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1 | First Steps With Rectangular

Matrices

Often in statistical and data science applications, we are given the vague task of “under-
standing” a large and high dimensional dataset. Say we are given points y1, . . . ,yn ∈ Rm,
for both m and n large. For instance, each yi might represent a sample drawn from a pop-
ulation, and each coordinate (yi)j ∈ R a feature or property of that sample (say, we have a
sample of n people living in a given city, each having m numerical properties, like height,
weight, age, income, duration of residence, answers to survey questions, and so forth).

At the beginning of an investigation like this, we do not always have a concrete question
to ask of the data; rather, we are doing exploratory data analysis, looking for useful sum-
maries and easily parseable descriptions of this dataset. We want to know: What is typical of
the people who live in this city? Are they divided into a few natural subpopulations? What
are the important correlations between the quantities we measured? Et cetera. What should
we calculate?

If m = 1 and we only measure, say, the heights of a random sample of n = 10 000
people from Baltimore, we can draw a histogram of the distribution of these values, which
will capture essentially1 all of the same information as our dataset itself. We will be able to
see various important features like how much this distribution is concentrated, whether it
has one or two or more modes, how its right and left tails compare, whether there are out-
liers, and so on. To accompany this visualization, we can also compute numerical summary
statistics like the mean, median, quartiles, and standard deviation.

If m = 2 and we measure, say, the height and weight, we can still draw a picture of
the entire dataset in a scatter plot, drawing each yi as a point in R2. We can also repeat
the m = 1 analysis for each feature individually. In addition to the individual means and
standard deviations, you are probably aware that it is important to assess the correlation
between the two features you draw in this way. You can calculate the covariance or the
correlation coefficient, but it is also important to look at the scatter plot, because not all
kinds of dependence are captured by these summary statistics.

If m = 10, already this methodology faces challenges. We can repeat the m = 1 analysis
for each feature, and them = 2 analysis for each pair of features (there are

(
10
2

)
= 45, which

already sounds a bit unpleasant). But, again and moreso, there are many kinds of structures
of dependence among these 10 variables that this approach can miss. Early statisticians,
prominently John Tukey among them, spent time developing methods for dealing with this

1Setting aside the issue of choosing histogram bin widths and positions.
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kind of situation.2

But now, what if m = 1000? Already looking at every pair of variables, that is
(

1000
2

)
=

499 500 many pairs, is prohibitively expensive. Clearly we need some automated method
of directing our attention to the “most important” variables or structural features of the
dataset that is faster and more rigorous than just visual inspection. This is the first set of
ideas that we will discuss.

Random matrices can actually be seen as playing two different roles in what we have
discussed. On the one hand, when we calculate things like empirical covariances, we are
implicitly viewing the yi as being organized into a matrix Y = [y1 · · · ,yn ] ∈ Rm×n and
looking at various structural properties of this matrix (see the first section below). When the
yi are drawn at random from some ambient distribution (say, from a statistical population),
then Y is itself already a random matrix. However, we will begin to approach random
matrix theory from a different direction. It turns out that simpler random matrices—other
matrices G with simple structures like having independent standard Gaussian entries—are
also useful for us to construct and use as algorithmic and analytical tools upon Y . We will
get an initial handle on some of the flavor of how random matrices behave by looking at
these methods.

1.1 Warmup: Singular Values and Principal Components

Before discussing the use of random matrices and the associated random mappings of a
dataset, let us review one of the classical deterministic ways of finding a low-dimensional
summary of Y . There are numerous such methods, but we will focus on a simple one that
is closely related to the eigenvalues and singular values of matrices, which will play a crucial
role throughout.

1.1.1 Preliminaries and Singular Value Decomposition

Let us first recall the singular value decomposition (SVD) theorem.

Definition 1.1.1 (Orthogonal matrices). O(m) denotes the set of m×m matrices U that are
orthogonal, i.e., that have U>U = UU> = Im.

One interpretation is that the columns of an orthogonal matrix give an orthonormal basis of
Rm (it is slightly confusing; perhaps O(m) should really have been called the orthonormal
matrices), and then O(m) is the set of all orthonormal bases. That is fine and true, but
the more mature interpretation is that O(m) is really the set of orthogonal transformations
of Rm (those linear maps that preserve both the origin and angles and distances). These
transformations correspond to bases by U ∈ O(m) corresponding to that basis to which it
sends to the standard basis e1, . . . ,en. Reflect on this for a little while if it does not sound
obvious to you. For geometric intuition, you may rely on the fact that orthogonal matrices

2One of my favorite ideas to come from this early statistics in moderately high dimension: Herman
Chernoff, the namesake of the Chernoff bound, devised the method of “Chernoff faces” to plot each yi as a
cartoonish human face.

5

https://en.wikipedia.org/wiki/Chernoff_face


are generated by (i.e., each is a product of) rotations in different two-dimensional subspaces
and reflections across different hyperplanes (look up “Householder reflections” and “Givens
rotations” if you want more details).

Theorem 1.1.2 (Singular value decomposition). For any Y ∈ Rm×n, there exist U ∈ O(m),
V ∈ O(n), and Σ ∈ Rm×n such that Y = UΣV > and such that Σ satisfies:

1. Σij = 0 unless i = j.

2. σi := Σii ≥ 0.

3. σ1 ≥ · · · ≥ σmin{m,n}.

Another way to say this is that, if u1, . . . ,um ∈ Rm are the columns of U (an orthonor-
mal basis, per the above discussion), and the v1, . . . ,vn ∈ Rn are those of V , then Y =∑min{m,n}
i=1 σiuiv>i . The σi are called the singular values of Y , and the ui and vi the left and

right singular vectors, respectively.
Moreover, the σi (under the above conditions) are uniquely determined by Y . We write

σ = σ(Y ) and σi = σi(Y ) for this mapping. If a given σi occurs only once, then ui and vi
are also uniquely determined, up to the sign flip (ui,vi), (−ui,−vi).3

There are a few ways to think about the SVD. On the one hand, it gives a structure
theorem for the linear maps described by arbitrary matrices: we have Y vi = σiui, so the
SVD theorem says that any matrix can be described as mapping some orthonormal basis to
another orthonormal basis and then applying a rescaling. In particular, the singular values
of σ(Y ) are the part of this characterization that are independent of choices of orthonormal
basis for either the domain Rn or the range Rm, and so are the correct geometric summary
of the “shape” of how a matrix acts. We will return to this interpretation and the importance
of the singular values later.

On the other hand, and what will concern us for now, the SVD can be viewed as giving
a decomposition of any matrix as a sum of matrices σiuiv>i of rank one. Most simply, you
can think of rank one matrices as ones that are easy to visualize or understand: instead of
the fullmnmany numbers needed to express Y , to express uiv

>
i requires onlym+nmany

numbers, and moreover we can plot the coordinates of two or three of the ui or vi against
one another easily. More precisely, a rank one matrix is a “one-dimensional object,” in the
sense that, as a matrix, it picks out just the vi direction of Rn and acts non-trivially on it;
uiv

>
i maps every vector x that is orthogonal to vi to zero.

1.1.2 SVD as Dimensionality Reduction

The second interpretation above leads, on further investigation, to a “variational” descrip-
tion of the SVD, i.e., to a description of the SVD as solving an optimization problem, in this
case expressing that truncations of the SVD yield the best possible low-rank approximations
of a matrix.

We need a few definitions and basic properties of the operator norm.

3If σi occurs several times, then it is only the subspaces spanned by the corresponding columns of U and
V that are unique.
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Definition 1.1.3. The operator norm of a matrix Y is ‖Y ‖ := σ1(Y ).

Proposition 1.1.4. The operator norm is indeed a norm; that is, the following properties hold:

1. (Linearity) For any c ∈ R and Y ∈ Rm×n, ‖cY ‖ = |c| · ‖Y ‖.

2. (Triangle inequality) For any X ,Y ∈ Rm×n, ‖X +Y ‖ ≤ ‖X‖ + ‖Y ‖.

3. (Positivity) For Y ∈ Rm×n, ‖Y ‖ = 0 if and only if Y = 0.

Proposition 1.1.5 (Variational form of operator nom). ‖Y ‖ = supv≠0 ‖Y v‖/‖v‖.
Theorem 1.1.6 (Eckart-Young-Mirsky for operator norm). For any Y ∈ Rm×n and 1 ≤ d < m,




minimize ‖Y −Z‖
subject to Z ∈ Rm×n,

rank(Z) ≤ d


 = σd+1(Y ), (1.1.1)

and a minimizer is Z? = ∑d
i=1σiuiv

>
i where σi,ui,vi are as in the discussion of the SVD

above. If no σi are repeated, then this is the unique minimizer.

Proof. First, observe that Z? indeed achieves the claimed objective value:

‖Y −Z‖ =
∥∥∥∥∥∥

min{m,n}∑

i=d+1

σi(Y )uiv>i

∥∥∥∥∥∥ = σd+1, (1.1.2)

since the remaining matrix inside is given in its singular value decomposition and the largest
remaining singular value is σd+1.

Next we must show that ‖Y −Z‖ ≥ σd+1 whenever rank(Z) ≤ d. Note that dim(ker(Z)) =
n− rank(Z) ≥ n− d. Thus there must be some v ∈ span(v1, . . . ,vd+1) such that v ≠ 0 and
Zv = 0. Suppose we may expand v =∑d+1

i=1 αivi, in which case ‖v‖2 =∑d+1
i=1 α

2
i . We have:

‖(Y −Z)v‖ = ‖Y v‖ =
∥∥∥∥∥∥




min{m,n}∑

i=1

σiuiv>i





d+1∑

j=1

αjvj



∥∥∥∥∥∥

=
∥∥∥∥∥∥

min{m,n}∑

i=1

d+1∑

j=1

σiαj〈vi,vj〉ui
∥∥∥∥∥∥

=
∥∥∥∥∥∥
d+1∑

j=1

σjαjuj

∥∥∥∥∥∥ (orthonormality of vj)

=

√√√√√
d+1∑

j=1

σ 2
j α

2
j (orthonormality of uj)

≥ σd+1

√√√√√
d+1∑

j=1

α2
j

= σd+1‖v‖, (1.1.3)

and thus ‖Y −Z‖ ≥ σd+1 by Proposition 1.1.5.
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Actually, the operator norm here is not very special, and other ways of measuring the
quality of a low-rank approximation work as well. Here is one important one which we will
take this opportunity to introduce.

Definition 1.1.7. The Frobenius norm of a matrix Y is ‖Y ‖F := √Tr(Y >Y ) =
√∑

i,j Y 2
ij . (It is

just the standard `2 norm when we ignore the matrix structure and view Y as a big vector.)

Proposition 1.1.8. The Frobenius norm is indeed a norm.

Theorem 1.1.9 (Eckart-Young-Mirsky for Frobenius norm). For any Y ∈ Rm×n and 1 ≤ d <
m, 



minimize ‖Y −Z‖F
subject to Z ∈ Rm×n,

rank(Z) ≤ d


 =




min{m,n}∑

i=d+1

σi(Y )2



1/2

, (1.1.4)

and a minimizer is again Z? =∑di=1σiuiv
>
i .

Thus in various senses truncating the SVD to the top (i.e., highest singular value) d
components gives the best possible rank-d approximation of a matrix. Let us see how such
an approximation can be useful in applications; we will first give some more “plain matrix”
applications, and then return to the statistical setting from before.

1.1.3 Application: Compressing Images

One straightforward application of this method of dimensionality reduction is a naive, yet
surprisingly effective, approach to image compression. We may encode a grayscale image
as a matrix Y ∈ [0,1]m×n with the value of an entry corresponding to the intensity of a
pixel. The only issue with directly approximating Y by

∑d
i=1σiuiv

>
i is that the entries of

this latter matrix are not necessarily in [0,1]. Crudely resolving this issue by “clipping” the
entries—replacing them with 0 if they are smaller than 0 or 1 if they are greater than 1—is
fine for our purposes.

Figure 1.1 shows two examples of this approach. It is of course no match to more
advanced approaches like JPEG, but is perhaps surprisingly effective. You can see, however,
the tendency even at fairly high rank for the approximated image to look “blocky” or “grainy”
with poorly rendered solid regions having a solid background but a curved boundary. You
might consider what kinds of images a rank 1 matrix can represent to get some intuition for
this phenomenon.

1.1.4 Application: Drawing Graphs

Another, perhaps less straightforward application is to finding informative drawings of
graphs. We may encode a graph G on n vertices by a matrix through the adjacency ma-
trix A ∈ Rn×nsym . This is a symmetric matrix, whereby a more natural approach is to look
at the spectral decomposition A = ∑n

i=1 λiviv
>
i for orthonormal eigenvectors v1, . . . ,v1 and

λ1 ≥ · · · ≥ λn. Note that the eigenvalues are not necessarily positive, and indeed we must
have 0 = Tr(A) =∑ni=1 λi, so some eigenvalues must be negative.
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Original (400x600)

Rank 50

Rank 25

Rank 10

Original (400x600)

Rank 50

Rank 25

Rank 10

Figure 1.1: Two examples of image compression using truncated singular value decomposi-
tion, showing the deterioration of the approximation as the rank decreases.
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Figure 1.2: Two examples of two-dimensional graph drawings obtained by embedding using
eigenvectors. The first is a cycle, while the second is a so-called fullerene, a graph describing
a three-dimensional structure that can be formed by carbon atoms.

By the Perron-Frobenius theorem (which you might have encountered in the context of
Markov chain theory), the top eigenvector v1 has non-negative entries. At a high level, you
can think of its entries as related to the proportional degrees of vertices in G. For example,
if G is d-regular, i.e., every vertex has degree d, then the top eigenvector is the (normalized)
all-ones vector v1 = 1√

n1. This is usually not very informative, so the usual approach to
obtain a good two-dimensional drawing of a graph using the eigenvectors is to plot the
vertices according to their coordinates in v2 and v3.

We show two examples in Figure 1.2. As a sanity check, we find that this method recovers
the “normal” drawing of a cycle graph. More remarkably, it seems to be fairly faithful to the
structure of a fullerene graph that describes a three-dimensional object—even though the
eigenvectors have no reason to “know” about this secret dimensionality.

1.1.5 Application: Summarizing Point Clouds

Finally, let us consider again the issue of “summarizing” a collection of points y1, . . . ,yn,
say given as the results of a statistical experiment. We think geometrically of trying to
approximate the “cloud” of points in Rm formed by the yi. Let us look for a low-dimensional
subspace W that comes close to interpolating these points. We parametrize this subspace,
say d-dimensional for 1 ≤ d ≤ m, by a spanning set w1, . . . ,wd. Then, we want each yi to
be close to W , so that there exist xi1, . . . , xid such that

yi ≈
d∑

j=1

xijwj =Wxi for each i ∈ [n], (1.1.5)

where we introduce the matrix W = [w1 · · · wd ] ∈ Rm×d and xi = (xi1, . . . , xid) ∈ Rd. To
fully use the powerful matrix notation, if we want this to hold for each yi, we can just ask
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that we have the approximate matrix decomposition

Y ≈WX , (1.1.6)

for X = [x1 · · · xn ] ∈ Rd×n.
In fact, using the SVD we can see that any matrix of rank at most d can be written as

WX like this. So, if we seek to minimize the natural objective

‖Y −WX‖2
F =

n∑

i=1

∥∥∥∥∥∥yi −
d∑

j=1

xijwj

∥∥∥∥∥∥

2

, (1.1.7)

then we will end up with precisely one of the variational problems that leads to truncat-
ing the SVD, per Theorem 1.1.9 (the Eckart-Young-Mirsky theorem for the Frobenius norm).
Applying the Theorem, we find that the best subspace to project to in this sense for di-
mensionality reduction of a point cloud is that spanned by the first d left singular vectors,
u1, . . . ,ud.

