
Assignment 3

Random Matrix Theory in Data Science and Statistics

(EN.553.796, Fall 2024)

Assigned: November 4, 2024 Due: November 22, 2024, 11:59pm

Solve Problem 1, and any three out of the four remaining problems. If you solve more, we
will grade the first three solutions (past Problem 1) that you include. Each problem is worth
an equal amount towards your grade.

Submit solutions in LATEX. Write in complete sentences. Include and justify all steps of your
arguments, but try to avoid writing excessive explanation that is not contributing to our
understanding your solution. You are welcome to include images if you think that will help
explain your solutions.

Problem 1 (Project update). Give an update, in one or two paragraphs, on how your project
is going. What have you read or done? Has your goal changed, or have you found that
you will need to read something additional or different to understand what you originally
planned to? What do you plan to do in the remaining time? Do you have any big-picture
questions for us about your reading or work?

Problem 2. This problem is a continuation of Homework 2, Problem 5, Part 3. You may use
that result even if you did not solve that problem. Recall the statement: if g ∼N (0,Σ) and
h ∼N (0,Λ) are arbitrary N-dimensional centered Gaussian vectors such that E(gi−gj)2 ≤
E(hi − hj)2 for all i, j ∈ [N], then Emaxi gi ≤ Emaxihi.

1. The Gaussian width of a compact set X ⊂ Rd is

ω(X) := E
g∼N (0,Id)

max
x∈X

〈g,x〉.

By the rotational invariance of g, you may view this as measuring the width of X in the
direction of a random ray through the origin in Rd—hence the name. LetW ∼ GOE(d)
(recall this means Wij = Wji ∼ N (0,1 + 1{i = j}) independently for all i ≤ j). Show
that, for any compact X ⊆ Sd−1(1),

E
W∼GOE(d)

max
x∈X

x>Wx ≤ 2ω(X).
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(Hint: Use ε-nets to reduce to the case of finite X and use the inequality from Home-
work 2 cited above. You will find it useful to prove the linear-algebraic inequality
‖wx>−yz>‖2

F ≤ ‖w−y‖2+‖x−z‖2 for all vectorsw,x,y,z of compatible sizes and
each of unit norm.)

2. Specializing the above result, prove the following. Note that there are no further “error
terms” in any of these statements, and they hold non-asymptotically for all d.

Eλ1(W ) = E max
x∈Sd−1(1)

x>Wx ≤ 2 ·
√
d,

E max
x∈{±1/

√
d}d
x>Wx ≤ 2

√
2
π
·
√
d,

E max
x∈Sd−1(1)

xi≥0 for all i∈[d]

x>Wx ≤
√

2 ·
√
d.

3. Let G ∼ N (0,1)⊗d×m, i.e., a random rectangular d ×m matrix with i.i.d. standard
Gaussian entries. Adapt your argument from above to show that

E‖G‖ ≤
√
d+

√
m.

4. Let g ∼ N (0,Σ) be N-dimensional and suppose that rank(Σ) = N . Show that the

function D(i, j) :=
√
E(gi − gj)2 defines a metric on the set [N] = {1, . . . ,N}. Fix

δ > 0, and suppose that there exists a δ-packing of P points in this space: a subset
S ⊂ [N] with |S| = P and such that, for all i, j ∈ S distinct, D(i, j) > δ. Show that, for
some absolute constant c > 0,

E max
i∈[N]

gi ≥ cδ
√
log P.

(Hint: Use the above Homework 2 inequality again. Find a very simple Gaussian vector
with which to compare the restriction of g to the indices in S.)

5. Derive an inequality relating the Gaussian width of a compact X ⊂ Rd to the packing
number P(δ), the maximum number of points in X at pairwise (Euclidean) distance
at least δ. Note that this is a very geometric statement that you have derived by
probabilistic reasoning!

