
Assignment 1

Random Matrix Theory in Data Science and Statistics

(EN.553.796, Fall 2024)

Assigned: September 12, 2024 Due: 12pm EST, September 30, 2024

Solve any four out of the five problems. If you solve more, we will grade the first four
solutions you include. Each problem is worth an equal amount towards your grade.

Submit solutions in LATEX. Write in complete sentences. Include and justify all steps of your
arguments, but try to avoid writing excessive explanation that is not contributing to our
understanding your solution. You are welcome to include images if you think that will help
explain your solutions (and you must include the plots we ask for if you choose to solve the
numerical problem).

Problem 1 (High-dimensional geometry). This problem will walk you through a few counter-
intuitive properties of high-dimensional Euclidean space.

1. Consider the box B in Rd of side length 2, centered at the origin, with vertices at the
points (±1, . . . ,±1). For each s ∈ {±1}d, let Ss be the sphere of radius 1

2 centered at
the point 1

2s. These are 2d spheres packed on a cubic lattice into the box B. Consider
the sphere S′ centered at the origin that is tangent to every Ss. Find d0 such that, if
d < d0, then S′ is contained in B, but if d ≥ d0, then S′ is not contained in B.

For your reference, the case d = 2 looks as follows. The innermost circle is S′, and
the four around it are S(±1,±1). The larger outermost square is B; the smaller square
in a dotted line is just for reference to show how the centers of the latter circles are
arranged. Your task is to show that, in high dimension, the innermost circle is not
contained in the outermost square (!).
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2. Show that there is a constant c > 0 such that, for all ε ∈ (0,1), for d sufficiently large,
there are at least N = exp(cε2d) unit vectors v1, . . . ,vN in Rd such that |〈vi,vj〉| ≤ ε
for all 1 ≤ i < j ≤ N (i.e., such that the vi are almost orthogonal). You may look up
and use Hoeffding’s inequality.

(Hint: Consider random vectors. Choose a convenient distribution to work with. Note,
though, that the question is not making a probabilistic statement.)

3. Consider the shape ∆d ⊂ Rd that is the convex hull of the points 0,e1,e1+e2, . . . ,e1+
e2 + · · · + ed (the origin plus the “partial sums” of the standard basis vectors). This is
a simplex or high-dimensional tetrahedron, though not an equilateral one: edges have
lengths varying among 1 =

√
1,
√

2, . . . ,
√
d. Compute the volume of ∆d. What is the

side length of a cube in Rd with the same volume? (Give an asymptotic approximation
as d→∞.)

(Hint: For the volume computation, consider gluing several copies of ∆d together to
tile a more familiar object.)

Problem 2 (Johnson-Lindenstrauss and some linear algebra). In this problem, you will prove
a lower bound on the dimension required for embedding a particular point cloud that almost
matches the Johnson-Lindenstrauss lemma. Along the way, you will see some linear algebra
that you might not have been introduced to before.

1. Let λ1, . . . , λn ≥ 0. Show that

‖λ‖0 := #{i : λi ≠ 0} ≥ (
∑n
i=1 λi)2∑n
i=1 λ

2
i
= ‖λ‖

2
1

‖λ‖2
2

. (1)

Reinterpret this as a relationship between the rank, trace, and Frobenius norm of a
positive semidefinite matrix.

2. Suppose X ∈ Rn×nsym has X � 0, Xii = 1 for all i ∈ [n], and |Xij| ≤ 1/
√
n for all i ≠ j.

Show that rank(X) ≥ n/2.

3. For k ≥ 1 and X ∈ Rn×nsym with X � 0, write X�k for the matrix that has entries

(X�k)ij = Xkij , i.e., for the entrywise kth power of X (note that X�k ≠Xk). Show that

X�k � 0, and that rank(X�k) ≤
(
rank(X)+k

k

)
.

(Hint: View X as a Gram matrix, Xij = 〈vi,vj〉, and write X�k in the same way. If you
do this at all, the first part will follow (be sure to explain why). If you do it carefully,
the second part will follow as well.)