1.2 Multiplication by a Gaussian Random Matrix

The toolkit based on SVD discussed above, while powerful, has some downsides. First, the
SVD takes a relatively long time—about O(n3) for m � n for the whole thing, or O(dn2) to
extract the top d singular values and vectors—to compute.

Second, the SVD requires us to first gather the entire matrix and store it in memory be-
fore computing an approximation. If our goal is statistical analysis, maybe this is fine; we
would run our experiment or survey, gather the data, and then experiment with dimension-
ality reduction. But, if our bottleneck is in the storage of data itself, or if we seek to apply
compression immediately, or if we want to run analytics on a reduced dataset quickly in a
streaming fashion as data arrive, then this requirement is inconvenient.

Finally, while the SVD promises to be the “best” low-rank approximation in the sense of
distances between matrices, this guarantee is not always relevant. Consider, for example,
very small numbers ε1 > · · · > εm, and suppose m = n and we are given the point cloud of
yi = (1+εi)ei for i ∈ [n]. These are very close to just being the standard basis of Rm, and Y
is close to the identity matrix Im. For εi very small, all points are “comparably important”
to the geometric configuration of this set. Yet, you can check that the SVD truncated to
D components will just throw away all but the first d of the data points. Clearly a more
even-handed treatment of the data points themsleves would often be valuable.

To address all these issues, we will now explore our first application of random matrices,
which will simply entail reducing the dimension of y1, . . . ,yn by multiplying them by a
random matrix G ∈ Rd×m, i.e., by applying a random linear mapping to them. Moreover, we
will takeG to be what we will see to be the simplest and most canonical of random matrices,
having i.i.d. standard Gaussian entries. That is, we will have Gij ∼ N (0,1) independently.
We abbreviate thisG ∼N (0,1)⊗d×m (this notation, alluding with the tensor product symbol
“⊗” to G having a product measure for its law, is occasionally used in the literature but is
not entirely standard).
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Let us start by trying to gain some intuition about what G does to a single y ∈ Rn. We
immediately run into the reason why working with Gaussian entries specifically is useful,
which is the following fact.

Definition 1.2.1. A Gaussian random vector is a random vector (v1, . . . , vd) with a density
det(2πΣ)−1/2 exp(−1

2(v −µ)>Σ−1(v −µ)) for µ ∈ Rd and Σ ∈ Rd×dsym strictly positive definite.
We write v ∼N (µ,Σ).
Proposition 1.2.2. If v ∼N (µ,Σ) is a d-dimensional Gaussian random vector andA ∈ Rk×d,
then

Law(Av) =N (Aµ,A>ΣA). (1.2.1)

That is, the linear image of a Gaussian random vector is another Gaussian random vector,
and in particular is determined by its mean and covariance, or its first two moments.

Thus to identify the law of Gy it suffices to compute its first two moments. You may
verify that:

E[Gy] = E[G]y = 0, (1.2.2)

Cov((Gy)i, (Gy)j) = E(Gy)i(Gy)j

= E



n∑

a=1

Giaya





n∑

b=1

Gjbyb




=
{

0 if i ≠ j,
‖y‖2 if i = j

}
. (1.2.3)

In short, we have
Law(Gy) =N (0,‖y‖2Id). (1.2.4)

From this we may, for example, compute what multiplication by G does to expected
lengths:

E‖Gy‖2 = TrCov(Gy) = d‖y‖2. (1.2.5)

This suggests that, if we want to produce embeddings preserving geometry, we should in-
stead work with the normalization

Ĝ := 1√
d
G. (1.2.6)

This, at the very least, will preserve the lengths of vectors in expectation:

E‖Ĝy‖2 = ‖y‖2. (1.2.7)

What about angles? By a similar calculation you can find

E〈Ĝy1, Ĝy2〉 = 〈y1,y2〉, (1.2.8)

that is, that multiplication by Ĝ also preserves angles in expectation. (Actually, this also
follows directly from the preservation of distances by the polarization identity 〈y1,y2〉 =
1
4‖y1 +y2‖2 − 1

4‖y1 −y2‖2. Try working it out.) Indeed, Ĝ preserves the entire Gram matrix
of any finite collection of vectors in expectation: for y1, . . . ,yn ∈ Rm organized as the
columns of Y , we have

E(ĜY )>(ĜY ) = Y >Y . (1.2.9)

12



Remark 1.2.3. One way to view these preliminary calculations is as studying the Gaussian
random field (a term for a higher-dimensional Gaussian process) that attaches the random
vector Gy ∈ Rd to each point y ∈ Rm. The calculations of EGy and E(Gy)(Gy′)> (similar
to but more general than what we have done above) are then just calculating the mean and
covariance of this field, which, as it is Gaussian, characterize it completely.

The Gram matrix is a fundamental geometric object that does not always get its due in
a linear algebra class. For a set of vectors yi as above, Y >Y describes the entire relative
geometry of this set. Looking at the entries, we see that the Gram matrix contains the
lengths of the yi (on the diagonal) and the angles between each pair (on the off-diagonal).
Actually, this information fully specifies the geometry of this set of vectors: if any other
y′1, . . . ,y′n ∈ Rm have the same Gram matrix, then there must be an orthogonal Q ∈ O(n)
such thatQyi = y′i; that is, it is possible to get from one point cloud to the other by rotations
and reflections.

So, this is telling us that, in expectation, Ĝ preserves the relative geometry of any given
point cloud. Yet, this is too good to be true in any reasonable “hard” sense (say, a bound
on how much Ĝ changes lengths and angles) for an arbitrary point cloud once we fix Ĝ:
in fact Ĝ, being low rank, sends a whole (n − d)-dimensional subspace of Rn to zero, so
there are many point clouds whose structure it completely destroys! It is important, rather,
that we are thinking of a point cloud chosen before Ĝ is drawn, so that the randomness of
Ĝ acts in our favor, the random subspace that is the kernel of Ĝ (the vectors it sends to
zero) avoiding the point cloud. Even with a point cloud “oblivious” to Ĝ in this fashion, we
cannot always make such a guarantee: if we choose a dense enough grid of points in Rn,
many points will come close to any subspace and some aspects of their relative geometry
must be “flattened” by Ĝ, so the point cloud also cannot be too dense.

1.3 Application: Johnson-Lindenstrauss Lemma [JL82]

The Johnson-Lindenstrauss lemma states that, in a certain sense, a point cloud that is typi-
cally deformed substantially by Ĝmust be quite large relative to the dimension, so the above
obstruction to Ĝ preserving geometric structure is the only one. However, and this is an im-
portant condition that we will return to later, this result only concerns whether Ĝ deforms
pairwise distances between the yi. This is not the same as preserving all aspects of the
global geometry of the yi, but is an intuitive notion and is relevant to various applications.

Definition 1.3.1. Given y1, . . . ,yn ∈ Rm, a function f : Rm → Rd is pairwise ε-faithful4 on
the yi if, for all i, j ∈ [n],

(1− ε)‖yi − yj‖2 ≤ ‖f(yi)− f(yj)‖2 ≤ (1+ ε)‖yi − yj‖2.

Theorem 1.3.2 (Johnson-Lindenstrauss [JL82, IM98]). There is an absolute constant C > 0
such that the following holds. Let y1, . . . ,yn ∈ Rm be arbitrary and

d := C logn
ε2

. (1.3.1)

4My own non-standard terminology.
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Note that d does not depend on the dimension m at all! Then, with probability at least
1−O(1/n), multiplication by Ĝ ∼N (0, 1

d)
⊗d×m is pairwise ε-faithful on the yi.

In fact, as the proof will make clear, by increasing the constant C , you can achieve any
smaller polynomial failure rate O(1/nK) for any K > 0.

1.3.1 Concentration of Gaussian Vector Norms

For the proof we will need the following result, which is itself a fundamental one expressing
a crucial aspect of high-dimensional geometry.

Lemma 1.3.3. For g ∼N (0,Id) and any t ≥ 0,

P
[∣∣∣‖g‖2 − d

∣∣∣ ≥ t
]
= P



∣∣∣∣∣∣
d∑

i=1

g2
i − d

∣∣∣∣∣∣ ≥ t

 ≤ 2




exp
(
− t28d

)
if t ≤ d,

exp
(
− t8
)

if t ≥ d


 . (1.3.2)

Proof. The proof uses the venerable Chernoff bound. I will only deal with one of the tails;
the other follows similarly. Note that Eg2

i = 1, so, defining xi := g2
i − 1, we have

P



d∑

i=1

g2
i − d ≥ t


 = P



d∑

i=1

xi ≥ t



= P


exp


λ

d∑

i=1

xi


 ≥ exp(λt)




≤
E exp

(
λ
∑d
i=1xi

)

exp(λt)
(Markov inequality)

= (E exp(λx1))d

exp(λt)
(independence)

= exp
(−λt + d logE exp(λx1)

)
.

Let us write
ψ(λ) := logE exp(λx1) = logE exp(λ(g2

1 − 1)), (1.3.3)

the moment generating function of the random variable g2
1 − 1 (where we retain the −1

so that the expectation is zero. You may check as a calculus exercise that the remaining
expectation is finite if and only if λ < 1

2 , and in this case

E exp(λg2
1) =

1√
1− 2λ

, (1.3.4)

whereby

ψ(λ) = −λ+ 1
2
log

(
1

1− 2λ

)
. (1.3.5)

Taylor expansion shows that ψ(λ) = λ2 +O(λ). Turning this into a concrete bound, ψ(λ) ≤
2λ2 for all λ ≤ 1

4 .
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Thus we have

P



d∑

i=1

g2
i − d ≥ t


 ≤ exp (−λt + dψ(λ))

≤ exp
(
−λt + 2dλ2

)

and now we may compute the optimal choice λ := t/4d, which gives

≤ exp

(
− t

2

8d

)
,

completing the proof of this side of the inequality with c = 1/8, provided that λ = t/4d ≤
1/4, or t ≤ d.

In the other case t ≥ d, we obtain the result by taking λ = 1
4 .

Remark 1.3.4. The heart of the calculation, you can convince yourself, is that ψ(λ) = O(λ2)
for λ smaller than some constant. Note that the bound on λ is required, since this expectation
becomes infinite for λ ≥ 1

2 in our case. This property, with the bound on λ, is called a random
variable’s being subexponential, a weaker version of the property of being subgaussian that
you might have encountered before. The result of the Lemma is characteristic of sums of
i.i.d. subexponential random variables: they have “Gaussian tails” scaling as exp(−ct2/d)
up to a certain cutoff of t ∼ d, beyond which they only have “exponential tails” scaling as
exp(−ct). Bernstein’s inequality is the general tool expressing this behavior; see Chapter 1 of
[RH17] for more on that. An rough intuitive explanation for this is that, when xi themselves
have exponential tails, then large deviations of

∑d
i=1xi of order t � d are driven by the xi

each being slightly unusually large, while large deviations of order t � d are driven by the
largest of xi being unusually large, whereby the tail behavior becomes the same as that of an
individual xi.

Informally, the result says that ‖g‖2 = d +O(√d) with high probability. Taking square
roots, we see that ‖g‖ = √d + O(1), so a random standard Gaussian vector usually falls
close to the spherical shell of width O(1) around the sphere of radius

√
d. This is quite

counterintuitive if you have not seen it before: we think of a one- or two-dimensional Gaus-
sian as having its “typical set” being a solid blob around the origin. But, a high-dimensional
Gaussian actually has a non-convex typical set of a hollow spherical shell!

The general intuition you should have about high dimensional Gaussians is the following
approximate equivalence of laws:

“N (0,Id) ≈ Unif(Sd−1(
√
d)) ” (1.3.6)

For example, the following is another instance of this idea:

Theorem 1.3.5 (Borel’s limit theorem). Let x ∼ Unif(Sd−1(1)). Then,
√
dx1 converges weakly

in law, as d→∞, toN (0,1). In fact for any fixed k ≥ 1, (
√
dx1, . . . ,

√
dxk) converges weakly

in law toN (0,Ik).
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1.3.2 Proof of Theorem 1.3.2

We are now ready to prove the main Johnson-Lindenstrauss result.

Proof of Theorem 1.3.2. Note first that we may assume ε is sufficiently small without loss
of generality, since if ε is larger than some constant we can just perform the analysis for a
smaller ε and absorb the difference into the constant C .

The proof actually has little to do with the yi. Notice that being pairwise ε-faithful is a
matter of preserving

(
n
2

)
many vector norms to within a factor in [1−ε,1+ε]. We will show

that this is true with high probability for any choice of
(
n
2

)
vectors, and therefore also for

the Ĝ(yi − yj) = Ĝyi − Ĝyj .
Consider an arbitrary y ∈ Rm. Recall from the discussion in Section 1.2 that Law(Ĝy) =

N (0, 1
d‖y‖2). We then have

P
Ĝ∼N (0, 1d )⊗d×m

[∣∣‖Ĝy‖2 − ‖y‖2
∣∣ > ε‖y‖2

]
= P
g∼N (0, 1d‖y‖2)

[∣∣‖g‖2 − ‖y‖2
∣∣ > ε‖y‖2

]

= P
g∼N (0,Id)

[∣∣∣∣
1
d
‖y‖2 · ‖g‖2 − ‖y‖2

∣∣∣∣ > ε‖y‖2
]

= P
g∼N (0,Id)

[∣∣‖g‖2 − d∣∣ > εd
]

and for ε sufficiently small by Lemma 1.3.3 we have

≤ 2 exp(−cε2d). (1.3.7)

This gives a bound on the probability of embedding a single vector with low distortion of
the length:

P
Ĝ∼N (0, 1d )⊗d×m

[
(1− ε)‖y‖ ≤ ‖Ĝy‖ ≤ (1+ ε)‖y‖

]
≥ 1− 4 exp(−cε2d). (1.3.8)

Finally, let Eij be the event that (1 − ε)‖yi − yj‖2 ≤ ‖Ĝyi − Ĝyj‖2 ≤ (1 + ε)‖yi − yj‖2.
Then, by the union bound we have that

P[some Eij does not occur] ≤
(
n
2

)
· 2 exp(−cε2d)

≤ n2 exp(−cε2d)
= exp(2 logn− cε2d), (1.3.9)

and the result follows since, if d ≥ 3
c

logn
ε2 , then this is at most 1/n.

Remark 1.3.6. It is easy to extend the proof to show that we also have (1−ε)‖yi‖ ≤ ‖f(yi)‖ ≤
(1 + ε)‖yi‖ with the same high probability up to constants (say, by increasing n by one and
adding 0 to the yi, or by including this directly in the union bound above). As mentioned
before, it is also possible to get an error bound of 1/nK for any K > 0 by setting a suitable
C = C(K) in the statement of the Theorem.
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1.3.3 Fast Johnson-Lindenstrauss Transform [AC09]

We originally complained that the SVD was too slow to compute, and reduced our computa-
tion to a matrix-vector product, which takes time for each yi of O(m· logn

ε2 ) = O(m logn) for

constant ε (the same as the number of entries of Ĝ). While the above tells us that we cannot
reduce the actual size of Ĝ to improve this, we can try to give it an additional structure that
allows us to compute the matrix-vector product faster. There have been various interesting
ideas to this effect, which are surveyed nicely in the introduction of [AC09], whose main idea
we will sketch here.

