
Assignment 2

Random Matrix Theory in Data Science and Statistics

(EN.553.796, Fall 2024)

Assigned: October 7, 2024 Due: 12pm EST, October 23, 2024

Solve Problem 1, and any three out of the five remaining problems. If you solve more, we
will grade the first three solutions (past Problem 1) that you include. Each problem is worth
an equal amount towards your grade.

Submit solutions in LATEX. Write in complete sentences. Include and justify all steps of your
arguments, but try to avoid writing excessive explanation that is not contributing to our
understanding your solution. You are welcome to include images if you think that will help
explain your solutions.

Problem 1 (Project proposal). Propose a paper or collection of related papers to read, a
computational experiment to perform, or an open problem to study for your final project.
See the course website for some ideas. In any case, write roughly one paragraph here doing
the following:

• If you plan to read a paper, tell us the title and author(s), read the abstract and intro-
duction, and describe how it relates to the course, what aspect of the paper you are
interested in, and what else you might have to read or do to understand it.

• If you plan to run a computational experiment, describe the experiment, give one or
two relevant references that might help set your expectations for what you will find,
and explain what the experiment will tell you about random matrices.

• If you plan to try working on an open problem, write down the problem, give a few
references concerning it, and outline in one paragraph what approach you plan to try
or what experiments you can perform.

In all cases, your final project will consist of a short presentation at the end of the class
(8-10 minutes) and a short write-up about whatever you choose here.

Problem 2 (Robustness of semicircle limit theorems). We showed in class that, if ν has mean
zero, variance 1, and all moments finite, then W (d) ∼ Wig(d, ν) (see the lecture notes for
this notation) have esd( 1√

dW
(d)) converging weakly in probability to µSC. That is, for any
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f : R → R smooth and of compact support, 1
d
∑d
i=1 f(λi(

1√
dW

(d))) →
∫
fdµSC in probability

(we considered more general f , but only worry about convergence in probability for these f
for this problem). In this problem, you will probe what conditions on ν are really necessary
for what kinds of limit theorems.

1. Let A,B ∈ Rd×dsym . Show the perturbation inequality

min
π permutation of [d]

d∑
i=1

(λi(A)− λπ(i)(B))2 ≤ ‖A−B‖2
F .

You may use the Birkhoff–von Neumann theorem, which states that the set of doubly
stochastic d× d matrices (i.e., P ∈ Rd×d such that Pij ≥ 0 for all i, j ∈ [d],

∑
j Pij = 1

for all i ∈ [d], and
∑
i Pij = 1 for all j ∈ [d]) is the convex hull of the set of the d× d

permutation matrices (those P with exactly one 1 in each row and each column and
all other entries 0, of which there are d!). You may also use that a linear function over
a convex polytope is maximized at one of the vertices.

(Hint: Write the spectral decomposition of A and B. Consider the matrix of 〈ui,vj〉2
for ui eigenvectors of A and vj eigenvectors of B.)

2. Let f be a smooth and compactly supported function. Show that there is a constant
K = K(f) depending only on f such that, for any A,B ∈ Rd×dsym ,∣∣∣∣∣∣1

d

d∑
i=1

f(λi(A))−
1
d

d∑
i=1

f(λi(B))

∣∣∣∣∣∣ ≤ K√
d
‖A−B‖F .

3. Prove that Wigner’s semicircle limit theorem (convergence in probability of averages
of smooth and compactly supported functions, as stated above) holds only under the
assumption that ν has mean 0 and variance 1.

(Hint: Define a version of W =W (d) where entriesWij are replaced with the centered
truncations Wij1{|Wij| ≤ C} − E[Wij1{|Wij| ≤ C}] for a large C and use the limit
theorem from class, as cited above, on this matrix.)

4. Find a choice of ν that has mean 0 and variance 1 but such that, for W (d) ∼Wig(d, ν),
we have limd→∞ P[‖ 1√

dW
(d)‖ ≥ Cd] = 1 for some diverging sequence Cd → ∞. Conse-

quently, the Wigner edge or norm limit theorem (the statement that ‖ 1√
dW

(d)‖ → 2 in
probability) does require further moment assumptions on ν .

(Hint: Prove and use that ‖W ‖ ≥ maxi,j∈[d] |Wij|. As I mentioned in class, the Wigner
edge limit theorem does hold provided that the fourth moment of ν is finite, so your
choice must not have that property.)