Problem 3. This problem, using a technique in a somewhat similar spirit to Homework 2,
Problem 5, explores some general aspects of concentration of functions of Gaussian random
variables in a different way than we will see in class. Let f : Rn → R be a smooth function
and let g ∼N (0,In) be a standard n-dimensional Gaussian vector.

1. Let g,h ∼ N (0,In) independently, so that h is an independent copy of g. Write
g(t) = sin(t)g + cos(t)h for t ∈ [0, π/2]. This is a kind of interpolation in the style of
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Homework 2, Problem 5, but between two independent copies of the same Gaussian
random vector. Show that

f(g)− f(h) =
∫ π/2

0
〈∇f(g(t)),g′(t)〉dt,

and that Law((g(t),g′(t))) = Law(g,h) = N (0,I2n) for all t ∈ [0, π/2], whereby the
integrand above has the same law at each t ∈ [0, π/2].

2. Let Ψ : R→ R be a convex function. Show that

E
g,h
Ψ(f (g)− f(h)) ≤ E

g,h
Ψ
(
π
2
〈∇f(g),h〉

)
,

and therefore also that

E
g
Ψ(f (g)− Ef(g)) ≤ E

g,h
Ψ
(
π
2
〈∇f(g),h〉

)
.

(Hint: Jensen’s inequality, repeatedly.)

3. Suppose now that f is also L-Lipschitz, i.e. that ‖∇f(x)‖ ≤ L for all x ∈ Rn (for a
smooth function this is equivalent to the usual definition). Prove that

P
[
|f(g)− Ef(g)| > t

]
≤ 2 exp

(
− 2
π2

t2

L2

)
.

This is a slightly weaker (in the constant in the exponential) version of the Gaussian
Lipschitz concentration inequality we discussed in class. In fact relatively simple fur-
ther arguments show that the same holds even if f is not smooth, and can be Lipschitz
in the weaker sense that |f(x)− f(y)| ≤ L‖x−y‖ for all x,y ∈ Rn. You may use this
without proof below.

(Hint: Choose the same Ψ that you would use to show a Chernoff bound.)

4. Let W ∼ GOE(d). Prove that, for an absolute constant c > 0,

P [|λ1(W )− Eλ1(W )| > t] ≤ 2 exp
(
−ct2

)
.

That is, the norm of a Gaussian random matrix has Gaussian tails. Note that, remark-
ably, the argument requires no knowledge whatsoever of Eλ1(W ), though we have
seen separately (including partly in the previous problem) that Eλ1(W ) ≈ 2

√
d, so

this shows quite strong concentration since the inequality does not depend on d.

5. Prove that the map λ : Rd×dsym → Rd mapping a matrix to its eigenvalues in descending
order is 1-Lipschitz when matrices are given the Frobenius norm and vectors the `2

norm. Using that, prove that there is an absolute constant c > 0 such that, for W ∼
GOE(d), Ŵ := 1√

dW , any L-Lipschitz function f : R→ R, and any i ∈ [d],

P

∣∣∣∣∣∣1
d

d∑
i=1

f(λi(Ŵ ))− E1
d

d∑
i=1

f(λi(Ŵ ))

∣∣∣∣∣∣ > t
 ≤ 2 exp

(
−c t

2

L2
d2

)
,

P
[∣∣∣f(λi(Ŵ ))− Ef(λi(Ŵ ))

∣∣∣ > t] ≤ 2 exp

(
−c t

2

L2
d
)
.
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The first result easily upgrades weak convergence in expectation to the semicircle law
to various stronger kinds of weak convergence (weak convergence in probability, L2 or
any Lp, almost surely, and so forth).

(Hint: For the part about the λ map, look through your old homework problems.)

Problem 4. I mentioned early in the class that the semicircle distribution is entirely alien to
the limit theorems of probability theory outside of random matrix theory. In this problem,
you will see that I was lying.

1. Define a sequence of polynomials

H0(x) = 1,
H1(x) = x,

Hd+1(x) = xHd(x)−H′d(x).