First, various prior work showed that the particular Gaussian distribution of Ĝ is not
essential. Indeed, the proof we presented is not that of Johnson and Lindenstrauss [JL82],
who used Ĝ having random orthonormal rows, but rather a simplification due to Indyk and
Motwani [IM98]. Other work also considered replacingN (0,1) with Unif({±1}), making the
projecting matrix simpler to sample [Ach01]. That work also began to consider obtaining
(modest) speedups by replacing Ĝ with a sparse random matrix. If this is so, then of course
the matrix-vector product can be computed faster since all zero entries can be ignored.

Attempt 1: Sparse Projection Specifically, we may consider fixing a small q ∈ (0,1) and
using the sparser random projection matrix with i.i.d. entries drawn as

Pij ∼
{
N (0, 1

qd) with probability q,
0 with probability 1− q

}
. (1.3.10)

We may multiply by such Pij in time O(qm logn), which if we take q = o(1) will give an
asymptotic improvement. It is easy to check that EPij = EĜij = 0 and EP2

ij = EĜ2
ij = 1

d ,
so we again have E‖Py‖2 = ‖y‖2 for any y ∈ Rm. However, there is an issue with the
concentration of this quantity for y sparse. Indeed, consider the sparsest possible y, y = e1.
We have Pe1 = [ P11 · · ·Pd1 ], and we calculate

Var[‖Pe1‖2] = Var



d∑

i=1

P2
1d




= dVar[P2
11] (independence)

= d(EP4
11 − (EP2

11)2)

= d
(

3
q2d2

− 1
d2

)

= 1
d

(
3
q2
− 1

)
. (1.3.11)

We see in particular that this diverges as q → 0, showing that indeed the sparser P is, the
less concentrated ‖Pe1‖2. You may check that this causes substantial issues, making the
Johnson-Lindenstrauss argument break down for d ∼ logn.

Attempt 2: Fourier Transform Preconditioning The next idea is to precondition by
using as a projection matrix PH for some H ∈ Rm×m. We have a few desiderata for H :
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(1) it must itself not distort vector norms very much, (2) it must be possible to multiply by
H much faster than the brute force O(m2), and (3) H must map sparse vectors to dense
vectors, resolving the issue above. The beautiful idea of [AC09] is to use a Fourier transform,
namely the Walsh-Hadamard transform, which is the Fourier transform with respect to the
abelian group (Z/2Z)k for m = 2k. We will not go into the details here, but this choice
satisfies all of the conditions above. First, H ∈ O(m) and thus preserves norms exactly.
Second, we may multiply byH in time O(m logm) using the fast Fourier transform. Finally,
uncertainty principles (various mathematical facts in the spirit of the physical Heisenberg
principle of quantum mechanics) guarantee that both y and Hy cannot be too sparse. Still,
an issue remains: while Hy will never be sparse for sparse y, Hy will still be sparse for
some dense y, as indeed is unavoidable for H as above since it is invertible.

Attempt 3: Sign Flip Preconditioning The actual construction of [AC09] adds a final
layer of random preconditioning, using instead the matrix PHD5 where D ∈ Rm×m is
diagonal withDii ∼ Unif({±1}) independently. We again haveD ∈ O(m), and multiplication
by D may be performed in time O(m). And, as the main Lemma of [AC09] states, with high
probability, so long as d = Ω(logn), we haveHDy1, . . . ,HDyn are all not very sparse. The
idea here is again elegant and subtle: if y is sparse, then Dy is sparse as well, and HDy is
dense. If y is dense, say with all entries roughly equal, thenDy is uniformly random among
2m far apart vectors in Rm. And, most of these cannot map under H to sparse vectors by
a volumetric argument: “there are fewer sparse vectors than dense vectors,” an idea which
we will leave vague for now but will return to when we discuss compressed sensing.

It turns out that the best scaling of q that still lets the Johnson-Lindenstrauss argument
work is

q = Θ
(
log2n
m

)
. (1.3.12)

With this, we end up with a projection matrix PHD which achieves the same guarantee as
in Theorem 1.3.2 (with constant ε), multiplication by which requires time

O
(
log2n
m

·m logn
︸ ︷︷ ︸

for P

+m logm︸ ︷︷ ︸
for H

+ m︸︷︷︸
for D

)
= O

(
log3n+m logm

)
, (1.3.13)

which is much faster than the original projection when n = exp(mδ) for 0 < δ < 1/2.

1.3.4 Embedding Arbitrary Metric Spaces

Another way to think about the definition of being pairwise ε-faithful is to view the yi and
their pairwise distances as defining a finite metric space on n abstract points. Then, a
pairwise ε-faithful embedding is one that takes this metric space and embeds it with small
distortion into a lower-dimensional Euclidean metric space. Distortion is a related notion

5The pun, I am told, was intended.
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to our definition of faithfulness, which you can take to be, given f and y1, . . . ,yn (or some
other finite metric space on which f acts), defined as

max
i,j∈[n]

∣∣‖f(yi)− f(yj)‖ − ‖yi − yj‖
∣∣

‖yi − yj‖ . (1.3.14)

The Johnson-Lindenstrauss lemma says that any finite metric space on n points in any Eu-
clidean space can be embedded in Euclidean space of dimension d = O( logn

ε2 ) with distortion
at most ε.

From this point of view it is also reasonable to ask about the distortion achievable when
embedding other metric spaces, that did not start out Euclidean, into Euclidean space. Fairly
strong guarantees are possible in that case also: by Bourgain’s embedding theorem [Bou85],
it is possible to embed any finite metric space on n points into some Euclidean space with
distortion O(logn). Combined with the Johnson-Lindenstrauss result, this implies that in
fact any finite metric space on n points can be embedded inRO(logn) with distortionO(logn).
These abstract-sounding statements actually hahave some quite down-to-earth applications,
such as in the analysis of the approximation ratio achieved by a linear programming relax-
ation of the sparsest cut problem (see, e.g., discussion in the seminal paper [ARV09]).

1.3.5 Nearest Neighbors Algorithms

Finally, let us make a digression to explain the use of the Johnson-Lindenstrauss transform
and its variants in applications. Perhaps the main application is to nearest neighbors (NN)
problems. Here, we are given a set of x1, . . . ,xn ∈ Rm and want to build a data structure that
lets us, given a further x ∈ Rm, output the closest or the k closest xi to that x. It is often
acceptable to allow errors, in the sense that we may output any k of the xi whose distance
is within a factor of 1 + ε of the kth closest point. This is called an approximate nearest
neighbors (ANN) problem. We will not go into the specific construction of data structures
for NN or ANN, but it is clear that the dimension m is a source of costliness for such data
structures. Johnson-Lindenstrauss and its relatives may then be used in a black-box fashion
to reduce the dimensionality before applying other techniques, for ANN in particular where
small metric distortion is acceptable.

We sketch here how NN and ANN can be used for regression problems. See [Sha13] for
the perspective that we will take.

Recall that, in linear regression, we are given (x1, y1), . . . , (xn, yn), with xi ∈ Rm and
yi ∈ R (the yi can also be vectors, but let us assume they are numbers for simplicity). We
then want to construct a predictor f : Rm → R such that yi ≈ f(xi). In linear regression, we
use f(x) = 〈a,x〉 for some a ∈ Rm. (Often one also allows for a constant, f(x) = 〈a,x〉+b,
but we again omit this for simplicity’s sake.) We then seek to minimize the `2 loss:

â := argmin
a

n∑

i=1

(〈a,xi〉 −yi)2. (1.3.15)

A simple calculation taking the derivatives in each ai of this shows that the solution is, for
Ĉ :=∑ni=1xix

>
i , given by

â = Ĉ−1
n∑

i=1

yixi. (1.3.16)
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KNN Regression (k = 1)
KNN Regression (k = 5)
KNN Regression (k = 10)
KNN Regression (k = 25)
Linear Regression

Data

Figure 1.3: An example of linear regression and nearest neighbors regression fits to evalua-
tions of a quadratic function with noise added.

Let us write down what the predictor does with this choice of â, rewriting slightly:

f(x) = 〈â,x〉 =
n∑

i=1

〈Ĉ−1/2xi, Ĉ−1/2x〉yi. (1.3.17)

This predictor may be viewed as taking a weighted sum of the training outcomes yi to obtain
the prediction, where the weight of each is

ŵ(xi,x) := 〈Ĉ−1/2xi, Ĉ−1/2x〉. (1.3.18)

This has some advantages: it is linear, and has the sensible interpretation of giving the
“similarity” of xi to x after “whitening” by multiplying by C−1/2 (interpreting C as the
sample covariance of the training inputs xi, provided they are centered). On the other hand,
some of the pitfalls of linear regression may be viewed as originating from ŵ(xi,x) being
symmetric for points near x to those antipodal from x across the origin, since ŵ(−xi,x) =
−ŵ(xi,x). We see in Figure 1.3, for instance, that for this reason the linear function best
fitting a parabola is nearly flat.

This perspective (sometimes called one of viewing linear regression as a smoothing
scheme) suggests that, if we do not much care about the derivation of linear regression,
we might consider other schemes of choosing ŵ(xi,x). Nearest neighbors regression corre-
sponds to taking

ŵ(xi,x) := 1
k

1
{
xi one of the k closest training points to x

}
. (1.3.19)
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With this choice, f(x) will give the weighted average of the outcomes yi of the k points
nearest to x. The parameter k controls the amount of smoothing: if k = n, then f(x) is just
a constant and the mean of the observed yi; if k = 1, then f(x) is the value of the outcome
for the single nearest xi to x, which is a very “jumpy” and irregular function, again as shown
in Figure 1.3.

Remark 1.3.7 (Kernel regression). One may further extend this idea to give the xi a smoother
range of effects on f(x), by taking a choice like ŵ(xi,x) = ρ(‖xi−x‖) for a kernel function
ρ. There are numerous ideas to speed up working with related models quite similar in spirit
to the Johnson-Lindenstrauss transform; see, e.g., the idea of random features or random
kitchen sinks of [RR07] and the Fastfood transform of [LSS13].

1.4 Spectral Analysis of Wide Gaussian Matrices

We next revisit the Johnson-Lindenstrauss analysis with an eye towards extracting some
more mathematical insight. Let us change notation G := Ĝ.

As we have mentioned, that we are considering the particular pairwise difference vectors
yi − yj is not essential at all to the claim. The same argument as before in fact gives the
following generalization.

Theorem 1.4.1. There is a constant C > 0 such that the following holds. For any x1, . . . ,xN ∈
Rm, if d ≥ C logN

ε2 and G ∼N (0, 1
d)
⊗d×m,

P
[∣∣‖Gxi‖2 − ‖xi‖2

∣∣ ≤ ε‖xi‖2 for all i ∈ [N]
]
≥ 1− 1

N
. (1.4.1)

In our application we tookN =
(
n
2

)
and the xi to be the yj−yk, but the same exact arguments

works for the above as well.
We may reframe this by writing

∣∣‖Gxi‖2 − ‖xi‖2
∣∣ = ∣∣x>i (G>G)xi −x>i Imxi

∣∣. (1.4.2)

Thus it seems that, from the “point of view” of a small number of deterministic quadratic
form evaluations, the random matrix G>G behaves like the identity. This of course cannot
be true without restricting the number of quadratic form evaluations, since the former ma-
trix has rank at most d�m. We will next look for a more sophisticated and “more spectral”
explanation of this phenomenon than what we saw before.

To do that, we will undertake an analysis of the eigendecomposition of the matrix
G>G ∈ Rm×msym , seeking to make claims about the distribution of its eigenvectors and eigen-
values. Note that G>G � 0, so its eigenvalues are non-negative. Call these λ1 ≥ · · · ≥ λm ≥
0. Since rank(G>G) ≤ d, we have λd+1 = · · · = λn = 0. The remaining eigenvalues are
related to the singular values of G by λi = σi(G)2.

1.4.1 Eigenvectors

Geometric considerations about the set of matrices with repeated singular values give the
following.
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Lemma 1.4.2. Almost surely (with probability 1), λ1 > · · · > λd > 0.

Proof. We will use that λi = λi(G>G) = λi(GG>), where the latter matrix is d×d. To show
that λd > 0, it suffices to check that p(G) = det(GG>) is a non-zero polynomial (which
you may do by exhibiting a single G for which p(G) ≠ 0). Then, since G has a smooth
multivariate density and p(G) is a smooth function, p(G) also has a density (i.e., its law is
absolutely continuous to Lebesgue measure). In particular,

P[λd = 0] = P[det(GG>) = 0] = P[p(G) = 0] = 0. (1.4.3)

For the other claim, we will proceed similarly but must construct a subtler polynomial.
Recall the characteristic polynomial of a matrix:

det(tId −GG>) =
d∑

k=0

(−1)d−ksd−k(G)tk, (1.4.4)

where on the one hand the coefficients sd−k(G) are polynomials in the entries of G, but on
the other hand are given by the elementary symmetric polynomials in λi:

sk(G) =
∑

1≤i1<···<ik≤d
λi1 · · ·λik . (1.4.5)

For instance, s0(G) = 1, s1(G) = Tr(GG>) =∑di=1 λi, and sd(G) = det(GG>) =∏d
i=1 λi.

Now, consider the following quantity:

p(G) :=
∏

1≤i<j≤d
(λi − λj)2. (1.4.6)

Visibly p(G) is a symmetric polynomial in the λi. Therefore, by the fundamental theorem
of symmetric polynomials, p(G) is a polynomial of the s0(G), . . . , sd(G), and therefore is
itself a polynomial in the entries of G. On the other hand, p(G) = 0 if and only if two of
the λi are the same. Thus, by the same argument as before,

P[λi = λj for some i ≠ j] = P[p(G) = 0] = 0, (1.4.7)

completing the proof.

Thus we may speak of the spans of the unit eigenvectors, Li := span({vi}) ⊂ Rm, which
are uniquely associated to the eigenvalues λ1, . . . , λd in the spectral decomposition

G>G =
d∑

i=1

λiviv>i . (1.4.8)

The vi themselves, unfortunately, are not uniquely determined by λi, since vi can be re-
placed by −vi in the spectral decomposition without affecting it. Let us also write L(G) =
(L1(G), . . . , Ld(G)). You might find this to be an unusual object: an ordered tuple of lines
in Rm. Think of it this way: there is a more conventional object called the Stiefel manifold,
given by

Stief(m,d) := {V ∈ Rm×d : V >V = Id}, (1.4.9)
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which is just a subset of m× d matrices, those whose columns are orthonormal. Note that

Stief(m,m) = O(m). (1.4.10)

A collection of orthogonal lines can be viewed as an equivalence class of 2d elements in
Stief(m,d), where the equivalence class of V = [v1 · · ·vd ] consists of all [±v1 · · · ± vd ].
We may speak (as is intuitively obvious but maybe mathematically a bit obscure) of applying
an orthogonal matrix to such a collection of lines, whereQmaps the equivalence class of V
to that of QV , as we will use below.

Straightforward Gaussian calculations give the following.

Proposition 1.4.3. If g ∼N (0, σ 2Im) and Q ∈ O(m), then

Law(Qg) = Law(g) =N (0, σ 2Im). (1.4.11)

Proof. By Proposition 1.2.2 or direct calculation of the first two moments.

Corollary 1.4.4. If G ∼N (0, σ 2)⊗d×m and Q ∈ O(m), then

Law(GQ) = Law(G) =N (0, σ 2)⊗d×m. (1.4.12)

Proof. Use that Q acts separately on the independent rows of G in forming GQ.

Next we have a deterministic claim about frames of lines given by eigendirections of a ma-
trix.

Proposition 1.4.5. L(GQ) = Q>L(G), where Q acts on a frame of lines in the sense dis-
cussed above.

Proof. Use that (GQ)>(GQ) =Q>G>GQ =∑di=1 λi(Q>vi)(Q>vi)>.

