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Lecture #10: GOE and the Semicircle Law

1 Gaussian Orthogonal Ensemble (GOE)

Previously, we saw that the first moment method in the form of the Kac-Rice formula leads
us to random matrix problems. In this lecture, we will talk about the random matrix
theory and move toward free probability. We will start with the most critical random matrix
theory example, the Gaussian Orthogonal Ensemble (GOE), which we usually denote by W
distributed as:

W ∈ RN×Nsym ,

Wij = Wji
iid∼ N (0, 1), (for all i < j)

Wii
iid∼ N (0, 2).

We will not yet normalize W to have a spectrum with support independent of N , but
rather will discover the correct normalization in our calculations.

The scaling of the diagonal entries’ variances may be justified as follows. Defining an
asymmetric Gaussian random matrix

G ∈ RN×N ,

Gij
iid∼ N (0, 1), (for all i, j)

We have

W
d
=
G+GT

√
2

because on the diagonal we have the same variable added together and entries not on the di-
agonal is a sum of independent Gaussians. In particular, the important property of rotational
invariance then follows:

W
d
= QWQT for any deterministic orthognal matrix Q ∈ O(N).

We prove this below in Proposition 1.1 and Corollary 1.2.

Proposition 1.1. For Q ∈ O(N), and a vector g ∼ N (0, IN), we have g
d
= Qg.

Proof. All the entries in Qg must be a linear combination of Gaussian variables, and a
Gaussian vector is specified by its mean and covariance. Apparently, the mean of Qg is 0 by
linearity. And its covariance is:

E
[
(Qg)(Qg)T

]
= QE

[
ggT
]
QT = I.
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Corollary 1.2. QG
d
= G.

Proof. Apply Proposition 1.1 to each column of G.

This W matrix is exactly what we saw in the last lecture up to normalization. Recall
from the moment method lecture that what we are interested in from these matrices is their
empirical spectral distribution (ESD), which is a random probability measure on R:

µ = µW =
1

N

N∑
i=1

δλi(W ).

We want to understand what distribution this converges to when N goes to ∞:

µ→ ρ,

for ρ some deterministic probability distribution.
The main task is to find what the moments of the ESD converge to:

E
∫
xk dµ(x)︸ ︷︷ ︸
=:mk

→
∫
xk dρ(x)

So we will need to calculate these mk’s, which we do by expanding them as traces:

mk = E
1

N

N∑
i=1

λki

=
1

N
ETr

(
W k
)

=
1

N
E

∑
i1,...,ik∈[N ]

Wi1i2Wi2i3 . . .Wiki1 .

If we move the E inside the summation, to show what part of the summation has a non-zero
contribution, we can think of each term of the summation as a closed walk on 1, . . . , N , as
shown in Figure 1.

Figure 1: Closed Walk
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Notice that to have a non-zero contribution, every edge suchmust be traversed an even
number of times. If we ignore the labeling of the walk, we can define a shape to be a walk
without vertex labels. Good shapes are those with non-zero contributions. Then

mk =
1

N

∑
good shapes

Ok(1)︷ ︸︸ ︷
f(shape) ·

number of such shapes ≈N#{shape vertices}︷ ︸︸ ︷
N(N − 1) . . . (N −#{shape vertices}+ 1) .

Since we are looking at N → ∞, the leading term of the summation is the shapes
that maximize the number of terms having such a shapes. Let’s consider the following two
examples, as shown in Figure 2. k is the number of edges, for k = 4 and k = 6, we have
two typical shapes. But the claim here is these are not the only good shapes that are the
maximizers.

Remark 1.3. if k is odd, then there are no good shapes, so mk = 0.

Figure 2: Shape Examples

Proposition 1.4. {Good shapes with k edges, k
2

+ 1 vertices} = {“doubled” trees}.
Therefore,

mk ≈ Nk/2 ×#

{
traversal-ordered trees on

k

2
+ 1 vertices

}
One can make a bijection that maps the elements of traversal-ordered trees in the above

set to elements of length-k balanced sequences of {“new”, “back”}, as illustrated in Figure 3.

Figure 3: Bijection
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Here we could understand “balanced” as, at any point, we can not have more back’s
than new’s. This number also appears when counting balanced parenthesizations or walks
that never go below zero, and is given by the Catalan numbers. These are

mk = Nk/2Ck/2 = Nk/2 1

k/2 + 1

(
k

k/2

)
.

