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Lecture 18: Replica analysis of SK model

1 Problem Statement

Suppose we have a normalized GOE matrix W ∼ GOE(N, 1/N) (so that the empirical
spectral distribution converges to the semicircle distribution from −2 to 2) and we have the
objective function

H(x) = xTWx over x ∈ {±1}N .
In this lecture, we will try to use replica analysis to solve this question.

The usual physics setup is as follows: we consider the Gibbs measure

µβ(x) =
1

Z(β) exp (βH(x))

which is the probability distribution over the hypercube, when β goes bigger it weights more
and more the objective function. We define the related

ZW (β) =
∑
x

exp (βH(x)), FW (β) = log (Z(β)).

From last time, we know FW will scale with N so we want to catch that number by
defining:

f(β) = lim
N→∞

1

N
EWFW (β)

We can show

2P∗ := lim
N→∞

1

N
Emax

x
H(x) = lim

β→∞

1

β
f(β),

and we will try to make a prediction for f(β) to compute the right-hand side.

2 Idea of Replica trick

The idea of the replica trick is that

E logZ = lim
n→0

log EZn

n

So we could move the expectation inside the log. We want to apply the replica method on
EWFW (β). We have

EF (β) = E logZ(β)

= lim
n→0

log EZ(β)n

n
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Also notice that

EWZ(β)n = EW
∑

x1,...,xn

exp

(
β

n∑
i=1

H(xi)

)

=
∑

x1,...,xn

EW exp

(
β

n∑
i=1

H(xi)

)

Now we want to apply the following identity.

Theorem 2.1. EW∼GOE(N,σ2) exp (〈W,A〉) = exp (σ2‖A‖2
F ).

We rewrite exp(β
∑n

i=1H(xi)) to 〈W,β
∑
xix

T
i 〉. For convenience, let X = [x1, . . . , xn],

then
∑
xix

T
i = XXT .

So now we have

EWZ(β)n =
∑

x1,...,xn

exp

(
1

N
‖βXXT‖2

F

)

=
∑

x1,...,xn

exp

(
Nβ2

∥∥∥∥ 1

N
XTX

∥∥∥∥2

F

)
.

Let Q(x1, . . . , xn) := 1
N
XTX, so Q(x1, . . . , xn)i,j = 1

N
〈xi, xj〉 ∈ [−1, 1]. In particular, Q � 0

and Qi,i = 1.
We then have

EWZ(β)n =
∑

Q achievable

exp (Nβ2‖Q‖2
F ) ·#{(x1, . . . , xn) ∈ ({±1}N)n : Q(x1, . . . , xn) = Q}.

We can see

#{(x1, . . . , xn) ∈ ({±1}N)n : Q(x1, . . . , xn) = Q} = 2nNPx1,...,xn∼Unif({±−1}N )[Q(x1, . . . , xn) = Q]

Then, by a Laplace method approximation,

EWZ(β)n ≈ exp

(
N sup

Q�0,Qii=1

{
n log 2 + β2||Q||2F +

1

N
logP[Q(x1, . . . , xn) ≈ Q]

})
We give a heuristic for computing the latter probability. Let yi be the ith row of X. so

we could rewrite Q to 1
N

∑
yiy

T
i . Then, we have

P[Q(x1, . . . , xn) ≈ Q] = P

[
1

N

N∑
1

yiy
T
i ≈ Q

]
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This should be viewed as a large deviations probability. Following scalar large deviations
theory, we consider a Chernoff-type bound parametrized by a matrix Λ,

≤ P[exp〈Λ,
∑

yiy
T
i 〉 ≥ exp〈Λ, NQ〉]

≤ E exp(〈Λ,
∑
yiy

T
i )

expN〈Λ, Q〉

=

(
Ey exp yTΛy

exp〈Λ, Q〉

)N
:= B(Λ)N .

As in the scalar case, one can show (in a version of Cramér’s theorem) that

P[Q(x1, . . . , xn) ≈ Q] ≈ (inf
Λ
B(Λ))N .

Now we have

EZ(β)n ≈ exp

(
N sup

Q
inf
Λ

{
n log 2 + β2||Q||2F + log Ey exp(yTΛy)− 〈Λ, Q〉

})
.

If we don’t have the restriction of y in the hypercube but in the full sphere, we could
compute the Ey term explicitly. But in our case, this term creates many complications. As
before, our approach will be to make a guess for Q, which will lead us to also make a guess
for Λ and simplify this expression to something more tractable.

3 Replica Symmetric ansatz [SK]

We will assume the optimizer Q? looks like

Q∗ =


1 a · · · a
a 1 · · · a
...

...
. . .

...
a a · · · 1

 .

This means the diagonal is 1, and all other place is constant a. We may think of this
as the Gram matrix describing the typical relative configuration of n independent draws
from the Gibbs measure µβ. For example, when β = 0, these draws will be uniform in the
hypercube and we will find that this “overlap matrix” should look like the identity.

What we are asking is how Q∗ is going to change when we increase β, which means
we care more about our objective function. Basically, the above assumption says inside
the hypercube, there are some regions where all the good solutions are and which look like
“geometrically simple” lower-dimensional hypercubes or spheres, and the Gibbs measure is
uniform over those regions. We will see that this guess will ultimately be wrong, but we will
follow the historical development and give these details first.

In order to approximate our EZ(β)n, we also want to know what Λ could be under the
assumption of our optimal Q. Function h(Λ) = log E exp yTΛy is convex, so if we replace
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function Λ with Λ̄i,i be the average of the diagonal entry which is 1
n

∑
Λi,i and Λ̄i,j =

1
n(n−1)

∑
k 6=l Λk,l, then we can show h(Λ̄) ≤ h(Λ) and 〈Λ, Q〉 = 〈Λ̄, Q〉. So we can assume:

Λ? =


c b · · · b
b c · · · b
...

...
. . .

...
b b · · · c.


If we look at the value of the diagonal of E exp yTΛy and 〈λ,Q〉, both of them are equal∑
Λi,i and they have different signs in the objective function, which means the value of the

diagonal won’t affect the result. So, we may assume c = b so that Λ? = b11>.
Then, we have

h(Λ?) = log Ey exp(b(
∑

yi)
2)

= log Ey∼ Unif({±1}n,g∼N(0,1)) exp(g
√

2b
∑

yi)

= log Eg(Ey∼Unif({±1}) exp(g
√

2by))n

= log Eg(cosh g
√

2b)n

So, we finally find

EZ(β)n ≈ exp

(
N sup

a
inf
b

{
n log 2 + β2(n+ n(n− 1)a2) + Eg cosh(g

√
2b)n − nb− abn(n− 1)

})
.

We will continue the calculation from here in the next lecture.
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