Putting the pieces together, we find:

Corollary 1.4.6. For all Q ∈ O(m), Law(QL(G)) = Law(L(G)).

Proof. Using the above results, Law(L(G)) = Law(L(GQ>)) = Law(QL(G)).

What the above establishes is that the collection of lines L(G) has a orthogonally in-
variant distribution (one unchanged by the action of any orthogonal matrix). By choosing
uniformly at random from the equivalence class of Stief(m,d) associated to L(G), you may
lift this up to a orthogonally invariant distribution on Stief(m,d) (a distribution on eigen-
vectors of G>G, where we handle the sign ambiguity by choosing either vi or −vi as the
eigenvector of λi each with probability 1/2). Now comes the key further result, saying that
this completely determines the law of L(G).

Theorem 1.4.7 (Haar). There is a unique orthogonally invariant probability measure on each
Stief(m,d), called the Haar measure and which we will denote Haar(Stief(m,d)). Either of
the two procedures below yields a sample from this measure:

1. Draw g1, . . . ,gd ∼ N (0,Im) independently and perform the Gram-Schmidt procedure
on them to obtain v1, . . . ,vd orthonormal, forming V = [v1 · · ·vd ] ∈ Stief(m,d).
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2. Draw v1 ∼ Unif(Sm−1(1)). Then, for i = 2, . . . , d, draw vi ∼ Unif(Sm−1(1) ∩ {v :
〈v1,v〉 = · · · = 〈vi−1,v〉 = 0}).

Proof. You may check that the latter two procedures both yield a matrix with the same
orthogonally invariant law, so it suffices to prove uniqueness. We will give the proof for
Stief(m,m) = O(m), from which the case of general d ≤m follows without too much trou-
ble. Suppose µ and ν are two orthogonally invariant probability measures on O(m). Then,
1
2µ+ 1

2ν (i.e., assigning measure 1
2µ(A)+ 1

2ν(A) to each measurable set A) is another orthog-
onally invariant probability measure. Moreover, µ is absolutely continuous with respect to
this measure, and thus has a density f with respect to it. That is:

∫

O(m)
g(Q)dµ(Q) =

∫

O(m)
f(Q)g(Q)d

(
1
2
µ + 1

2
ν
)
(Q)

= 1
2

∫

O(m)
f(Q)g(Q)dµ(Q)+ 1

2

∫

O(m)
f(Q)g(Q)dν(Q). (1.4.13)

You may check, and it should be intuitive, that f is then an orthogonally invariant function,
i.e., having f(QR) = f(R) for any Q,R ∈ O(m). But then f must be a constant, and since
it is a probability density we must have f(Q) = 1. The above then implies that µ = ν .

In summary, we have exactly characterized the law of the eigenvectors of G>G having
positive eigenvalue: there are exactly d of them, associated to distinct eigenvalues, and
having Haar distribution in the Stiefel manifold Stief(m,d). In particular, their span is a
“uniformly random” d-dimensional subspace of Rm (this is a perhaps more intuitive object,
but its meaning is just the span of a Haar-distributed orthonormal basis from the Stiefel
manifold).

1.4.2 Eigenvalues

To understand the eigenvalues of G>G, we will again instead work with those of GG>. Let
the columns of G be g1, . . . ,gm ∼ N (0, 1

dId). Intuitively, we should expect a law of large
numbers to hold:

GG> =
m∑

i=1

gig
>
i

(LLN)≈ m · Eg1g
>
1 =

m
d
Id. (1.4.14)

This heuristic statement is our first example of a matrix concentration inequality.
Consider the matrixM :=GG>−md Id. We will aim to show that ‖M‖ is relatively small.

How do we move towards such a result? The trouble is that the operator norm ‖M‖ is a
continuous quantity:

‖M‖ = sup
x∈Sd−1(1)

|x>Mx|. (1.4.15)

If Sd−1(1) were a finite set, we could bound P[|x>Mx| > t] and use a union bound, much
as for the Johnson-Lindenstrauss lemma, but this is not the case.

Fortunately, there is a powerful tool from real analysis and metric geometry that lets us
import our discrete tools to such continuous settings.

Definition 1.4.8 (ε-net). A set X = {x1, . . . ,xN} ⊆ Y ⊂ Rd is an ε-net of Y if, for all y ∈ Y,
there is xi ∈ X such that ‖y −xi‖ ≤ ε.
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Another evocative term for an ε-net is an ε-covering: writing B(x, ε) for a closed ball of
radius ε around x, the union of the balls B(xi, ε) contains all of Y.

The following key result shows that we may discretize the operator norm and bound it
only by a maximum over a suitable net.

Lemma 1.4.9. Suppose M ∈ Rd×dsym and X is an ε-net of Sd−1(1) for ε < 1
2 . Write K :=

maxxi∈X |x>iMxi|. Then,

K ≤ ‖M‖ ≤ 1
1− 2ε

K. (1.4.16)

Proof. The first inequality is immediate. For the second, let x ∈ Sd−1(1) be such that
|x>Mx| = ‖M‖, and let xi ∈ X be such that ‖x−xi‖ ≤ ε. We then have

K ≥ ∣∣x>iMxi
∣∣

= ∣∣(x+xi −x)>M(x+xi −x)
∣∣

= ∣∣x>Mx+x>M(xi −x)+ (xi −x)>Mxi
∣∣

≥ ∣∣x>Mx
∣∣− ∣∣x>M(xi −x)

∣∣− ∣∣(xi −x)>Mxi
∣∣

≥ (1− 2ε)‖M‖,

and rearranging gives the result.

To use this, we need two pieces of information: first, a small ε-net, and second, a bound
on the probability of large values of |x>Mx|. There is a nice theory relating ε-nets and
packings, which we describe here to address the first point.

Definition 1.4.10. A set X = {x1, . . . ,xN} ⊆ Y ⊆ Rd for Y a metric space is an ε-packing if
the balls B(xi, ε) are pairwise disjoint.

Lemma 1.4.11. A maximal (under inclusion of sets) ε-packing is a 2ε-net.

Proof. Suppose that X = {x1, . . . ,xN} ⊆ Y is a maximal ε-packing, and let x ∈ Y \ X.
Adding x to X must result in a set that is not an ε-packing. Thus, there exists xi such that
B(x, ε) ∩ B(xi, ε) ≠ ∅. By the triangle inequality, ‖x − xi‖ ≤ 2ε. Since this holds for any
x ∉ X, the result follows.

Actually, the relationship between sizes of packings and nets (or coverings) goes in both
directions.

Lemma 1.4.12. Let X(p) be any ε-packing and X(n) be any ε-net. Then, |X(p)| ≤ |X(n)|.

Proof. Any x
(p)
i ∈ X(p) must belong to some B(x(n)j , ε) for x(n)j ∈ X(n). On the other hand,

any two x
(p)
i ,x

(p)
i′ are at distance greater than 2ε, and thus cannot belong to the same

B(x(n)j , ε), whose diameter is 2ε.

Corollary 1.4.13. For a given Y, let N(ε) be the minimum possible size of an ε-net and P(ε)
be the maximum possible size of an ε-packing. Then,

P(ε) ≤ N(ε) ≤ P(ε/2). (1.4.17)
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What is especially convenient for our purposes is that volumetric arguments may be used
to control maximal packings, allowing us to argue abstractly that small ε-nets exist. Below
is a standard example.

Lemma 1.4.14. For any ε > 0, there is an ε-net X of B(0,1) ⊂ Rd with |X| ≤ (1+ 2/ε)d.

Proof. Let µ denote the Lebesgue measure. We have for any x that µ(B(x, r )) = rdµ(B(0,1)).
And, if x ∈ B(0,1), then B(x, ε) ⊆ B(0,1+ ε). Thus, ff X is a ε

2 -packing of B(0,1), we must
have

|X| ≤ 1+ µ(B(0,1+
ε
2))

µ(B(0, ε2))
=
(

1+ 2
ε

)d
. (1.4.18)

Thus there exists a maximal ε2 -packing of at most this size, which is also an ε-net.

We can use this to obtain (rather sub-optimal) nets of the sphere as follows.

Proposition 1.4.15. Suppose X is an ε-net of B(0,1) ⊂ Rd with 0 < ε < 1/2. Let X̂ :=
{x/‖x‖ : x ∈ X}. Then, X̂ is a 2

√
ε-net of Sd−1(1).

Proof. Suppose y ∈ Sd−1(1). There is x ∈ X such that ‖y−x‖ ≤ ε. Let x̂ := x/‖x‖ ∈ X̂. We
first make a few preliminary observations:

‖x‖ = ‖y + (x− y)‖
≥ ‖y‖ − ‖x− y‖
≥ 1− ε,

‖x‖2 ≥ 1− 2ε+ ε2

≥ 1− 2ε,
1
4
≥ ε2

≥ ‖y −x‖2

= 1− 2〈x,y〉 + ‖x‖2

≥ 1− 2〈x,y〉 + (1− 2ε),

and from this last observation we rearrange to find

〈x,y〉 ≥ 7
8
− ε

> 0.

Now, we may bound:

‖y − x̂‖2 = 2− 2〈x̂,y〉

= 2− 2〈x,y〉
‖x‖

≤ 2− 2〈x,y〉
= 1− 2〈x,y〉 + ‖x‖2 + (1− ‖x‖2)
= ‖y −x‖2 + (1− ‖x‖2)
≤ ε2 + 2ε
≤ 4ε,
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and the result follows.

Corollary 1.4.16. For any ε > 0, there is an ε-net X of Sd−1(1) ⊂ Rd with |X| ≤ (1+ 8/ε2)d.

This is actually very suboptimal; the true correct scaling of the smallest ε-net for small ε
is like dε−(d−1), as you can show by a somewhat more complicated volumetric argument
involving spherical surface areas rather than volumes. However, these details will not be
important to us since we will only care about taking ε a small constant and it will suffice
to have an ε-net of size at most C(ε)d for some arbitrarily large C(ε) > 0. Thus these
observations conclude our construction of an adequately small ε-net.

For our second task, we can actually control the deviation probabilities of the individual
quadratic forms with the same tools we have developed already.

Proposition 1.4.17. For any x ∈ Sd−1(1) and t ≤ m
d ,

P [|x>Mx| > t] ≤ 2 exp

(
−d

2t2

8m

)
. (1.4.19)

Proof. Note that |x>Mx| = ∑m
i=1〈gi,x〉2 − m

d
(law)= ‖x‖2

d (
∑m
i=1h

2
i −m) where h ∼ N (0,Im).

This is precisely the setting treated by Lemma 1.3.3, which gives the result.

We are now ready to prove our main statement on the concentration of eigenvalues of
GG> (equivalently, as we formulate below, of the singular values of G).

Theorem 1.4.18. LetG ∼N (0, 1
d)
⊗d×m. Then, there are absolute constants c, C1, C2 > 0 such

that, if m ≥ C1d, then

P
[∥∥∥∥GG> −

m
d
Id

∥∥∥∥ ≥ C2

√
m
d

]
≤ exp(−cd). (1.4.20)

In other words, if instead G ∼N (0,1)⊗d×m, then we have

P
[∥∥GG> −mId

∥∥ ≥ C2

√
md

]
≤ exp(−cd), (1.4.21)

and, for possibly different constants c, C1, C2 > 0 and provided that m ≥ C1d, we have

P
[√
m− C2

√
d ≤ σd(G) ≤ · · · ≤ σ1(G) ≤

√
m+ C2

√
d
]
≥ 1− exp(−cd). (1.4.22)

Proof. Write M := GG> − m
d Id. Fix ε = 1/4. Let C > 0 be such that there is an ε-net

X of Sd−1(1) of size at most Cd for all d. Write K := maxx∈X |x>Mx|. By Lemma 1.4.9,
‖M‖ ≤ 2K.

Then, by the union bound and Proposition 1.4.17,

P[‖M‖ ≥ t] ≤ P
[
K ≥ t

2

]

≤
∑

x∈X
P
[
|x>Mx| ≥ t

2

]

≤ 2 · |X| · exp
(
−d

2t2

8m

)

= 2 exp

(
logC · d− d

2t2

8m

)

= 2 exp
(
−d

(
d

8m
t2 − logC

))
,
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and the result follows if we choose the constants in the statement correctly and take t :=
C2

√
m/d. Note a technicality: in order to use Proposition 1.4.17, we must have t/2 ≤ m/d

or t ≤ 2m/d. Thus we need C2

√
m/d ≤ 2m/d, or m ≥ C2

2
4 d, which is where the constraint

on m in the statement comes from.

Remark 1.4.19. In fact it can be shown that the typical size of the extreme singular values of
G withm ≥ d is

√
m±√d, i.e., the “right” constant above is C2 = 1. We will see some versions

of this much more precise claim soon. For now, take this as a useful simple expression to re-
member the typical scaling of the extreme singular values of a matrix of standard Gaussians:
the square root of the larger dimension plus/minus the square root of the smaller.

1.4.3 Random Projection Analogy

When m � d (say, along a sequence of d growing with m = m(d)), the above implies that
G>G is close to m

d P , where P is a projection matrix to a uniformly random d-dimensional
subspace of Rm. Let us briefly see why this demystifies howG>G preserves quadratic forms
that are chosen obliviously to its randomness.

Consider x ∈ Rm, say with ‖x‖ = 1. We expect from the above intuition that x>G>Gx
behaves like x>(md P )x = m

d ‖Px‖2. Note that P has the same law as QP (0)Q>, where Q ∼
Haar(O(m)) while P (0) is the projection to the first d coordinates, i.e., to span(e1, . . . ,ed).
Then, we have

m
d
‖Px‖2 (law)= m

d
‖QP (0)Q>x‖2 = m

d
‖P (0)y‖2 = m

d

d∑

i=1

y2
i , (1.4.23)

where y =Q>x then has the law Unif(Sm−1(1)). Standard concentration arguments like we
have done before (if you want to be very precise, you can use that y further has the law of
g/‖g‖ for g ∼N (0,Im)) then imply that the above is close to 1 with high probability.

1.5 Application: Compressed Sensing

We will now see one last application of the ideas developed so far. This is for the problem
of compressed sensing, recovering x ∈ Rm from y = Gx ∈ Rd with G ∈ Rd×m (the same
dimensions as before).

For general x ∈ Rm, we need G to be injective, which requires d ≥ m. Compressed
sensing concerns making d much smaller, provided we are promised that x is sparse. In
this setting, while we will discuss taking G random, we view ourselves as having control
over G (the so-called sensing matrix) in general, so the sparsity assumption should be seen
as in a basis of our choosing. Thus to take advantage of compressed sensing we should
encode any prior knowledge of x in a basis that makes x sparse.

1.5.1 Null Space and Restricted Isometry Properties

Let us denote sparsity by
‖x‖0 := #{i ∈ [m] : xi ≠ 0}. (1.5.1)
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Note that this “`0-norm” is not actually a norm.
Assuming that ‖x‖0 ≤ k makes the task of recovering x easier. At the extreme, if k = 1,

then y = Gx is just (up to scaling) one of the columns of G. Thus provided the columns
of G are well-separated, it will be easy to recover x. You can show that it is possible to
construct exp(Ω(d)) unit vectors in Rd that have, say, pairwise inner products of magnitude
each at most 1/2, which we may use as the columns of G (and such a choice will be robust
to a small amount of noise). Thus when k = 1 then we may take d as small as O(logm)
while still being able to recover any 1-sparse x.

How does the situation change for larger k? We will show below that it actually does not
change that much.

First, let us specify what we mean by x being “recoverable.” The following definition is
not standard but useful.