Problem 3 (Eigenvector perturbation bound). Write v1(X) for the unit-norm eigenvector of
λ1(X) for X ∈ Rd×dsym . Whenever this notation is used below, you may assume that λ1(X)
occurs with multiplicity 1 as an eigenvalue of X .
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Suppose M ∈ Rd×dsym , and ∆ has the same dimensions as M with ‖∆‖ < λ1(M)− λ2(M)
(the matrix norm without a subscript always denotes the operator norm). You will show the
perturbation inequality

〈v1(M),v1(M +∆)〉2 ≥ 1−
( ‖∆‖
λ1(M)− λ2(M)− ‖∆‖

)2

.

Follow these steps, where we abbreviate v := v1(M) and ṽ := v1(M +∆).

1. Show that λ1(M)− λi(M +∆) ≥ λ1(M)− λ2(M)− ‖∆‖ for all i ≥ 2.

(Hint: You may use the Courant-Fischer min-max theorem. Look it up and take a
minute to internalize it if you are not familiar with this.)

2. Using Part 1, show that ‖∆v‖ ≥ (λ1(M)− λ2(M)− ‖∆‖) · ‖(I − ṽṽ>)v‖.
(Hint: Expand v in the orthonormal basis of eigenvectors of M +∆.)

3. Complete the proof.

Also show the following application:

4. Suppose that W ∼ GOE(0)(d), and let x ∈ Rd with ‖x‖ = 1. Let λ > 0 and consider the
matrix Y = λ

√
dxx>+W . Show that there is a function f(λ) ∈ R such that f(λ)→ 1

as λ→∞ and such that, for any fixed λ > 0, we have that

lim
d→∞

P[〈v1(Y ),x〉2 ≥ f(λ)] = 1.

You may use the Wigner edge limit theorem mentioned above in Problem 2 and cited
in class and the lecture notes. More colloquially, this says that the top eigenvector
of Y can achieve an arbitrarily good estimate of a rank one perturbation of W of
sufficiently large magnitude λ. We will see finer results in class soon.

Problem 4 (Free probability). Define the 2× 2 matrix

A :=
[

1 0
0 −1

]
.

Let t ∼ Unif([0, π]) and define the random rotation matrix

U :=
[

cos(t) sin(t)
− sin(t) cos(t)

]
.

Finally, define X(2d) := Id ⊗ A ∈ R2d×2d and Y (2d) := Id ⊗ (UAU>) ∈ R2d×2d random
matrices.

1. Show that the sequences X(2d) and Y (2d) have converging empirical spectral moments
(i.e., that limd→∞

1
2dETrX

(2d)k exists for all k and likewise for Y (2d)) and that the pair
of sequences is asymptotically free. (View the definition of asymptotic freeness as
restricted to a sequence of matrices in only even dimensions.)

(Hint: Boil this down to a statement about the 2× 2 matrices A and U .)
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2. To what measure must the empirical spectral distribution of X(2d) + Y (2d) then con-
verge in expected moments? Why?

(Hint: You do not need to calculate an additive free convolution by hand if you paid
attention in class.)

3. Show that the empirical spectral distribution of X(2d) + Y (2d) almost surely consists
of at most two atoms. Therefore, qualitatively, it will never resemble the measure
you described in Part 2. For example, in a histogram of the eigenvalues, only at most
two bins will ever be non-empty. Explain formally and precisely why this is not a
contradiction to Part 2.

Problem 5 (More on Gaussian random vectors). This problem is a continuation of Problem 3
from Homework 1. In the next homework, a final problem in the sequence will have you
derive powerful consequences of these ideas for random matrices. For now, you will derive
some more general tools.

1. Suppose F : Rd → R is a smooth function with max{|F(x)|,‖∇F(x)‖2
2,‖∇2F(x)‖2

F} ≤
C(1 + ‖x‖)K for some C,K > 0 and all x ∈ Rd, where ∇2F is the d × d Hessian
matrix of second derivatives. Let Σ,Λ ∈ Rd×dsym be positive semidefinite. Define Σ(t) :=
(1− t)Σ+ tΛ for t ∈ [0,1], and write

f(t) := E
g∼N (0,Σ(t))

F(g).

