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LECTURE 19: Replica Symmetry Breaking

We first continue our calculation of the RS solution of SK model.

1 Replica Analysis of SK Model cont’d

The replica method told us to calculate the term E[Z(β)n]. During the last lecture, In the
last lecture, we derived an approximation for this expression as follows:

E[Z(β)n] ≈ exp
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Let Q∗ be the optimal solution. the optimal solution Q∗ corresponds to the renormalized
Gram matrix of n i.i.d. vectors, x1, x2, · · · , xn, drawn from the Gibbs measure µβ. The idea
is that suppose the optimal solution Q∗ looks like

Q∗ =
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However, the typical correlation matrix cannot always concentrate around such matrix
when we draw any copy. Recall that

µβ(x) ∝ exp (βH(x)) , where H(x) = xTWx.

In particular, this means that µβ(x) = µβ(−x) for any x. Then, for any independent
x1, x2, · · · , xn, it is clear that

µ⊗n
β (x1, · · · , xn) = µ⊗n

β (±x1, · · · ,±xn).

This suggests that if we draw x1, x2, · · · , xn, and write down the correlation matrix. The
probability of observing Q is always equal to the probability of observing DQD where D is
a diagonal matrix.
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In this interpretation, the overlap matrix Q does not concentrate around a single specific
matrix. Instead, it concentrates around an “orbit,” which encompasses all possible 2n choices
of D. This means that there are 2n−1 optimal Q which are equal to DQ∗D for some Q∗ looks
like the matrix above.

Let’s first consider the case when a = 0. When we draw a bunch of copies, the Gram
matrix resembles the identity matrix, suggesting that µβ is nearly a uniform distribution
over the hypercube. However, when a > 0, µβ tends to concentrate around the hypercube,
where the inner product of two independent copies typically holds a certain value.

Figure 1: Picture of µβ looks like

Now let us go back to where we left off last time. The prediction for f(β) is as follows:

f(β) = lim
n→0

lim
N→∞

1

Nn
logEZ(β)n

Assuming that we can interchange the order of these two limitations, we get that:
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By taking the derivative with respect to a, we obtain:

∂h(a, b)

∂a
= −2β2a+ b.

Setting the derivative to 0, we find that b = 2β2a. By plugging this result back, we
reduce the problem to a one-dimensional optimization.
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Now let us again optimize this with respect to a, we get that
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where the last equation follows from Gaussian integration by parts, i.e.,

E
g∼N(0,1)

[g · l(g)] = E
g∼N(0,1)

[l′(g)] .

Forcing the derivative to be 0, we deduce that that

a = E
g
tanh

/
2βg

√
a
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And we could see that a is a fixed-point of some function. This provides a SK solution
of SK model. That is to say,

f(β) = log 2 + β2(1− a)2 + E
g
log cosh (2βg)

for a solving

a = E
g
tanh

/
2βg

√
a
02

.

We first have a look at the figure of tanh(t)2. The function value is always between [0, 1].

Figure 2: The Figure of tanh(t)2

Particularly, tanh(0)2 = 0. This implies that a = 0 is always a solution. Meanwhile,
there is another solution a1 exists iff β > 1

2
. We call this solution α1(β).

2 Potential Issues with the Prediction

2.1 Ground State

We now look back to the ground state. Recall that in the last lecture, we define

2P∗ = lim
N→∞
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Notice that

lim
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Notice that here is actually taking the softmax without normalization. We use the
previous prediction, and observe that as β approaches infinity, α1(β) approaches 1 sufficiently
fast. What means that β(1 − a1(β)

2)) goes to 0 as β tends to infinity. Therefore, we could
see that
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where the third step is derived from that we treat the term as a softmax.

Till now, we have a predicted value for 2P ∗, i.e. 2
5

2
π
, which is roughly 2.0798. However,

the empirical value of 2P ∗ is 2.0763. This indicates that the RS prediction of the ground
state is too big.

2.2 Entropy

Now we consider about entropy. Let us consider the entropy of the Gibbs measure:

Ent (µβ) = −
2

x

µβ(x) log µβ(x).

Expanding the term, we get that

Ent (µβ) = −
2

x

µβ(x) log µβ(x)

= −
2

x
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exp (βH(x)) (βH(x)− logZ(β))
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x
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Z(β)
Z ′(β)

= logZ(β)− β (logZ(β))′

= F (β)− βF ′(β)
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Therefore, let us define ent(β) as:

ent(β) = lim
N→∞

1

N
Ent (µβ) = f(β)− βf ′(β).

However, for sufficiently large values of β, it turns out that ent(β) becomes negative.
This result is problematic because entropy should always be non-negative.

2.3 Stability of Q∗

We now have a look at the stability of Q∗ where

Q∗ =
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and Q∗ should be a maximizer of I(Q). We could see that ∇I(Q∗) = 0. However, its
Hessian matrix ∇2I(Q∗) possesses positive eigenvalues for sufficiently large values of β. This
observation implies that local improvements may be possible, indicating that Q∗ might not
be the true maximizer. This further suggests that the optimal solution might exhibit more
complex geometrical structures.

3 Replica Symmetry Breaking

The issues raised above suggests that we need less symmetric guess for the optimal matrix
Q∗. There is a natural way to guess less symmetrically. That is to divide the matrix into
blocks.

One could guess the optimal matrix as above or even with more hierarchies. Upon
performing calculations with these assumptions, it appears that the issues are partially mit-
igated. The predicted P ∗ becomes more accurate, the threshold β at which ent(β) becomes
negative increases, and the eigenvalues approach 0.
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With these new optimal matrices, we can come up with new geometries for the distribu-
tion. Now, let us shift our focus to the geometry and consider the sphere Sn−1 in Rn instead
of the hypercube. In the replica symmetric setting discussed earlier, we identified two dis-
tinct cases, as illustrated previously. When a = 0, µβ is approximately uniform over the
sphere. However, due to the high-dimensional nature of the space, we observe that for any
particular direction, the mass is concentrated near the equator. When a > 0, a higher ring
emerges, and two independent points drawn from this ring exhibit a typical inner product.

Upon zooming in on the ring, which is Sn−2, we observe no further structures. In other
words, it appears similar to the uniform case. For the one-step replica symmetry breaking,
after zooming in the ring which is Sn−2, the probability distribution concentrates on a bunch
of sub-spheres. When we look at one of those, there are no further structures. That is to
say, we have one more step recursion than the case that a > 0.
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