Definition 1.5.1. We say that G distinguishes k-sparse vectors if Gx ≠ Gx′ for any x ≠ x′

with ‖x‖0,‖x′‖0 ≤ k.

If G distinguishes k-sparse vectors, then compressed sensing is information-theoretically
possible: by, say, brute force search over an ε-net of sparse vectors followed by a rounding
procedure, we may exactly recover any k-sparse x from y = Gx. We will not go into the
computational feasibility of compressed sensing here, which is a deep area in its own right.
You may look up the role of `1 norm minimization for such algorithms to get started with
computational approaches.

The following more linear-algebraic definition is actually equivalent to distinguishing
k-sparse vectors.

Definition 1.5.2 (Null space property). We say that G has the k-null space property (k-NSP)
if, for all x ≠ 0 with ‖x‖0 ≤ k, Gx ≠ 0.

Proposition 1.5.3. G distinguishes k-sparse vectors if and only if G has the 2k-NSP.

Proof. IfG does not distinguish k-sparse vectors, then there exist x ≠ x′ with ‖x‖0,‖x′‖0 ≤
k such thatGx =Gx′. In particular,G(x−x′) = 0, and ‖x−x′‖0 ≤ 2k, soG does not have
the 2k-NSP. Conversely, if G does distinguish k-sparse vectors and x′′ ≠ 0 has ‖x′′‖ ≤ 2k,
then we may write x′′ = x−x′ for x ≠ x′ and ‖x‖0,‖x′‖0 ≤ k (by partitioning the 2k indices
on which x′′ is non-zero in some arbitrary way). Reversing the above argument then shows
that G has the 2k-NSP.

We will in fact be able to show the following, more quantitative property.

Definition 1.5.4 (Restricted isometry property). We say thatG has the (k, δ)-restricted isom-
etry property ((k, δ)-RIP) if, for all x ≠ 0 with ‖x‖0 ≤ k,

(1− δ)‖x‖2 ≤ ‖Gx‖2 ≤ (1+ δ)‖x‖2. (1.5.2)

The following implication is immediate.

Proposition 1.5.5. If G has the (k, δ)-RIP for any δ < 1, then G has the k-NSP.

The RIP is more useful than the NSP both for analyzing compressed sensing when some
noise is further added to y =Gx, and for analyzing algorithms for recovering x.
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1.5.2 Random Sensing Matrices

The following is the main result that we will show.

Theorem 1.5.6. For any k ≥ 1 and δ ∈ (0,1), there exists C = C(δ) > 0 such that, if
d ≥ Ck logm and G ∼N (0, 1

d)
⊗d×m, then

P[G has the (k, δ)-RIP] ≥ 1− 2
mk . (1.5.3)

Note that this scaling of d is consistent with our earlier observation that d Ý logm was the
right condition for k = 1.

Proof. For S ⊆ [m] with |S| = k and x ∈ Rm, let x(S) ∈ Rk be the restriction of x to the
indices in S. Likewise, for G ∈ Rd×m, let G(S) ∈ Rd×k be the restriction of G to the columns
whose indices are in S. If ‖x‖0 ≤ k and the non-zero indices of x are contained in such S,
then

‖x‖2 = ‖x(S)‖2, (1.5.4)

Gx =G(S)x(S). (1.5.5)

We may then view the (k, δ)-RIP as requiring that, for all S ⊆ [m] with |S| = k and all
x(S) ∈ Rk, we have

(1− δ)‖x(S)‖2 ≤ ‖G(S)x(S)‖2 ≤ (1+ δ)‖x(S)‖2. (1.5.6)

But this just amounts to asking that

1− δ ≤ λk(G(S)>G(S)) ≤ λ1(G(S)>G(S)) ≤ 1+ δ, (1.5.7)

or again equivalently that
‖G(S)>G(S) − Ik‖ ≤ δ. (1.5.8)

We will then proceed by union bounding,

P[G does not have the (k, δ)-RIP] ≤
(
m
k

)
P[‖G(S)>G(S) − Ik‖ > δ], (1.5.9)

where all probabilities coming from the union bound are the same since the G(S) are identi-
cally distributed regardless of the choice of S.

This is almost exactly the kind of deviation that we bounded before in Theorem 1.4.18.
First, let’s decode our statement into that form. Introduce H ∼ N (0, 1

k)
⊗k×d, the scaling

that Theorem 1.4.18 addresses. We have G(S) (law)=
√
k
dH

>. Thus,

P[‖G(S)>G(S) − Ik‖ > δ] = P
[
‖k
d
HH> − Ik‖ > δ

]

= P
[∥∥∥∥HH> − d

k
Ik

∥∥∥∥ > δ
d
k

]
.
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The only difference between this and what Theorem 1.4.18 covered is that there we were
concerned with deviations of the order O(

√
d/k), while here we are concerned with O(d/k),

which is much larger since d � k under our assumption. But, we may still repeat the ap-
proach of that proof: revisiting that argument and setting t = δdk , we notice that Lemma 1.3.3
applies the same way since δ < 1, and we get that the above is bounded by, for an absolute
constant C′ > 0 involving the size of an ε-net,

≤ 2 exp
(
−k

(
k

8d
t2 − logC′

))

= 2 exp
(
−k

(
k

8d
t2 − logC′

))

= 2 exp
(
−k

(
δ2 d

8k
− logC′

))

and choosing C in the statement sufficiently large, we may ensure, since d ≥ Ck logm, that

≤ 2 exp
(−2k logm

)
. (1.5.10)

Finally, we have

P[G does not have the (k, δ)-RIP] ≤mkP[‖G(S)>G(S) − Ik‖ > δ]
≤ 2 exp(k logm− 2k logm)

≤ 2
mk , (1.5.11)

completing the proof.

1.6 Exercises

Exercise 1.6.1. Consider the box B in Rd of side length 2, centered at the origin, with vertices
at the points (±1, . . . ,±1). For each s ∈ {±1}d, let Ss be the sphere of radius 1

2 centered at the
point 1

2s. These are 2d spheres packed on a cubic lattice into the box B. Consider the sphere
S′ centered at the origin that is tangent to every Ss. Find d0 such that, if d < d0, then S′ is
contained in B, but if d ≥ d0, then S′ is not contained in B.

The case d = 2 looks as follows. The innermost circle is S′, and the four around it are
S(±1,±1). The larger outermost square is B; the smaller square in a dotted line is just for
reference to show how the centers of the latter circles are arranged. Your task is to show that,
in high dimension, the innermost circle is not contained in the outermost square (!).
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Exercise 1.6.2. Show that there is a constant c > 0 such that, for all ε ∈ (0,1), for d
sufficiently large, there are at least N = exp(cε2d) unit vectors v1, . . . ,vN in Rd such that
|〈vi,vj〉| ≤ ε for all 1 ≤ i < j ≤ N (i.e., such that the vi are almost orthogonal). You may look
up and use Hoeffding’s inequality.

(Hint: Consider random vectors. Choose a convenient distribution to work with. Note,
though, that the question is not making a probabilistic statement.)

Exercise 1.6.3. Consider the shape ∆d ⊂ Rd that is the convex hull of the points 0,e1,e1 +
e2, . . . ,e1 + e2 + · · · + ed (the origin plus the “partial sums” of the standard basis vectors).
This is a simplex or high-dimensional tetrahedron, though not an equilateral one: edges have
lengths varying among 1 = √1,

√
2, . . . ,

√
d. Compute the volume of ∆d. What is the side

length of a cube in Rd with the same volume? (Give an asymptotic approximation as d→∞.)

(Hint: For the volume computation, consider gluing several copies of ∆d together to tile a
more familiar object.)

Exercise 1.6.4. In this exercise, you will prove a lower bound on the dimension required for
embedding a particular point cloud that almost matches the Johnson-Lindenstrauss lemma.
Along the way, you will see some linear algebra that you might not have been introduced to
before.

1. Let λ1, . . . , λn ≥ 0. Show that

‖λ‖0 := #{i : λi ≠ 0} ≥ (
∑n
i=1 λi)2∑n
i=1 λ

2
i
= ‖λ‖

2
1

‖λ‖2
2

. (1.6.1)

Reinterpret this as a relationship between the rank, trace, and Frobenius norm of a
positive semidefinite matrix.

2. Suppose X ∈ Rn×nsym has X � 0, Xii = 1 for all i ∈ [n], and |Xij| ≤ 1/
√
n for all i ≠ j.

Show that rank(X) ≥ n/2.

3. For k ≥ 1 and X ∈ Rn×nsym with X � 0, write X�k for the matrix that has entries

(X�k)ij = Xkij , i.e., for the entrywise kth power of X (note that X�k ≠Xk). Show that

X�k � 0, and that rank(X�k) ≤
(

rank(X)+k
k

)
.

(Hint: View X as a Gram matrix, Xij = 〈vi,vj〉, and write X�k in the same way. If
you do this at all, the first part will follow (be sure to explain why). If you do it carefully,
the second part will follow as well.)

4. Show that there are constants c, ε0 > 0 such that the following holds. For all 0 < ε <
ε0 (i.e., ε sufficiently small), there exists n0 = n0(ε) such that, if n ≥ n0(ε) (i.e., n
sufficiently large depending on ε), then there exists no pairwise ε-faithful embedding
(that is, one preserving pairwise distances up to a factor of 1 ± ε, as in the Johnson-
Lindenstrauss lemma) of 0,e1, . . . ,en ∈ Rn into fewer than c

log(1/ε) · logn
ε2 dimensions.

Thus, the dimension of the embedding provided by the Johnson-Lindenstrauss lemma
for these points is tight up to a factor of log(1/ε).
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(Hint: Form the correlation matrix of the embeddings of the ei. Raise it to a large
enough entrywise power that Part 2 applies. Compare with Part 3.)

Exercise 1.6.5. The Gaussian measure is the most important one in probability theory, if not
all of mathematics. Here you will derive some of its main algebraic properties.

1. Let g ∼ N (0,Σ) for some Σ ∈ Rd×dsym with Σ � 0 (i.e., Σ is positive semidefinite). Prove
that, for any smooth function f : Rd → R with |f(x)| ≤ C‖x‖K for some C,K > 0 and
all x ∈ Rd, we have

E[gif(g)] =
d∑

j=1

ΣijE[∂jf(g)] = (ΣE[∇f(g)])i (1.6.2)

where ∂if is the partial derivative with respect to the ith argument and∇ is the gradient
(the second equality is just by the definition of gradient).

(Hint: Integrate by parts. You might also find it useful to first treat the case Σ = Id,
and then to observe that g and Σ1/2h for h ∼N (0,Id) have the same law.)

2. Let g ∼N (0,1) (a Gaussian scalar, not a vector). Prove that, for k ≥ 1, Eg2k−1 = 0 and
Eg2k =∏k

i=1(2i− 1) =: (2k− 1)!!.

3. Let g ∼ N (0,Σ) as in Part 1, and let 1 ≤ i1 < · · · < ik ≤ d. Let M be the set of
all matchings of the set I = {i1, . . . , ik}: a matching is a set of disjoint pairs {ia, ib}
whose union is I. For example, the three matchings of {1,2,3,4} are {{1,2}, {3,4}},
{{1,3}, {2,4}}, and {{1,4}, {2,3}}. Prove that

E



k∏

a=1

gia


 =

∑

M∈M

∏

{a,b}∈M
Σab. (1.6.3)

(For example, one case of the claim is that Eg1g2g3g4 = Σ12Σ34 + Σ13Σ24 + Σ14Σ23.)
Generalize this to allow for repetitions among the i1, . . . , ik. Try to be precise. Explain
why Part 2 is a special case of this latter generalization.

(Hint: Induction.)

Exercise 1.6.6. Suppose that µ is a probability measure on R with a smooth density ρ(x) that
has ρ(x) > 0 for all x ∈ R. Suppose that, for any smooth and compactly supported f : R→ R,
Eg∼µ[gf(g)] = Eg∼µ[f ′(g)]. Show that µ = N (0,1) (i.e., that the converse of the d = 1 case
of Part 1 of the previous exercise holds).

(Hint: Write the expectations as integrals involving ρ. Integrate by parts.)
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2 | Classical Limit Theorems

We now proceed, chronologically backwards, to the older asymptotic results that initiated
random matrix theory, motivated then sometimes by physics and sometimes by statistics.
On the one hand, this will involve asymptotic statements about convergences as dimension
tend to infinity, without concrete bounds on probabilities of fluctuations like in, e.g., our
previous centerpiece Theorem 1.4.18 above. On the other hand, the statements to come will
concern finer-grained information than our previous inequalities, much in the same way that
the central limit theorem (CLT) is more precise or refined than the law of large numbers. We
first explain what new information these statements will give us and why and when it might
be useful.

2.1 Main Phenomena and Motivation

Let us switch to a scaling that is more conventional to classical random matrix theory
and that will make some of the phenomena we are interested in clearer. Consider G ∼
N (0,1)⊗d×m, with columns g1, . . . ,gm ∈ Rd, and let

M := 1
m
GG> = 1

m

m∑

i=1

gig
>
i . (2.1.1)

Let λ1 ≥ · · · ≥ λd be the eigenvalues of M . As we have seen, we expect M ≈ Id by an
informal law of large numbers argument, and Theorem 1.4.18 makes this precise, showing
that ifm� d, then with high probability we have λ1, . . . , λd ∈ [1−O(

√
d/m),1+O(√d/m)].

It is instructive to consider the case d = 1, in which case M = M is a scalar, M =
1
m
∑m
i=1 g

2
i for gi ∼ N (0,1). In this case, Theorem 1.4.18 says that, with high probability,

M ∈ [1−O(√1/m),1+O(√1/m)]. But we know from classical probability that we can make
much more precise statements about the shape of the fluctuations around 1: not only are
they of order

√
1/m, but their distribution is roughly ≈ N (0,1/m) by the CLT. Let us see

two kinds of analogous matrix-valued results that we will show soon.

Wigner Semicircle Limit Theorem We first ask, how does the distribution of the d eigen-
values λ1 ≥ · · · ≥ λd look near 1 when m� d? Perhaps you are tempted to predict that it
should look Gaussian, by analogy with the CLT. But this is wrong: Figure 2.1 shows that the
typical shape is well-approximated not by the Gaussian bell curve, but by a semicircle cen-
tered at 1, of radius scaling as ∼ 2

√
d/m. Note in particular the key qualitative difference

between the semicircle distribution and the Gaussian: the former is compactly supported,
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Figure 2.1: A histogram of the eigenvalues of M with d = 500 and m = 100 000 along with
the semicircle prediction proposed in the main text.

suggesting that the eigenvalues actually concentrate significantly more strongly than a hy-
pothetical Gaussian limiting distribution would predict.

Marchenko-Pastur Limit Theorem It is also natural to ask the same when d/m → c for
some c ∈ (0,∞). In this case, Theorem 1.4.18 is even less informative, only telling us that
λ1, . . . , λd ∈ [0,O(1)] with high probability, i.e., that the eigenvalues are bounded (a priori
the lower bound is −O(1), but we also know that λi ≥ 0 sinceM � 0). But what is the shape
of their distribution and what are their actual typical extreme values? We will see that there
is a family of densities depending on c answering this question, called the Marchenko-Pastur
laws µMP(c). Like the semicircle law, these are totally alien to classical probability, but play
a central role in random matrix theory. For instance, as we will prove and as Figure 2.2
illustrates, when m = d, then the density of eigenvalues converges as d→∞ to

dµMP(1)

dx
= 1

2π

√
4− x
x

, (2.1.2)

supported on x ∈ [0,4]. (As we will see and as you should expect, as c → 0 these densities
will approach a semicircle shape, but as this example shows, for larger c they can look
qualitatively extremely different.) What is this strange distribution and where does it come
from?

