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Lecture 13: Free Probability and Kac-Rice

1 Introduction

This lecture covers applying free probability to landscape complexity. First, we revisit the
Kac-Rice analysis of the “noisy well” and solve for asymptotics of critical points using free
convolution. We will discuss the role of large deviations reasoning and discuss a model used
to describe the behavior of simple neural networks.

2 Noisy Well Model

Details can be found in [ABM21].
The main idea of this section is to obtain a closed form approximation of the total number

of critical points of f in al of Rn.
Recall the noisy well model.

f(x) =
α

2
‖x‖22 + g(x) (1)

Where g(x) is the random function from Lecture #8, Continuous Counting with the
Kac-Rice Formula. We do not reproduce g here, but we established that for a set A,

ECrit(f, A) =
1

αn
E[|det(H)|]P[N ∈ A], (2)

where N was some normal random variable whose parameters do not matter. For details,
see Lecture #8. Taking A := Rn, the probability on the right hand side is 1 and we are left
analyzing the expected (absolute) determinant.

H was the matrix

H := αIn +
√
d(d− 1)Nd−2hIN +

√
d(d− 1)Nd−1W +

√
dNd−1D. (3)

where h ∼ N (0, 1) is independent of D and W . D is a random diagonal matrix with
independent standard normal random variables on the diagonal. W is a matrix drawn from
the Gaussian orthogonal ensemble (GOE), normalized to have spectral norm at most 2. For
the precise definition of the GOE, see Lecture 8. The most important observation is that the
eigenvalue distribution of W follows the semicircle law and that D and W are asymptotically
free by Voiculescu’s theorem, since the GOE is rotationally invariant.

Define α̂ := α/N
(d−1)

2 , and Ĥ := H/N (d−1)/2. Set Ĥ(0) :=
√
d(d− 1)W +

√
dD, the last

two terms in Ĥ. We have, for some constant C,

E[|det(H)|] =
C

α̂n

∫
e−N

h2

2 E[|det(hI + α̂I + Ĥ(0))|]dh (4)
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We can rewrite the integral as

C

∫
exp

(
N

[
− log α̂− h2

2
+

1

N
log E[|det(hI + α̂I + Ĥ(0))|]

])
dh (5)

This form motivates us to use the Laplace approximation, which gives

E[|det(H)|] ≈ C exp

(
N sup

h

{
− log α̂− h2

2
+

1

N
log E[|det(hI + α̂I + Ĥ(0))|]

})
= C exp

(
N sup

h

{
− log α̂− h2

2
+

1

N
log E

[
exp

(
N∑
i=1

log |h+ α̂ + λi|

)]})
(6)

where λi are the eigenvalues of Ĥ(0).
It turns out that by concentration/large deviation bounds, we can very closely approxi-

mate this last term by commuting log and the expectation:

E[|det(H)|] ≈ C exp

(
N sup

h

{
− log α̂− h2

2
+

1

N
E

[
N∑
i=1

log |h+ α̂ + λi|

]})

and we recognize this last term as an integral with respect to the spectral measure of Ĥ(0),

= C exp

(
N sup

h

{
− log α̂− h2

2
+

∫
log |h+ α̂ + t|dµ̂N(t)

})
. (7)

Because D and W are asymptotically free, the spectral measure µ̂N is approximately the
additive free convolution of the spectral measures of D and W ,

µ̂N ≈ µsc � µD, (8)

where µsc is the semicircle distribution (the spectral measure of W , see Lecture 10) and µD
is the spectral measure given by the entries along the diagonal of D (which means it is a
Gaussian measure). Therefore, we have a closed form approximation for E[|det(H)|], which
allows us to approximate the number of critical points of f :

E[|det(H)|] ≈ C exp

(
N sup

h

{
− log α̂− h2

2
+

∫
log |h+ α̂ + t|d(µsc � µD)(t)

})
. (9)

We note that, while not quite a closed form in terms of α̂, this is at least a function that
we can approximate numerically, by computing an approximation to the integral term as a
function of h and α̂ and then solving an optimization problem over h.

