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LECTURE 19: Replica Symmetry Breaking

We first continue our calculation of the RS solution of SK model.

1 Replica Analysis of SK Model cont’d

The replica method told us to calculate the term E[Z(/3)"]. During the last lecture, In the
last lecture, we derived an approximation for this expression as follows:

E[Z(B)"] ~exp | N sup I(Q)
Q0
Q;,i=1
Let @Q* be the optimal solution. the optimal solution ()* corresponds to the renormalized
Gram matrix of n i.i.d. vectors, 1,29, -, z,, drawn from the Gibbs measure ;15. The idea
is that suppose the optimal solution @* looks like
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However, the typical correlation matrix cannot always concentrate around such matrix
when we draw any copy. Recall that

ps(r) o< exp (BH(x)), where H(z) = 2’ Wa.

In particular, this means that ug(z) = pg(—x) for any x. Then, for any independent
T1,To, -+ , Ty, it is clear that
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This suggests that if we draw x1, 2, - - - , x,, and write down the correlation matrix. The
probability of observing () is always equal to the probability of observing DQD where D is
a diagonal matrix.

1 0 --- 0
0O £1 --- 0
o 0 --- =1



In this interpretation, the overlap matrix ) does not concentrate around a single specific
matrix. Instead, it concentrates around an “orbit,” which encompasses all possible 2" choices
of D. This means that there are 27! optimal @ which are equal to DQ*D for some Q* looks
like the matrix above.

Let’s first consider the case when a = 0. When we draw a bunch of copies, the Gram
matrix resembles the identity matrix, suggesting that psz is nearly a uniform distribution
over the hypercube. However, when a > 0, ps tends to concentrate around the hypercube,
where the inner product of two independent copies typically holds a certain value.

Figure 1: Picture of pg looks like
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Now let us go back to where we left off last time. The prediction for f(3) is as follows:

f(B) = lim lim Nilog[EZ(ﬁ)”

n—0 N—oo n

Assuming that we can interchange the order of these two limitations, we get that:

f(B) = supirgf {Iog2 +p%*(1—-a*)+ [E logcosh (g@) —b+ ab}

g~N(0,1)

J/

By taking the derivative with respect to a, we obtain:

Ohla,b) = —23% +b.
da

Setting the derivative to 0, we find that b = 23%a. By plugging this result back, we
reduce the problem to a one-dimensional optimization.

f(B) = sup {Iog2 + #*(1 — a)® + E log cosh (2 — 6g\/5)}

def
=g(a)

Now let us again optimize this with respect to a, we get that

agaila) _ _252(1 _ a) + % [gEgtanh (259\/5)

= —23*(1 —a)+ %26\/5[];sech (2ﬁg\/ﬁ)2 .



where the last equation follows from Gaussian integration by parts, i.e.,

E lg-l9)= E ['(9)]

g~N(0,1) g~N(0,1)

Forcing the derivative to be 0, we deduce that that
a = [F tanh (269\/5)2.
9

And we could see that a is a fixed-point of some function. This provides a SK solution
of SK model. That is to say,

f(B) = log2 + B*(1 — a)® + [ log cosh (29)

for a solving

a = [Etanh (ZBgﬁ)Z.

We first have a look at the figure of tanh(¢)%. The function value is always between [0, 1].

Figure 2: The Figure of tanh(t)?
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Particularly, tanh(0)> = 0. This implies that a = 0 is always a solution. Meanwhile,
there is another solution a; exists iff 3 > 1. We call this solution a; ().

2 Potential Issues with the Prediction

2.1 Ground State

We now look back to the ground state. Recall that in the last lecture, we define

1
2P, = lim — F max z' Wz
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Notice that

1 1
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Notice that here is actually taking the softmax without normalization. We use the
previous prediction, and observe that as § approaches infinity, a4 () approaches 1 sufficiently
fast. What means that (1 — a;(8)?)) goes to 0 as 3 tends to infinity. Therefore, we could
see that

2P, = lim = [Elog cosh (2/39)

oo B g

= BILmOO % E log ((exp(289) + exp(—2/39)) /2)
= [Emax{297 _29}

=2E|g|
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where the third step is derived from that we treat the term as a softmax.

Till now, we have a predicted value for 2P*, i.e. 2\/7 which is roughly 2.0798. However,

the empirical value of 2P* is 2.0763. This indicates that the RS prediction of the ground
state is too big.

2.2 Entropy

Now we consider about entropy. Let us consider the entropy of the Gibbs measure:

Ent (15) Zuﬁ ) log 115(x).
Expanding the term, we get that

Ent (u15) Zuﬁ z) log j15(x)

== 3 5 o (BH() (31 () ~ g Z(5)

x

~log Z(8) = 5 3 exp (3H() H»

=log Z(B) — B (log Z(B))’
F(B) — BF'(B)



Therefore, let us define ent(3) as:

ent(8) = fim ~ Ent (us) = £(8) — B'(5)

N—oo [V

However, for sufficiently large values of f3, it turns out that ent() becomes negative.
This result is problematic because entropy should always be non-negative.

2.3 Stability of Q*

We now have a look at the stability of Q* where

1 a1§ﬁ) e ar(B)
a(B) w(@B) - 1

and @Q* should be a maximizer of I(Q). We could see that VI(Q*) = 0. However, its
Hessian matrix V21 (Q*) possesses positive eigenvalues for sufficiently large values of 3. This
observation implies that local improvements may be possible, indicating that * might not
be the true maximizer. This further suggests that the optimal solution might exhibit more
complex geometrical structures.

3 Replica Symmetry Breaking

The issues raised above suggests that we need less symmetric guess for the optimal matrix
@*. There is a natural way to guess less symmetrically. That is to divide the matrix into
blocks.
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One could guess the optimal matrix as above or even with more hierarchies. Upon
performing calculations with these assumptions, it appears that the issues are partially mit-
igated. The predicted P* becomes more accurate, the threshold § at which ent(f) becomes
negative increases, and the eigenvalues approach 0.
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With these new optimal matrices, we can come up with new geometries for the distribu-
tion. Now, let us shift our focus to the geometry and consider the sphere 5"~ ! in R™ instead
of the hypercube. In the replica symmetric setting discussed earlier, we identified two dis-
tinct cases, as illustrated previously. When a = 0, pg is approximately uniform over the
sphere. However, due to the high-dimensional nature of the space, we observe that for any
particular direction, the mass is concentrated near the equator. When a > 0, a higher ring
emerges, and two independent points drawn from this ring exhibit a typical inner product.

Upon zooming in on the ring, which is 5”72, we observe no further structures. In other
words, it appears similar to the uniform case. For the one-step replica symmetry breaking,
after zooming in the ring which is 5”72, the probability distribution concentrates on a bunch
of sub-spheres. When we look at one of those, there are no further structures. That is to
say, we have one more step recursion than the case that a > 0.