Remark 2.1.1 (A word on convergence of random measures). You would be right to wonder
what it means to say that a histogram of the λ1, . . . , λd “looks like” some deterministic curve.
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Figure 2.2: A histogram of the eigenvalues of M with d = m = 1000 along with the
Marchenko-Pastur prediction proposed in the main text.

The histogram must be renormalized appropriately depending on d, but also and more im-
portantly, the histogram itself (i.e., the collection of bin heights) is random. That is, there are
two layers of probability here: the λi themselves are random, according to some (as yet mys-
terious) probability measure, but we are then drawing a picture of their distribution, which
is therefore a random probability measure. What we are saying, and will say more precisely
below (and already you may convince yourself that this holds with numerical experiments), is
that (1) the expected height of each bin lies close to the specified curve, and (2) the random
height of each bin concentrates around its expectation.

One motivation for studying these questions comes from statistics. Suppose we are
trying to perform covariance estimation: there is an unknown covariance matrix Σ ∈ Rd×d,
and we are given g1, . . . ,gd ∼ N (0,Σ). We try to estimate Σ by the sample covariance,
Σ̂ := 1

m
∑m
i=1 gig

>
i , which is none other than M above.

In this context, the second limiting behavior alluded to above says something remark-
able: even when Σ = Id and we are observing pure white noise, if we do not have enough
data points—the number of observations m is only proportional to, not much larger than,
the number of features d of each observation—then this direct estimate of Σ will be inconsis-
tent. In particular, we will be led to believe that there are spurious correlations in our dataset:
some eigenvalues of Σ that are larger than others, and therefore particular directions in Rd

in which the gi are systematically biased. Understanding how Σ̂ behaves is the first step
towards designing revised estimators that avoid these issues, a technique called eigenvalue
shrinkage. (It should make sense that the right thing to do is to somehow “squeeze” the
eigenvalues we think Σ̂ has closer together, hence this name. If you are familiar with Stein’s
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paradox in classical statistics, you might revisit that and observe that this strategy is similar
in spirit.)

2.2 Convergence of Random Measures

Let us first make more precise what it means for random “histograms” or, more precisely,
random measures to converge to a deterministic measure in a way that captures the numer-
ical experiments presented above. We will present this in a somewhat sophisticated way,
but will try to refer back to our concrete experiments and observations about histograms to
keep the discussion grounded.

2.2.1 Deterministic Weak Convergence

We first propose a more sophisticated way to view the histograms of a finite collection of
numbers λ = (λ1, . . . , λd) ∈ R (not necessarily random for now). We associate to these their
empirical measure or empirical distribution

ed(λ) := 1
d

d∑

i=1

δλi . (2.2.1)

If you are not familiar with measure-theoretic language, just think of this as a function that
takes (measurable) sets and outputs the fractions of λi that fall in that set:

ed(λ)(A) = #{i ∈ [d] : λi ∈ A}
d

. (2.2.2)

In particular, for intervals A = [a, b], this counts the fraction of λi falling into that interval.
Therefore, ed(λ) contains all the information needed to draw a histogram of the λi with any
bin width, making it a more convenient object to work with.

Next, still thinking of deterministic λ, what does it mean for a sequence of such empirical
distributions to converge? We propose a definition for general measures, and then say what
this means for empirical distributions.

Definition 2.2.1. Let µ be a probability measure on R. Its cumulative distribution function
(cdf) is cdf(µ) : R→ R with cdf(µ)(t) := PX∼µ[X ≤ t] = µ((−∞, t]).

Definition 2.2.2 (Weak convergence). A sequence of probability measures µ(d) on R con-
verge weakly to µ, written µ(d) → µ, if, whenever cdf(µ) is continuous at a,b ∈ R, then
µ(d)([a, b])→ µ([a, b]) as d→∞.

It is instructive to consider the special case that will usually arise for us: suppose µ(d) =
ed(λ(d)) and µ has a continuous density ρ(t) on R. Then, this claim is that, for all a,b (since
cdf(µ), the integral of ρ, is continuous everywhere, the caveat in the definition does not
apply), we have

#{i ∈ [d] : λ(d)i ∈ [a, b]}
d

→
∫ b
a
ρ(t)dt. (2.2.3)
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The condition that cdf(µ) be continuous at a and b is to exclude edge cases of the
following kind. Suppose that µ(d) = δ1/d, for instance, the empirical distribution of a few
numbers that are all equal to 1/d. Then, clearly the natural limit we wish this sequence
to have is µ = δ0. However, if we take a = b = 0, then µ(d)([0,0]) = 0 for all d, while
µ([0,0]) = 1. You may convince yourself that the condition above is a natural condition for
excluding all such situations.

Let us check that weak convergence describes the pictorial convergence of histograms.
In a histogram, we plot the fraction of λ(d)i that fall in bins of some width δ > 0, which is the
above situation for the interval [a,a+δ] for some left bin edge a ∈ R. Thus if ed(λ(d))→ µ
which has a continuous density ρ, then for any choice of δ we will have, as d→∞,

height of bin with left edge a→
∫ a+δ
a

ρ(t)dt. (2.2.4)

In our experiments, though, we observe not just this convergence of bin heights. We also
see that, as δ → 0, the shape of the limiting bin heights converges, too. To see this, the bin
heights must be renormalized—clearly, if we just take δ→ 0 above, all heights will converge
to zero. However, we have

lim
δ→0

1
δ

lim
d→∞

(height of bin with left edge a) = lim
δ→0

1
δ

∫ a+δ
a

ρ(t)dt = ρ(a) (2.2.5)

by the Lebesgue differentiation theorem (which just says that, for ρ continuous, averages
of its value over shrinking intervals [a,a + δ] converge to its point value at the point to
which the intervals shrink). Thus we see that, upon renormalizing like this, if empirical
distributions converge weakly, then histograms of shrinking bin widths will indeed converge
to the curve that is the density of the limiting distribution µ.

2.2.2 Random Weak Convergence

The above discussion concerns deterministic λ(d)i . We will be interested in the more compli-
cated situation of random λ(d)i , usually λ(d)i = λi(M (d)) for M (d) ∈ Rd×dsym a random matrix.
Essentially the same statement as Definition 2.2.2 is sensible, and will guarantee the same
sort of bin-wise convergence of histograms. The only additional rub is that we must specify
a mode of convergence: unlike before, the quantities Cd := 1

d#{i : λ(d)i ∈ [a, b]} are now ran-
dom, and we are asking for them to converge to the deterministic number C := µ([a, b]).
You will recall that there are many levels of strength at which to ask that this happens. The
ones that we will work with are the following:

1. Cd → C in expectation if ECd → C .

2. Cd → C in probability if, for all ε > 0, P[|Cd − C| > ε]→ 0.

3. Cd → C in L2 if E(Cd − C)2 → 0, or equivalently (prove it if you do not see why it is
true) if Cd → C in expectation and Var[Cd]→ 0.

We therefore are justified in introducing the following definition.
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Definition 2.2.3 (Random weak convergence). Let µ(d) be random probability measures on
R: random variables taking their values in the space of probability measures on R (for ex-
ample, ed(λ(d)) for λ(d) an arbitrary random vector). We say that µ(d) converge weakly in

expectation (respectively, weakly in probability and weakly in L2) to µ, denoted µ(d) E
---→ µ

(respectively, µ(d) P
------→ µ and µ(d) L

2

------------------------→ µ), if, for all a,b where cdf(µ) is continuous, µ(d)([a, b])
converges in expectation (respectively, in probability and in L2) to µ([a, b]).

Again, you can view this in the previous context as a statement about the convergence
of random histograms, where we ask either for expected bin heights to converge, or for
stronger conditions like (for L2 convergence) the variance of their heights also decreasing.

2.3 Limit Theorems from Moments

Our goal will be to show random weak convergence for the empirical distributions of eigen-
values of random matrices, to which we give the following name.

Definition 2.3.1 (Empirical spectral distribution). The empirical spectral distribution (e.s.d.)
of M ∈ Rd×dsym is esd(M) := ed(λ(M)).

How are we going to do this? You might hope that we can write down the density of
λ(M) and go from there. Unfortunately, this is only possible in some very special situations,
and is not useful for proving universality of our results with respect to the details of the
random matrix distributions involved.

Instead, let us draw inspiration from some results from scalar probability theory that are
useful for proving results like the CLT. First, weak convergence is related to the convergence
of expectations of test functions against the measures involved.

Lemma 2.3.2 (Portmanteau). µ(d) → µ if and only if, for all f : R → R continuous and
compactly supported,

∫
fdµ(d) → ∫

fdµ.

Often this is given as the definition of weak convergence. Note that our original definition
may be viewed as this kind of statement, but for discontinuous f that are the indicator
functions of intervals [a, b]. Very roughly, the idea of the proof is to approximate such f
by a linear combination of such step functions, and vice-versa.

This is still not very useful, because—even if we could formulate a version for random
measures, which is non-trivial—while it reduces our task to saying something about the
random empirical averages 1

d
∑d
i=1 f(λi(M)), we still do not have a convenient way to get a

handle on these for general f . Fortunately, there is another family of results that shows the
same for the very special class of polynomial functions f .

Theorem 2.3.3 (Carleman). Suppose that µ(d), µ are probability measures that are all σ 2-
subgaussian for some σ 2 > 0 (the same one for all of the measures). Then, µ(d) → µ if and
only if, for all k ∈ N,

∫
tkdµ(d)(t)→ ∫

tkdµ(t).

The proof idea here is similar, and is useful to note because it explains why a condition like
subgaussianity is important. The idea, like the above, is to approximate any continuous and

39



compactly supported f by a polynomial. By the Weierstrass approximation theorem, this
can be done to arbitrary pointwise accuracy, but only on a compact interval. E.g., f can be
close to a polynomial on its support, but away from that support, the polynomial can (and
nearly always will) fluctuate wildly while f will be zero. So, we must have some control of
how quickly the µ(d) decay to control this source of error, which is what the subgaussianity
assumption achieves.

It is incredibly fortuitous to us that it is possible to establish limit theorems by working
with moments. That is because moments are a bridge between the entries and the eigenval-
ues of a matrix. Consider: for M ∈ Rd×dsym ,

∫
tkd esd(M)(t) = 1

d

d∑

i=1

λi(M)k = 1
d
Tr(Mk). (2.3.1)

The final expression may be expanded in terms of the entries ofM as a big polynomial. We
will see that this lets us perform merely combinatorial computations onM in order to learn
the distribution of its eigenvalues.

We therefore make the following definition.

Definition 2.3.4 (Convergence in moments). We say that random probability measures µ(d)

converge in (expected) moments to µ, denoted µ(d) Emom.
--------------------------------------------------------------------------------------------------------------------→ µ, if, for all k ≥ 0, E

∫
tkdµ(d)(t)→∫

tkdµ(t).

A typical argument by the moment-based method1 will have two steps, which we leave
informal for now and will illustrate in one special situation below:

1. Show that esd(M (d)) Emom.
---------------------------------------------------------------------------------------------------------------------→ µ.

2. Prove some sort of concentration result showing that, with high probability, the eigen-
values of M (d) are not very large.

2.4 Wigner Semicircle Limit Theorem

We will prove in detail using the moment method the following theorem, one of the first and
most important results of classical random matrix theory.

Definition 2.4.1 (Wigner matrix). Let ν be a probability measure on R. We write Wig(d, ν) for
the probability measure on Rd×dsym where we sampleW ∼Wig(d, ν) by drawing Wij = Wji ∼ µ
i.i.d. and setting Wii := 0.

Definition 2.4.2 (Semicircle measure). The (Wigner) semicircle measure is the probability
measure, denoted µSC, supported on [−2,2] with density 1

2π

√
4− x2 on that interval.

Theorem 2.4.3 (Wigner’s limit theorem). Suppose that ν is a probability measure all of whose
moments are finite and with

∫
xdν(x) = 0 and

∫
x2dν(x) = 1. LetW (d) ∼Wig(ν,d) for each

d ≥ 1. Then, esd( 1√
dW

(d)) mode
------------------------------------------------------------------------→ µSC for any mode ∈ {E,P, L2}.

1Not to be confused with the “method of moments” of statistical inference.
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Remark 2.4.4 (Relation to rectangular matrices). Recall that we saw the semicircle distri-
bution show up in numerical experiments with the matrices 1

m
∑m
i=1 gig

>
i for gi ∼ N (0,Id)

i.i.d., when m � d. In that case, the semicircle had a radius of 2
√
d/m and was centered

at 1, so we would expect to see µSC appear if we instead considered
√
m
d (

1
m
∑m
i=1 gig

>
i − Id) =

1√
dm

∑m
i=1(gig

>
i − Id). Indeed you may check numerically that this is the case. It is also rea-

sonable that this random vector behaves somewhat like a Wigner matrix, at least if we ignore
the diagonal. You may check that the off-diagonal entries of gig

>
i are pairwise uncorrelated,

so if, hypothetically, we took m → ∞ for d fixed, then the above matrix would converge to a
symmetric Wigner matrix with Gaussian entries by the CLT. Thus it should be plausible as a
“softening” of this that the m � d limit, where both parameters grow but m grows faster,
would give rise to the behavior of a Wigner matrix as well.

Remark 2.4.5 (Universality). One important aspect of this theorem is that it gives a universal
limit regardless (essentially) of the entrywise distribution. You may think of this as analogous
to the CLT, which gives a universal limit for the sums of i.i.d. random variables essentially
regardless of their distributions (up to centering and scaling). In fact, the moment assump-
tions in Theorem 2.4.3 can be relaxed even more: it suffices to just have

∫
xdν(x) = 0 and∫

x2dν(x) = 1, but no further moments beyond the second need necessarily be finite.

We will proceed according to the strategy outlined before. Actually, before getting into
moment calculations with random matrices, it will be helpful by way of analogy to recall the
proof using the moment method of the CLT.

2.4.1 Warmup: Central Limit Theorem by Moments

We review a proof of the following version of the CLT.

Theorem 2.4.6. Let ν be a subgaussian probability measure on R having EX∼νX = 0 and
EX∼νX2 = 1. Let X1, X2, X3, . . . ∼ ν be an i.i.d. sequence. Then, Law( 1√

d

∑d
i=1Xi)→N (0,1) (in

the sense of weak convergence).

Proof. By Carleman’s theorem (our Theorem 2.3.3), it suffices to show the convergence of
moments

E


 1√
d

d∑

i=1

Xi



k

?
-→ E
N∼N (0,1)

Nk =:mN (0,1)
k for all k ≥ 0. (2.4.1)

(You can check that the subgaussianity assumption on ν implies that the corresponding
condition of Carleman’s theorem is satisfied.)