3 A Basic Neural Network Model

The next model we consider is the following.

L(x) =
1

m

m∑
i=1

φ(〈ζi, x〉). (10)
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We will only sketch how to apply the Kac-Rice formula to this model.
Think of φ as an activation function, and assume it is smooth. x ∈ Sn−1 is a unit

vector and ζi are random vectors whose components are independent, identically distributed
Gaussians.

Under some technical assumptions, one can establish a limiting formula for the number
of critical points of L in B ⊂ R.

The main result is that the expected number of critical points has a (convoluted) closed
form in terms of the multiplicative free convolution. Another main idea is that here, we need
the theory of large deviations in order to get the result. In particular, concentration of the
expected determinant will not hold sufficiently to exchange the log and expectation as we
did in the previous argument.

3.1 Step 1: Kac-Rice Formula

The Kac-Rice formula on the sphere for this case gives, for a set B ⊂ R,

ECrit(L,B) =

∫
Sn−1

ρ∇L(x)(0)E
[
1{L(x) ∈ B}|det∇2L(x)|

∣∣∣∇L(x) = 0
]
dµS(x), (11)

where µS is the uniform measure on the sphere, ρ∇L(x) is a density, and the gradients and
Hessians must be taken as their Riemannian versions on the sphere, which amounts to
introducing some projections to the direction orthogonal to x.

We may take B = Sn−1 for the sake of simplicity. In this case, as usual, the main difficulty
is controlling the expectation of the absolute value of the determinant. This will involve the
corrections for the spherical setting mentioned above, but essentially will boil down to a
computation like

E

∣∣∣∣∣det
(

m∑
i=1

φ′′(〈ζi, x〉)
(Px⊥ζi)(Px⊥ζi)

>

n

)∣∣∣∣∣ , (12)

where Px⊥ = I − xx> is the projection to the direction orthogonal to x. Conveniently, if
we set ui = 〈ζi, x〉 and vi to be an (n− 1)-dimensional embedding of Px⊥ζi, then ui and all
coordinates of vi are independent standard Gaussians, and the above is

E

∣∣∣∣∣det
(

m∑
i=1

φ′′(ui)
viv
>
i

n

)∣∣∣∣∣ , (13)

a much nicer random matrix than it initially appears.

3.2 Step 2: Large Deviation Bound

We can write the matrix above as 1
n
V DV > for V an i.i.d. Gaussian matrix and D a diagonal

matrix with entries i.i.d. distributed as φ′′(N (0, 1)) (i.e., φ′′ applied to i.i.d. standard Gaus-
sians). If m

n
→ λ > 0 for some parameter λ, then the e.s.d. of 1

n
V V > converges to ρλ the

Marcenko-Pastur distribution with parameter λ. Thus, the spectrum of 1
n
V DV > converges

to ρλ � φ′′(N (0, 1)), the multiplicative free convolution. We might then expect

E

∣∣∣∣∣det
(

m∑
i=1

φ′′(ui)
viv
>
i

n

)∣∣∣∣∣ ?
≈ exp

(
m

∫
log |t|d(ρλ � φ′′(N (0, 1)))(t)

)
. (14)
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As before, this would require sufficiently strong concentration of a particular function
of the spectrum of the left-hand side around its typical value. But, in this case, this does
not hold. Instead, we need to consider large deviations probabilities: by Sanov’s theorem,
the probability that u1, . . . , um have an empirical distribution close to some measure ν is
roughly exp(−mH(ν|N (0, 1))), where H(·|·) is the relative entropy. Applying a Laplace
method approximation, we get instead

E

∣∣∣∣∣det
(

m∑
i=1

φ′′(ui)
viv
>
i

n

)∣∣∣∣∣ ≈ exp

(
m sup

ν

{∫
log |t|d(ρλ � φ′′(ν))(t)−H(ν|N (0, 1))

})
.

(15)
Most of the work in [MAB23] is dedicated to showing that a version of this holds for

a slightly different random matrix. They then arrive at a similar variational problem over
measures that controls the expected number of critical points of L.
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