A, which is again sensible since this is just counting
the number of critical points of g(x), which is a stationary process.

3 An Explicit Random Matrix Model

It remains to explicitly construct a random matrix H which has the desired covariance
structure. We claim that it suffices to take

H = αIn +
√
d(d− 1)Nd−2hIN +

√
d(d− 1)Nd−1W +

√
dNd−1D.

Here h ∼ N (0, 1) independently of W and D, D is diagonal, and W is another symmetric
matrix. The distributions of the two matrices satisfy

Dii
iid∼ N (0, 1)

Wji = Wij
iid∼ N (0, 1/N) i < j

Wii
iid∼ N (0, 2/N).

Thus W is drawn from the so-called Gaussian Orthogonal Ensemble.
As a sanity check, we have

Var[Hii] = d(d− 1)Nd−2 + d(d− 1)Nd−1 2

N
= dNd−1 + 3d(d− 1)Nd−2

Cov[Hii, Hjj] = d(d− 1)Nd−2

5



as desired.
In order to determine the value of the determinant term we wrote above, we need to

determine the product of the spectrum of H. In particular, we would like to understand the
eigenvalues of W +D. We will start exploring these questions in the following lectures.
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