4. Show that there are constants c, ε0 > 0 such that the following holds. For all 0 < ε <
ε0 (i.e., ε sufficiently small), there exists n0 = n0(ε) such that, if n ≥ n0(ε) (i.e., n
sufficiently large depending on ε), then there exists no pairwise ε-faithful embedding
(that is, one preserving pairwise distances up to a factor of 1 ± ε, as in the Johnson-
Lindenstrauss lemma) of 0,e1, . . . ,en ∈ Rn into fewer than c

log(1/ε) ·
logn
ε2 dimensions.
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Thus, the dimension of the embedding provided by the Johnson-Lindenstrauss lemma
for these points is tight up to a factor of log(1/ε).

(Hint: Form the correlation matrix of the embeddings of the ei. Raise it to a large
enough entrywise power that Part 2 applies. Compare with Part 3.)

Problem 3 (Properties of Gaussian measure). The Gaussian measure is the most important
one in probability theory, if not all of mathematics. Here you will derive some of its algebraic
properties that we will use in class and future assignments.

1. Let g ∼ N (0,Σ) for some Σ ∈ Rd×dsym with Σ � 0 (i.e., Σ is positive semidefinite). Prove
that, for any smooth function f : Rd → R with |f(x)| ≤ C‖x‖K for some C,K > 0 and
all x ∈ Rd, we have

E[gif(g)] =
d∑
j=1

ΣijE[∂jf(g)] = (ΣE[∇f(g)])i (2)

where ∂if is the partial derivative with respect to the ith argument and ∇ is the gra-
dient (the second equality is just by the definition of gradient).

(Hint: Integrate by parts. You might also find it useful to first treat the case Σ = Id,
and then to observe that g and Σ1/2h for h ∼N (0,Id) have the same law.)

2. Let g ∼N (0,1) (a Gaussian scalar, not a vector). Prove that, for k ≥ 1, Eg2k−1 = 0 and
Eg2k =

∏k
i=1(2i− 1).

3. Let g ∼ N (0,Σ) as in Part 1, and let 1 ≤ i1 < · · · < ik ≤ d. Let M be the set of
all matchings of the set I = {i1, . . . , ik}: a matching is a set of disjoint pairs {ia, ib}
whose union is I. For example, the three matchings of {1,2,3,4} are {{1,2}, {3,4}},
{{1,3}, {2,4}}, and {{1,4}, {2,3}}. Prove that

E

 k∏
a=1

gia

 = ∑
M∈M

∏
{a,b}∈M

Σab. (3)

(For example, one case of the claim is that Eg1g2g3g4 = Σ12Σ34 + Σ13Σ24 + Σ14Σ23.)
Generalize this to allow for repetitions among the i1, . . . , ik. Try to be precise. Explain
why Part 2 is a special case of this latter generalization.

(Hint: Induction.)

4. Suppose that µ is a probability measure on R with a smooth density ρ(x) that has
ρ(x) > 0 for all x ∈ R. Suppose that, for any smooth and compactly supported
f : R → R, Eg∼µ[gf(g)] = Eg∼µ[f ′(g)]. Show that µ = N (0,1) (i.e., that the converse
of the d = 1 case of Part 1 holds).

(Hint: Write the expectations as integrals involving ρ. Integrate by parts.)
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Problem 4 (Random determinants). Let G ∈ Rd×d have i.i.d. entries distributed as N (0,1)
(with no symmetry constraint). You will study the random variable |det(G)|, one interpre-
tation of which is the volume of the random parallelopiped generated by d independent
standard Gaussian vectors.

1. Show that E[|det(G)|] ≤
√
d! . (Do something much simpler than using Part 2 below.)

2. Let g(k) ∼ N (0,Ik) for k = 1, . . . , d, drawn independently (that is, g(k) is a standard
Gaussian vector in Rk). Show that |det(G)| has the same law as

∏d
k=1 ‖g(k)‖.

(Hint: Consider the QR decomposition of G.)

3. Show that, for a constant c > 0, E[|det(G)|] ≥ c
d

√
d! , almost matching the upper

bound of Part 1.

(Hint: Prove that
√
x ≥ 1

2(1+x−(x−1)2) for all x ≥ 0. Apply this with x := ‖g(k)‖2/k.)