Show that these are orthogonal polynomials for the standard Gaussian measure:

E
g∼N (0,1)

Ha(g)Hb(g) =
{

0 if a ≠ b
a! if a = b

}
.

(Hint: Work with EHa(g)f(g) for a general (nice) f .)

2. Show that H′d(x) = dHd−1(x). Let W ∼ GOE(d). Recall that the characteristic polyno-
mial of W is the polynomial pW (t) = det(tId −W ), whose roots are the eigenvalues
of W . Using the above identities, show that, for all d,

E
W∼GOE(d)

pW (t) = Hd(t).

Make a guess for what you think the limiting empirical distribution of the collection
of roots of Hd(

√
d · t) might be. Be bold, or, if you can’t, try a numerical experiment.

(Hint: Use the Laplace expansion of the determinant.)

3. Show that the Hd are equivalently defined by the identity

Ha(x) exp
(
−x

2

2

)
= (−1)a

da

dxa
exp

(
−x

2

2

)
.

Conclude that all roots of Hd are real.

(Hint: Show that all derivatives of exp(−x2/2) decay to zero as x → ±∞. What can
you say about the relationship between the roots of the nth and (n + 1)th derivative
of such a function?)
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4. Show that the roots of Hd are the eigenvalues of the d× d matrix

T (d) :=



0
√

1 0 0 · · · 0 0√
1 0

√
2 0 · · · 0 0

0
√

2 0
√

3 · · · 0 0
0 0

√
3 0 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0
. . . 0

√
d− 1

0 0 0 0
. . .

√
d− 1 0


(Hint: Use again the alternate form of the defining recursion Hd+1(x) = xHd(x) −
dHd−1(x).)

5. Show that your prediction in Part 2 is correct: the empirical distribution of the roots
of Hd(

√
d · t) converges weakly to what you guessed. You may be somewhat heuristic

since this is a bit of a challenging computation to formalize fully, but do your best to
make a convincing calculation.

(Hint: Calculate traces of powers of T (d).)

Problem 5. You will numerically study several variants of the spiked matrix model we saw
in class. Recall that that model considered the top eigenpair of Y = W + β

√
dxx> for

W ∼ GOE(d) and some x with ‖x‖ = 1. As always, include all plots, tables, etc. needed
for us to understand and believe the conclusions you claim to come to based on numerical
experiments.

1. Consider a quantized spiked matrix model, where instead of Y you observe sgn(Y ), the
matrix with entries sgn(Yij) ∈ {±1}. Perform experiments. At what value of β does an
outlier eigenvalue appear? Consider rounding the values of Y instead to points on a
grid with a given width. How do the results depend on the grid width?

2. Consider a censored spiked matrix model, where each entry of Y is hidden from you
with some probability δ ∈ (0,1). A natural way to fill in this “missing data” is to set
those entries to zero. At what value of β does an outlier eigenvalue appear in this
matrix with random entries set to zero? Make a prediction about the critical β as a
function of δ.

3. Take the spiked matrix model with a random spike x ∼ Unif({±1/
√
d}d). Consider

attempting to recover x by fixing some initial guess x̂(0) and then iterating the map
x̂(t+1) = tanh(cY x̂(t)) for some c > 0. Why is this a sensible idea? What is the role
of c? Try it numerically: try starting from x̂(0) uniformly random, and also from x̂(0)

some scaling of the top eigenvector of Y . Vary c and β. Can you find a setting where
you can design an algorithm that convincingly beats the top eigenvector estimator?
(In the sense of 〈x̂(T)/‖x̂(T)‖,x〉2 for some large T being typically substantially larger
than 〈v1(Y ),x〉2.)
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4. Suppose instead you choose a random spike by first drawing x̃ ∼ Unif(Sd−1(1)), and
then taking xi := |x̃i| (i.e., the entrywise absolute value). Think of a way to adapt the
strategy from Part 3 to the case where you are promised the spike was generated in
this way. Can you again beat the top eigenvector estimator?
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