First, let us calculate the right-hand sides to know what we expect in seeking out a “main
term” on the left. An induction together with a simple calculation with integration by parts
shows that, for all k ≥ 0,

mN (0,1)
k = #{matchings of [k]} =

{
0 if k odd
(k− 1)!! if k even

}
. (2.4.2)

The explicit formula is useful in other situations but will not be relevant here; we care more
about the former enumerative interpretation.
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Now consider the empirical moments. We write Part([k]) for the set of partitions of k:
a partition is a set of disjoint sets whose union is [k]. For instance, {{1,2}, {3,4,5}} is a
partition of [5]. We expand directly, finding:

E


 1√
d

d∑

i=1

Xi



k

= 1
dk/2

∑

i1,...,ik∈[k]
EXi1 · · ·Xik

and now we note that to each term is associated a partition π ∈ Part([k]) according to
which of the ia are equal to one another, and the value of the term only depends on π . We
therefore have

= 1
dk/2

∑

π∈Part([k])

d(d− 1) · · · (d− |π| + 1)E
∏

S∈π
X|S|S

where we introduce XS ∼ ν i.i.d. for each part S ∈ π . Since these random variables are
independent, we can further simplify

= 1
dk/2

∑

π∈Part([k])

d(d− 1) · · · (d− |π| + 1)
∏

S∈π
E
X∼ν

X|S|

and since EX∼νX = 0, we may also restrict

= 1
dk/2

∑

π∈Part([k])
|S|≥2 for all S∈π

d(d− 1) · · · (d− |π| + 1)
∏

S∈π
E
X∼ν

X|S|

Now, recall that k is constant and the number of terms in this sum only depends on k, while
we are interested in the limit as d → ∞. The product of expectations inside also does not
depend on d. Thus, any term where |π| < k/2 will tend to zero as d → ∞. That is, in this
limit we have the convergence:

→
∑

π∈Part([k])
|S|=2 for all S∈π

∏

S∈π
E
X∼ν

X|S|

=
∑

π∈Part([k])
|S|=2 for all S∈π

1, (2.4.3)

which is merely the number of matchings of [k] by definition, and the proof is complete.

The proof is an elegant demonstration of how the moment method works and why it is so
useful. The Gaussian distribution, as with many natural distributions of probability theory,
has a natural combinatorial interpretation of its moments. The moment method lets us
reduce proving a limit theorem to showing that a certain more complicated combinatorial
quantity—the expanded empirical moment above—behaves like the Gaussian moment to
leading order.

42



1 2 3 4 1 2 3 4 1 2 3 4

Figure 2.3: The three matchings, two non-crossing and one crossing, of four objects that
arise in the computation of the fourth moments ofN (0,1) and µSC.

k 0 2 4 6 8 10 12 14 16

mN (0,1)
k 1 1 3 15 105 735 6615 72 765 945 945

mSC
k 1 1 2 5 14 42 132 429 1430

Table 2.1: A comparison of the first few moments ofN (0,1) (the “matching numbers”) and
of µSC (the Catalan numbers).

2.4.2 Convergence of Expected Moments

We now execute the same strategy for Wigner’s limit theorem.

Lemma 2.4.7. In the setting of Theorem 2.4.3, esd( 1√
dW

(d)) E mom.
-------------------------------------------------------------------------------------------------------------------------→ µSC.

Proof. Again, we first compute the moments of the limiting distribution. This is another,
slightly more tedious but still straightforward, exercise in integration by parts:

mSC
k := E

X∼µSC

Xk = #{non-crossing matchings of [k]} =
{

0 if k odd
Cat` if k = 2` even

}
, (2.4.4)

where Cat` := 1
`+1

(
2`
`

)
are the Catalan numbers, and a non-crossing matching is one that has

no crossings when drawn as a matching of points arranged in a line. For example, the first
two matchings of [4] in Figure 2.3 are non-crossing, while the last has a crossing.

Generally, there are many fewer non-crossing matchings than general matchings, as we

can see from the scaling behaviors that, roughly, mN (0,1)
k ≈ √kk while mSC

k ≈ 2k (both by
Stirling’s formula, omitting lower order terms). The first few of each sequence are given in
Table 2.1.

With this in hand, we may proceed to the calculation, which is more complicated than but
very much parallels the one from the CLT. The main complication is that the “template” ob-
ject that we use to group terms by becomes considerably more complicated than a partition.
We let W :=W (d) to lighten the notation and calculate:

E
1
d
Tr
(

1√
d
W
)k

= 1
dk/2+1

ETr(W k)

and by expanding the matrix multiplication in indices,

= 1
dk/2+1

∑

i1,...,ik∈[d]
EWi1i2Wi2i3 · · ·Wik−1ikWiki1

43



We associate to each such term a “closed walk graph” (my non-standard terminology): a
connected graph with a distinguished root vertex whose edges are directed and numbered
and that, when traversed in sequence, end at the same vertex where they started. You may
convince yourself that such a graph precisely describes the pattern of equalities among the
indices in a term above, where we “forget” the actual values of the ia. See Figure 2.4 for an
example. Writing V(G) and E(G) for the vertex and edge set of a graph, we then have

= 1
dk/2+1

∑

G closed walk graph
G loopless
|E(G)|=k

d(d− 1) · · · (d− |V(G)| + 1) · E
∏

e∈UE(G)
We.

Here we may restrict to G simple since consecutive ia are distinct in any non-zero term
as Wii = 0. Above, UE(G) denotes the multiset of edges of G stripped of the informa-
tion of their direction (i.e., replacing directed edge (i, j) with undirected edge {i, j}, but
retaining repetitions) and where we introduce independent We ∼ ν for each undirected edge
e ∈ UE(G). Further let UUE(G) be the set of unique undirected edges of G, and let the
multiplicity m(e) of e ∈ UUE(G) be the number of times that that edge occurs (in either
orientation) in G. We may then factorize as in our CLT argument

= 1
dk/2+1

∑

G closed walk graph
G loopless
|E(G)|=k

d(d− 1) · · · (d− |V(G)| + 1) ·
∏

e∈UUE(G)
E
W∼ν

Wm(e)

and finally as before since EW∼νW = 0, we may restrict

= 1
dk/2+1

∑

G closed walk graph
G loopless
|E(G)|=k

m(e)≥2 for each e∈UUE(G)

d(d− 1) · · · (d− |V(G)| + 1) ·
∏

e∈UUE(G)
E
W∼ν

Wm(e),

which just asks that edge appear at least twice in G, in either orientation.
Recalling what happened next in the CLT argument, we must find which terms make

the largest contribution. Since k is constant, this amounts to understanding for which G
(satisfying the conditions in the sum above) we have |V(G)| = k/2 + 1 = |E(G)|/2 + 1.
Consider G̃ the graph where each edge of G is stripped of its orientation, and parallel edges
are collapsed down to a single edge, so that G̃ is a simple undirected connected graph. We
have |E(G̃)| ≤ |E(G)|/2 by the last restriction we made above, while |V(G̃)| = |V(G)|.

Since G̃ is connected, we have |V(G̃)| ≤ |E(G̃)|+1, with equality if and only if G̃ is a tree.
(Proof: a simple induction establishes the result with equality for trees, and any connected
non-tree has a spanning tree, for which equality holds, as well as further edges.) Thus we
have |V(G)| ≤ |E(G)|/2 + 1, with equality if and only if G is a (rooted) tree traversal: a
rooted tree where each edge occurs exactly twice, directed in opposite directions, and where
the edges are numbered so that, if followed in order, they visit each vertex of the tree exactly
once. When G satisfies this equality, then m(e) = 2 for all e ∈ UUE(G). Thus, we find a
counting interpretation of the limiting empirical moments,

E
1
d
Tr
(

1√
d
W
)k
→

∑

G a rooted tree traversal
|E(G)|=k

1. (2.4.5)
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i1 i2 i3 i4 i5

1 2 3

4

5

6

Figure 2.4: The closed walk graph associated to a term of the form
Wi1i2Wi2i3Wi3i4Wi4i3Wi3i5Wi5i1 in Tr(W 6), where i1, . . . , i5 are all distinct. We include
these index labels for reference, but we think of a closed walk graph as not being decorated
with those indices, but rather only the ordering of the directed edges traversing them. We
do include the identity of the “root” or starting vertex of the closed walk, which is whatever
vertex had the label i1, which we show as shaded.

It remains to show that the number of tree traversals with k directed edges (of a tree
with k/2 undirected edges) is Catk/2. Clearly this number is zero when k is odd by parity
considerations. Suppose then that k = 2` is even. We want to show that the number of tree
traversals where the underlying tree has ` edges is Cat`.

It is useful to make a few transformations of our description of the Catalan numbers as
counting non-crossing matchings (proving which we leave as an exercise). First, Cat` is the
number of parenthesizations of length 2`: the number of ways to arrange 2` parentheses
that adhere to the usual rules of grammar, where every parenthesis gets closed and you only
close a parenthesis that has been opened. For instance, “(()())” and “()(())()” are valid,
while “())(” is not, even though the number of open and closed parentheses is equal.

Next, Cat` is in turn equal to the number of Dyck paths of length 2`, the paths in Z2 of
length 2` that start at the origin, return to the x-axis, move right and either up or down with
every step, and never go below the x-axis. Finally, the bijection between Dyck paths and tree
traversals is just to “spread out” the tree traversal, viewing it over an x-axis of “time,” or to
“glue” levels of a Dyck path.

See Figure 2.5 for examples of all of these bijections. Note that a tree traversal, being a
closed walk graph, is supposed to be decorated with information about the order in which
edges are traversed, but because of its special structure beyond just a closed walk graph, we
can replace the labels on edges, which are a little redundant, with an ordering on vertices, as
we do above—the order in which the vertices are visited fully determines the order in which
the directed edges are traversed.

2.4.3 Upgrading to Weak Convergence in Probability

We will now use the convergence of moments to show the version of Theorem 2.4.3 involving
convergence in probability. In particular, we will show the following:
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1 2 3 4 5 6 7 8

( ( ) ( ( ) ) )

1

2

3 4

5

Figure 2.5: An example of the bijection between four kinds of objects that the Catalan num-
bers (Cat4 in this case) count, as used in the proof of Lemma 2.4.7: non-crossing matchings,
parenthesizations, Dyck paths, and rooted tree traversals. We also show the mapping from
Dyck paths to tree traversals by showing which vertices along the Dyck path are identified
to form the tree.
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Theorem 2.4.8 (Wigner’s limit theorem in probability). In the setting of Theorem 2.4.3, for
any continuous bounded f : R→ R, 1

d
∑d
i=1 f(λi(

1√
dW

(d)))→ ∫
fdµSC in probability.

It is straightforward to deduce the version of this for convergence of counts of eigenval-
ues in an interval, as follows.

Corollary 2.4.9. In the setting of Theorem 2.4.3, for any a < b, 1
d#{i : λi( 1√

dW
(d)) ∈

[a, b]} → µSC([a, b]) in probability.

Proof. Write λ(d)i := λi( 1√
dW

(d)). For any 0 < ε < b−a
2 , we may define functions f , g : R → R

as follows:

f(t) :=




0 if t ≤ a,
1− a+ε−t

ε if a ≤ t ≤ a+ ε,
1 if a+ ε ≤ t ≤ b − ε,
b−t
ε if b − ε ≤ t ≤ b,

0 if t ≥ b




,

g(t) :=




0 if t ≤ a− ε,
1− a−t

ε if a− ε ≤ t ≤ a,
1 if a ≤ t ≤ b,
b+ε−t
ε if b ≤ t ≤ b + ε,

0 if t ≥ b + ε




,

These are continuous and bounded, and satisfy f(t) ≤ 1{t ∈ [a, b]} ≤ g(t), and therefore

1
d

d∑

i=1

f(λ(d)i ) ≤
1
d

#{i : λ(d)i ∈ [a, b]} ≤ 1
d

d∑

i=1

g(λ(d)i ).

We also have
∣∣∣∣
∫
fdµSC − µSC([a, b])

∣∣∣∣

=
∣∣∣∣
∫
(f − 1[a,b])dµSC

∣∣∣∣

=
∣∣∣∣
∫∞
−∞
(f (t)− 1[a,b](t))ρSC(t)dt

∣∣∣∣

=
∣∣∣∣∣
∫ a+ε
a
(f (t)− 1[a,b](t))ρSC(t)dt +

∫ b
b−ε
(f (t)− 1[a,b](t))ρSC(t)dt

∣∣∣∣∣

≤
∣∣∣∣∣
∫ a+ε
a
(f (t)− 1[a,b](t))ρSC(t)dt

∣∣∣∣∣+
∣∣∣∣∣
∫ b
b−ε
(f (t)− 1[a,b](t))ρSC(t)dt

∣∣∣∣∣
≤ 2 · ε · 2 ·max

t∈R
ρSC(t)

≤ Cε.

for some absolute constant C , and likewise with f replaced by g. In particular, we find that,
using Theorem 2.4.8 on f and g and combining with the above observation, for any ε,

lim
d→∞

P
[
µSC([a, b])− Cε ≤ 1

d
#{i : λ(d)i ∈ [a, b]} ≤ µSC([a, b])+ Cε

]
= 1.
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But, taking ε → 0, this is just by definition the convergence in probability given in the
statement.

Now let us proceed to the proof of our version of Wigner’s theorem, where we will imple-
ment the full strategy of the moment method as outlined earlier. We note that you can use
essentially the same strategy with small modifications to prove weak convergence either in
expectation or in L2 as well.

To wit, even below we will use the following “L2 version” of Lemma 2.4.7. We do not give
a careful proof, but sketch the main idea below.

Lemma 2.4.10. Suppose that ν is a probability measure all of whose moments are finite and
with

∫
xdν(x) = 0 and

∫
x2dν(x) = 1. Let W (d) ∼ Wig(ν,d) for each d ≥ 1. For any k,

there is a constant C = C(ν, k) > 0 such that Var[ 1
d
∑d
i=1 λi(

1√
dW

(d))k] ≤ 1/d2 + C/d3.

Proof Sketch. WritingW :=W (d), we may decompose by a similar expansion to Lemma 2.4.7,

Var


1
d

d∑

i=1

λi
(

1√
d
W
)k
 = Var


 1
dk/2+1

∑

i1,...,ik∈[d]
Wi1i2 · · ·Wiki1




= 1
dk+2

∑

i1,...,ik∈[d]
j1,...,jk∈[d]

Cov[Wi1i2 · · ·Wiki1 ,Wj1j2 · · ·Wjkj1].

The terms here may be analyzed by a similar but slightly more complicated graphical ap-
proach as Lemma 2.4.7. The point becomes that the main contribution is from those terms
where i1 = j1, . . . , ik = jk and i1, . . . , ik are all distinct. There are d(d − 1) · · · (d − k + 1)
such terms, each of which makes a contribution of 1. Thus the resulting main term is 1/d2,
as claimed.

Remark 2.4.11. Contrast the above with the case of independent random variables λi, say
λi ∼ µSC drawn i.i.d. These will still have empirical distribution close to µSC, but will have
Var[ 1

d
∑d
i=1 λi] = 1

d2

∑d
i=1 Var[λi] = Ω(1/d). Thus in a sense the λi have a much more “rigid”

distribution than independent random variables. This is related to the “repulsion” between
eigenvalues and the distribution of eigenvalue spacing, a set of phenomena we will not study
here but that you are welcome to investigate on your own.

We can now proceed to the main proof.

Proof of Theorem 2.4.8. Let us write λi = λ(d)i := 1√
dW

(d) as before, to lighten the notation
further. Our task is to show that, for any ε > 0,

lim
d→∞

P



∣∣∣∣∣∣

1
d

d∑

i=1

f(λi)−
∫
fdµSC

∣∣∣∣∣∣ > ε

 = 0.

We expect the λi to fall close to the interval [−2,2]. Let us therefore fix B > 2; certainly the
λi should fall in [−B, B].