4. Show that, for all square G (not random), |det(G)| =
∏d
i=1σi(G), where σi are the

singular values. By computing E|det(G)|2 (for random Gaussian G again now), make
a heuristic but intuitively justified prediction for the limiting value of

lim
d→∞

E

1
d

d∑
i=1

log
(
λi
(

1
d
G>G

)) = ???. (4)

Optionally, if you don’t mind skipping ahead a little, confirm that your prediction is
compatible with the Marchenko-Pastur limit theorem.

(Hint: Make a heuristic leap of the form E[log(· · · )] ≈ log(E[· · · ]). Don’t be afraid.
If you like, speculate about when you expect this to be accurate.)

Problem 5 (Numerical study of eigenvalue spacing). This problem will concern the Gaus-
sian orthogonal ensemble (GOE) that we will study in class soon. This distribution, denoted
GOE(n), is the law of W ∈ Rn×n where Wii ∼ N (0,2) and Wij = Wji ∼ N (0,1), all inde-
pendently drawn for 1 ≤ i ≤ j ≤ n. Note that this W is almost surely a symmetric matrix,
and thus has real eigenvalues λ1 ≥ · · · ≥ λn, whose distribution we will study.

Below, we write χ2(d,σ 2) for the law of ‖g‖2 = g2
1 + · · · +g2

d for g ∼N (0, σ 2Id) (the usual
χ2 distribution, but allowing for rescaling). Similarly, we write χ(d,σ 2) for the law of ‖g‖.

1. One small theoretical task: show that the eigenvalue spacing λ1 − λ2 ≥ 0 when W ∼
GOE(2) (a 2×2 matrix) has the law χ(2, σ 2) for some σ 2 (calculate and give this value).
Look up and write down the density of this distribution—you will need it later.

2. On the computer, sample W ∼ GOE(n) for a sequence of growing n. Go at least up
to n = 1000. Plot histograms of the eigenvalues λ1 ≥ · · · ≥ λn for a few growing n
and make sure you observe convergence to a semicircle shape. Also plot λ1 and λn
versus n, taking the mean over several random trials for each value of n and including
error bars. Make a prediction about the typical scaling of λ1 and λn (each of the form
Eλi ∼ ainbi for a,b ∈ R), each supported by a convincing plot.
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3. Now fix a large n, at least n = 1000 (the larger the better), and plot a histogram of
the distribution of the bulk spacing λn/2 − λn/2+1 over many independent draws of W
(at least 2000). Come up with a procedure to try to find a good σ 2 to approximate
this distribution by χ(2, σ 2) (i.e., to approximate the distribution of spacings for large
n by a rescaling of the closed form distribution of spacings you found for n = 2 in
Part 1). You can define a reasonable “loss function” of σ 2 and use any optimization
library your language has to minimize it, for instance. Draw a plot to illustrate the
quality of the fit.

4. Consider another distribution of (λ1, . . . , λn) where λi are chosen uniformly at random
independently in the interval that you conjectured [λn, λ1] to scale like in Part 1 (that
is, n independent draws from a distribution of the form Unif([annbn , a1nb1])). Repeat
the spacing experiment: fix the same n as in Part 3, sample n independent numbers
λ1, . . . , λn uniformly at random in the predicted interval, sort them to form λ̃1 ≤ · · · ≤
λ̃n, and plot a histogram of the spacing λ̃n/2 − λ̃n/2+1 over many independent trials
of this procedure. Comment on the differences between the distribution of actual
eigenvalue spacings and the distribution of spacings under this alternative model.
What does this say about the structure of the eigenvalues? (Focus on the behavior of
these distributions near zero.)

5. Download a list of the imaginary parts of the first 100 000 non-trivial zeros of the
Riemann zeta function (the famous Riemann Hypothesis conjectures that the real parts
of all such zeros are equal to 1

2 ) from this website:

https://www-users.cse.umn.edu/~odlyzko/zeta_tables/zeros1

Calculate the differences between consecutive values (the distances between consec-
utive zeros along the imaginary axis.). Plot a histogram of the spacings. You should
observe similar qualitative phenomena to before. Repeat the procedure you chose be-
fore to find σ 2 to fit the density of χ(2, σ 2) to this distribution. Find another d such
that χ(d,σ 2) for some σ 2 achieves an exceptionally good fit. Illustrate the best choice
of d (and σ 2) by plotting this density over the histogram of spacings of zeros.
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