That is, we are considering the value of an expectation of a general function of a
Gaussian vector as the covariance matrix moves along a line in matrix space. Show
that the derivative of this value is

f ′(t) = 1
2

〈
Λ− Σ, E

g∼N (0,Σ(t))
∇2F(g)

〉
.

Here, 〈A,B〉 = Tr(AB) =
∑
i,j AijBij is the Frobenius inner product.

You may differentiate under the expectation (i.e., bring a derivative inside an expecta-
tion) without justification, but you should consider on your own time what the justifi-
cation would be.

(Hint: If g ∼ N (0,Σ) and h ∼ N (0,Λ) independently, construct a Gaussian vector
with covariance Σ(t) to make differentiating under the expectation easier. Then, use
Homework 1, Problem 3, Part 1—you may use it even if you did not solve that problem.)

2. Show that, if F as above is also convex, and g ∼ N (0,Σ) and h ∼ N (0, Γ) are inde-
pendent Gaussian vectors (that is, the entries of g may be correlated with one another,
and likewise for h, but entries of g are independent of entries of h) for any Σ, Γ ∈ Rd×dsym

positive semidefinite, then
EF(g) ≤ EF(g +h).

Informally, expectations of convex functions of Gaussians are only increased by adding
noise. Show that the same also holds for F(x) = maxi∈[d]xi, though it is not smooth.

(Hint: Law(g + h) = N (0,Λ) for some Λ—write this out and use Part 1. For the last
part, consider the “soft-max” function F(x) = β−1 log(

∑d
i=1 exp(βxi)) and take β→∞.)
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3. Suppose that g ∼ N (0,Σ) and h ∼ N (0,Λ) are arbitrary centered Gaussian vectors
as in Part 1. Suppose that, for all i, j ∈ [d], we have E(gi − gj)2 ≤ E(hi − hj)2. Show
that

Emax
i∈[d]

gi ≤ Emax
i∈[d]

hi.

(Hint: Expand the condition on g and h into a condition on Σ and Λ. Again consider
the soft-max function and use Part 1, explicitly calculating the Hessian.)

Problem 6 (Numerical study of random regular graphs). We discussed p-regular graphs of
large girth in class. In this problem, you will study p-regular graphs chosen uniformly at
random numerically and observe that they share some but not all of the same properties.

1. Write code to generate a p-regular graph on d vertices (pd must be even) at random,
as follows. View the d vertices as each having p “half-edges” attached to them, for a
total of pd. A graph may be viewed as formed by gluing together half-edges in pairs
to form full edges. As we have seen from the combinatorics of Gaussian moments,
there are (pd − 1)!! possible perfect matchings among pd objects. Choose such a
perfect matching uniformly at random (come up with and justify a way to perform
this sampling). This forms a random p-regular multigraph G0 on d vertices, since it is
possible that you created self-loops or parallel edges in choosing your matching. Now,
perform rejection sampling: repeat the procedure until you choose a matching that
yields a simple graph G. Include this part of your code in your homework submission.

You do not need to prove it, but the resulting G is uniformly random among simple
p-regular graphs on d vertices with labelled vertices.

2. Write code to estimate f(p,d) := P[G0 is simple] in the above procedure. For p ∈
{3,4}, estimate f(p) := limd→∞ f(p,d) by taking d large. That is, for each p, for a
sequence of growing d, report the fraction of trials giving G0 simple out of a large
total. Plot data to illustrate the convergence of your estimate as d → ∞. (Optionally,
if you are very patient, you may try p = 5. It helps to not generate an entire perfect
matching before rejecting a G0 that is not simple.)

3. Write A for the adjacency matrix of G formed above. For p ∈ {3,4}, confirm that,
for large d, esd(A) is close to the Kesten-McKay measure with parameter 3 and 4
(respectively) as predicted in class for regular graphs of large girth. How large of d is
needed? Include convincing plots.

4. Let T = T(G) be the number of triangles in G. Estimate t(p,d) := ET(G) for p = 3 and
a sequence of growing d. Does our reasoning from class apply to the random G? Try
to identify what Law(T) converges to as d → ∞. Include numerical evidence for your
prediction of any kind you think is reasonable—histograms, experimental estimates of
moments, etc.

(Hint: Compute T(G) with matrix algebra, not for loops.)
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