Theorem 1.5. Let Ŵ := 1√
N
W . Then, for all k ≥ 1,

E
1

N
Tr
(
Ŵ k
)

=

{
0 if k is odd,

Ck/2 if k is even.

2 The Semicircle Law

Now we know the moments of ρ, we want to invert them and find the probability distribution
itself. And we will see the same device will also help calculate the formula for the Catalan
number. This device is the ordinary moment generating function M(x) defined as:

M(x) =
∑
k≥0

mkx
k.

Note that a valid sequence of length k should look like, for some 0 ≤ i ≤ k − 2,

new (. . . )︸ ︷︷ ︸
i

back (. . . )︸ ︷︷ ︸
k−2−i

,

so we have the following recursion:

m0 = 1,

m1 = 0,

mk =
k−2∑
i=0

mimk−2−i for k ≥ 2.

Therefore,

M(x) = 1︸︷︷︸
k=0

+ 0 · x︸︷︷︸
k=1

+
∑
k≥2

k−2∑
i=0

mimk−2−ix
k

= 1 + x2M(x)2.

Then we can solve the quadratic equation and get:

M(x) =
1−
√

1− 4x2

2x2

Remark 2.1. We choose M(x) = 1−
√
1−4x2
2x2

rather than M(x) = 1+
√
1−4x2
2x2

because we want
limx→0M(x)→ 1 = m0.
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Remark 2.2. We also see M(x) =
∑

k≥0Ckx
2k, since we only have even powers of x in

M(x). To get Ck, we compute the power series of (1+y)1/2 =
∑

k≥0
(
1/2
k

)
yk, with the “formal

binomial coefficients”
(
1/2
k

)
=

1
2
( 1
2
−1)...( 1

2
−k+1)

k!
.

To recover the distribution, we can observe the following:

M(z) =
∑
k≥0

E
X∼ρ

[Xk]zk

= E
X

1

1− zX
.

We instead consider the closely related Stieltjes transform, which is widely used in random
matrix theory:

S(z) = E
X

1

X − z

= −1

z
M(

1

z
)

= −1

z
E

1

1− 1
z
X
.

In our case, we may compute

S(z) =
1

2

(√
z2 − 4− z

)
.

Remark 2.3. All these transformations contain the same amount of information as the
moment sequence.

Now we will look into how to invert S(z) to get the density function back. Note that if
ρ has a density function p(x), then

S(z) = E
X

1

X − z

=

∫ ∞
−∞

p(x)

X − z
dx.

What we can do here is a complex analysis technique:

S(y + iε)− S(y − iε) =

∫ ∞
−∞

p(x)

X − iε︸ ︷︷ ︸
path

−y
dx−

∫ ∞
−∞

p(x)

X + iε︸ ︷︷ ︸
path

−y
dx

≈
∮
C

p(z)

z − y
dx. (roughly)

The contour C is illustrated in Figure 4.
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Figure 4: Integral Path

Proposition 2.4. Under some additional conditions, by Cauchy’s integral formula

p(y) =
1

2πi
lim
ε→0
{S(y + iε)− S(y − iε)} .

For our S(z), we need the “right”
√
z that is compatible with our earlier calculations.

The right choice is to avoid defining the square root of the negative real axis, as illustrated
below in Figure 5.

Figure 5: Square Root Function

Then we find, in our case,

p(y) =
1

2πi
lim
ε→0

{
1

2

√
(y + iε)2 − 4− 1

2

√
(y − iε)2 − 4

}
=

1

2πi

{
0 if y2 ≥ 4,

i · 1
2

√
y2 − 4 · 2 if y2 < 4

=
1

2π

{
0 y2 ≥ 4,√
y2 − 4 y2 < 4.
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And this is exactly the density of the semicircle law.

Theorem 2.5. The ESD of the normalized GOE matrix Ŵ converges in moments to the
semicircle law having density

p(y) =
1

2π

√
y2 − 4 · 1 {y ∈ [−2, 2]} .

Remark 2.6. All of these calculations depend very little on the distribution of the entries
of W . Let Wii be anything reasonable, EWij = 0 and Ew2

ij = 1, and a small amount of
further regularty, then we have similar decay in the higher moments of the entries so that
we could carry through the “tree counting” arguments we did previously, then the same exact
argument is applicable to any such random matrix to get the semicircle law in the end.

Next time we will look back and see how we can use this argument to handle more
complicated matrices resulting from the Kac-Rice formula.
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