Let δ > 0 to be chosen later. By the Weierstrass approximation theorem, there is a
polynomial p such that, for all x ∈ [−B, B], we have |f(x)−p(x)| ≤ δ. We use this guarantee
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together with our knowledge of convergence in moments to control the probability above.
In particular, we decompose by a big triangle inequality

∣∣∣∣∣∣
1
d

d∑

i=1

f(λi)−
∫
fdµSC

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

1
d

d∑

i=1

p(λi)− E1
d

d∑

i=1

p(λi)

∣∣∣∣∣∣

+
∣∣∣∣∣∣E

1
d

d∑

i=1

p(λi)−
∫
pdµSC

∣∣∣∣∣∣

+
∣∣∣∣∣∣

1
d

∑

i:|λi|≤B
(f (λi)− p(λi))

∣∣∣∣∣∣

+
∣∣∣∣∣∣

1
d

∑

i:|λi|>B
f(λi)

∣∣∣∣∣∣

+
∣∣∣∣∣∣

1
d

∑

i:|λi|>B
p(λi)

∣∣∣∣∣∣

+
∣∣∣∣
∫
(f − p)dµSC

∣∣∣∣

Here, the third and sixth terms are at most δ by the approximation guarantee between f and
p, and, for sufficiently large d, the second term is also at most δ by Lemma 2.4.7 (expanding
p(t) in monomials and considering the limit of each one). Therefore,

≤ 3δ+
∣∣∣∣∣∣

1
d

d∑

i=1

p(λi)− E1
d

d∑

i=1

p(λi)

∣∣∣∣∣∣
︸ ︷︷ ︸

1

+
∣∣∣∣∣∣

1
d

∑

i:|λi|>B
f(λi)

∣∣∣∣∣∣
︸ ︷︷ ︸

2

+
∣∣∣∣∣∣

1
d

∑

i:|λi|>B
p(λi)

∣∣∣∣∣∣
︸ ︷︷ ︸

3

.

Suppose that we choose δ such that 6δ < ε. Then, we may bound

P



∣∣∣∣∣∣

1
d

d∑

i=1

f(λi)−
∫
fdµSC

∣∣∣∣∣∣ > ε

 ≤ P

[
1 > δ

]
+ P

[
2 > δ

]
+ P

[
3 > δ

]
.

Since p is a polynomial, we may expand it as, for some D and a0, . . . , aD ∈ R,

p(t) =
D∑

k=0

aktk.
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Let us write A := maxDk=0 |ak|. To control 1 , we use Chebyshev’s inequality, finding

P
[

1 > δ
]
≤ 1
δ2

Var


1
d

d∑

i=1

p(λi)




= 1
δ2

Var



D∑

k=0


ak
d

d∑

i=1

λki






≤ D + 1
δ2

D∑

k=0

Var


ak
d

d∑

i=1

λki




≤ A
2(D + 1)
δ2

D∑

k=0

Var


1
d

d∑

i=1

λki


 ,

which by Lemma 2.4.10 tends to zero as d → ∞. (We have been moderately careful about
keeping track of the constants in front of the variance, but they all do not matter: the point
is just that D and the ak are fixed while d→∞, and in this limit each variance above decays
to zero.) We conclude that, for any fixed δ > 0,

lim
d→∞

P
[

1 > δ
]
= 0.

For 2 , we recall that we have assumed f is bounded, so suppose that |f(x)| ≤ F for all
x. We then bound by Markov’s inequality

P
[

2 > δ
]
= P



∣∣∣∣∣∣

1
d

∑

i:|λi|>B
f(λi)

∣∣∣∣∣∣ > δ



≤ P
[
F · 1
d

#{i : |λi| > B} > δ
]

≤ F
δ
E
[

1
d

#{i : |λi| > B}
]

and now we use a handy trick to relate this to the moments that Lemma 2.4.7 computes for
us: for any k ≥ 1,

≤ F
δB2kE


1
d

d∑

i=1

λ2k
i




which in the limit d→∞ goes to a Catalan number,

→ F
δB2kCatk

≤ F
δ

(
2
B

)2k
.

Thus we learn that, for any k ≥ 1,

lim
d→∞

P
[

2 > δ
]
≤ F
δ

(
2
B

)2k
.
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Taking k→∞ then gives
lim
d→∞

P
[

2 > δ
]
= 0.

Finally, for 3 , we use another permutation of the ideas above. Using the expansion of
p into monomials and the triangle inequality

P
[

3 > δ
]
= P



∣∣∣∣∣∣

1
d

∑

i:|λi|>B
p(λi)

∣∣∣∣∣∣ > δ



≤
D∑

k=0

P


1
d

∑

i:|λi|>B
|ak||λi|k > δ

D + 1




and now using the same Markov inequality argument from before

≤ A(D + 1)
δ

D∑

k=0

E


1
d

∑

i:|λi|>B
|λi|k




Here, let us choose some ` > D/2, with which we may bound

≤ A(D + 1)
δ

D∑

k=0

E


1
d

d∑

i=1

λ2`
i

B2`−k




≤ A(D + 1)2BD

δB2` E


1
d

d∑

i=1

λ2`
i




→ A(D + 1)2BD

δB2` Cat`

≤ A(D + 1)2BD

δ

(
2
B

)2`
.

Finishing the argument as before (again, note that we have been keeping track of the con-
stants in front of the term exponentially decaying in `, but these do not matter for the
argument), we find

lim
d→∞

P
[

3 > δ
]
= 0.

Combining the analysis of 1 , 2 , and 3 , we find

lim
d→∞

P



∣∣∣∣∣∣

1
d

d∑

i=1

f(λi)−
∫
fdµSC

∣∣∣∣∣∣ > ε



≤ lim
d→∞

P
[

1 > δ
]
+ lim
d→∞

P
[

2 > δ
]
+ lim
d→∞

P
[

3 > δ
]

= 0,

and the proof is complete.
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2.5 Extreme Eigenvalues from Moments

We also sketch how we can control the norm of a matrix, ‖W ‖ = max{|λn(W )|, |λ1(W )|},
by similar moment computations, for the case of Wigner matrices. Let us first see why our
calculations so far do not suffice.

We may write the finding of Lemma 2.4.7 in a way more relevant to our setting as follows.
Given the entrywise distribution ν , for each k, there is a ∆2k = ∆2k(ν) such that

ETr
(

1√
d
W (d)

)2k
∈ [Catkd−∆2k,Catkd+∆2k].

The point of this for our purposes above is that, since ∆2k does not depend on d, upon
dividing by d the limit of the above is Catk.

For extreme eigenvalues, we want to control the probability

P
[∥∥∥∥

1√
d
W (d)

∥∥∥∥ ≥ t
]
,

and in particular we would like to show that this decays rapidly in d as soon as t = 2 + ε.
We can try to bound as follows by a Chebyshev-type inequality:

P
[∥∥∥∥

1√
d
W (d)

∥∥∥∥ ≥ t
]
= P

[∥∥∥∥
1√
d
W (d)

∥∥∥∥
2k
≥ t2k

]

≤ P

[
Tr
(

1√
d
W (d)

)2k
≥ t2k

]

≤ 1
t2kETr

(
1√
d
W (d)

)2k

≤ Catkd
t2k + ∆2k

t2k

≤
(

2
t

)2k
d+ ∆2k

t2k

We see a few important features.
First, in order for the first term to decay once t = 2+ ε, we will need to take k = k(d)�

log(d), say k(d) = (logd)1+δ for some δ > 0. (If, e.g., we try to run this argument with k
constant, we will only get that the norm is O(d1/2k), which is not useless but is far from
tight.)

On the other hand, when we try to do this, we find that we need finer control over ∆2k

than we have established. Namely, in order for the second term to tend to zero with our
choices above, we need that limk→∞∆

1/2k
2k ≤ 2. Our analysis thus far does not ensure this,

and it is a non-trivial extension of the combinatorics we have encountered in Lemma 2.4.7
to do so, amounting to carefully examining the error terms that appear. The following is
one version of this.

Lemma 2.5.1. Suppose that ν is a probability measure satisfying the assumptions of Theo-
rem 2.4.3, that in addition has Ew∼ν|w|k ≤ kCk for some C > 0 and for all k ≥ 1 (for instance,
ν can be any bounded or subgaussian distribution). Then, in the context above, there are
A,B > 0 depending only on C such that we may take ∆2k = A · kB · 22k.
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Using this together with the argument above gives the following limit theorem for the spec-
tral norm.

Theorem 2.5.2. In the context of Theorem 2.4.3, under the additional assumption on ν from
Lemma 2.5.1, ‖ 1√

dW
(d)‖ → 2 in probability.

Remark 2.5.3. In the same spirit as Remark 2.4.5, it is possible to loosen the moment condi-
tions to only require that the fourth moment is finite. In an interesting nuance, this optimal
and very general, but is slightly stronger than loosest possible condition for Theorem 2.4.3
(the weak convergence to the semicircle law) to hold. That is, there is a choice of entrywise
distribution ν with finite second moment but infinite fourth moment such that the eigen-
values of 1√

dW
(d) converge weakly to the semicircle law, but has divergent spectral norm,

‖ 1√
dW

(d)‖ =ω(1) with high probability.

2.6 Sketch of Marchenko-Pastur Limit Theorem

We give a brief discussion of the statement and proof by the moment method of the second
limit theorem we alluded to before.

Definition 2.6.1. For c ∈ (0,∞), define the measure µMP(c) by

dµMP(c)(x) = max
{

0,1− 1
c

}
δ0 + 1{x ∈ [λ−, λ+]} 1

2πc

√(
λ+
x
− 1

)(
1− λ−

x

)
dx,

where
λ± = λ±(c) = (1±

√
c)2 = 1+ c ± 2

√
c.

Theorem 2.6.2. Suppose that d = dn and m =mn are increasing sequences with dn/mn →
c ∈ (0,∞). Suppose G = G(d) ∼ N (0,1)⊗d×m and let M =M (d) := 1

mGG
> ∈ Rd×dsym . Then,

esd(M (d)) mode
------------------------------------------------------------------------→ µMP(c) for any mode ∈ {E,P, L2}.

To interpret the result, consider two cases. First, if c ≤ 1, then d ≤ m, so M is full
rank (generically) and we expect none of its eigenvalues to equal zero. That corresponds
to the delta mass δ0 being absent from the expression for µMP(c). In this case, the shape
of the limiting distribution is supported on the interval centered at 1 + c and of radius
2
√
c = 2

√
d/m. Its shape will be a general “blob” for specific finite c, but as c → 0, after

rescaling it will resemble a semicircle—recall that a semicircle of width 2
√
d/m is precisely

what we observed earlier in this setting in Figure 2.1.
Second, if c > 1, then d > m, so M is rank deficient (generically), having rank only m,

and should have a fraction of d−m
d = 1 − m

d = 1 − 1
c of its eigenvalues equal to zero, which

explains the presence and coefficient of δ0 in µMP(c). The remaining density has total mass
1
c , and is again centered at c+1 (where now c is the “dominant” part) and has radius 2

√
c. It

may be surprising at first that, as c → ∞, the limiting shape (with a different rescaling) will
also be a semicircle. But that is just because the spectrum of G>G is the same as that of
GG> up to padding with zeros, so there is a general symmetry between the continuous parts
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of µMP(c) and µMP(1/c) for all c (which is slightly obscured since we viewGG> as normalized
by m = d/c, changing the scaling of the continuous part).

The proof by moments is a more complicated version of our argument for Theorem 2.4.3.
We see the similarities and differences upon taking the first few steps:

1
d
Tr(Mk) = 1

dmk Tr((GG
>)k)

= ck

dk+1

∑

i1,...,ik∈[d]
(GG>)i1i2 · · · (GG>)iki1

= ck

dk+1

∑

i1,...,ik∈[d]
j1,...,jk∈[m]

Gi1j1Gi2j1Gi2j2Gi3j2 · · ·GikjkGi1jk .

Thus we will end up counting a kind of bipartite version of the closed walk structures that
appeared for Theorem 2.4.3. Moreover, the parameter c will appear as a weight given to
these objects, since the number of distinct j• indices that a given bipartite graph can be
labelled by will be of the form mb = db/cb, while the number of distinct i• indices will just
be of the form da. Still, it is possible to carry out these calculations and prove Theorem 2.6.2
with essentially the same tools we have seen already.

2.7 Stieltjes Transform and Resolvent Arguments

Finally, we sketch another approach to the semicircle and Marchenko-Pastur limit theorems,
that is somewhat “slicker” and easier to generalize in certain directions.

Definition 2.7.1. The Stieltjes transform of a probability measure µ is

Gµ(z) := E
X∼µ

[
1

z −X
]
,

defined on z ∈ C \ supp(µ). (This definition differs by a sign from the usual definition but is
used in some references like [PB20]; the function Gµ is sometimes called the Green’s function
also.)

Note that this is a kind of moment generating function: for |z| large enough and µ
compactly supported, we may expand

Gµ(z) = 1
z
E

1

1− X
z

=
∑

k≥0

1
zk+1

EXk, (2.7.1)

so in particular the ordinary moment generating function (ordinary in the technical sense of
lacking the 1/k! factors appearing in the expansion of E exp(zX)) is

1
z
Gµ

(
1
z

)
=
∑

k≥0

zkEXk.

It is then not surprising that it is possible to invert the Stieltjes transform to determine µ,
as with the moment generating function φµ(z) := EX∼µ exp(zX), which for purely imaginary
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z = it gives the characteristic function, which in turn for µ with a density are just the Fourier
transform of that density.

Indeed, we may give more intuition about the Stieltjes transform by considering its real
and imaginary parts: if z = s + it, then

Im(Gµ(z)) = E
X∼µ

Im
(

1
z −X

)

= E
X∼µ

Im(z −X)
|z −X|2

= − E
X∼µ

t
(X − s)2 + t2

Re(Gµ(z)) = E
X∼µ

s −X
(s −X)2 + t2

The imaginary part in particular has a nice interpretation: the Cauchy distribution with shape
parameter t, denoted Cauchy(t), has density

ρt(x) = 1
π

t
x2 + t2

for x ∈ R.

Thus, we have

Im(Gµ(s + it)) = −π E
X∼µ

ρt(s −X) = −π
∫
ρt(s − x)dµ(x).

Up to the constant in front, if µ has a density, then the latter is the density of X + Z for
X ∼ µ and Z ∼ Cauchy(t) at s (in other words, the convolution of the density of µ with
the density of Cauchy(t)). While a Cauchy distribution is very heavy-tailed (neither its first
or second moment are finite!), we still expect this convolution to approach the identity as
t → 0, so the following should not be surprising.

Theorem 2.7.2 (Stieltjes inversion formula). If cdf(µ) is continuous at a,b ∈ R with a < b,
then

µ([a, b]) = lim
t→0

∫ b
a
− 1
π

Im(Gµ(s + it))ds.

Moreover, if µ has a continuous density ρ(x), then

ρ(x) = lim
t→0
− 1
π

Im(Gµ(x + it)).

This implies, after some bookkeeping, the following results.

Theorem 2.7.3. The following hold:

1. If µ and ν are probability measures for which Gµ(z) = Gν(z) for all z ∈ C \ R, then
µ = ν .

2. If µn, µ are probability measures such that Gµn(z) → Gµ(z) for all z ∈ C \ R, then
µn → µ (in the sense of weak convergence).
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Figure 2.6: Plots of the real and imaginary parts of GµSC(z) for various choices of Im(z) > 0
as Re(z) varies. Observe that the function is only defined away from [−2,2], and that
Im(GµSC(z)) indeed approximates the semicircle density as Im(z) → 0. The branch cut of
the function z ,

√
z2 − 4 is the interval [−2,2]; while Re(GµSC(z)) has a well-defined limit

on this interval, Im(GµSC(z)) changes sign and thus the function cannot be extended to the
interval.

3. If µn are random probability measures and µ is a deterministic one and Gµn(z)
P
------→ Gµ(z)

for all z ∈ C \R, then µn
P
------→ µ (that is, with weak convergence in probability).

The upshot is that we may prove limit theorems by proving convergence of Stieltjes
transforms. The final insight making this useful is that the Stieltjes transform of an empiri-
cal distribution of eigenvalues also has a natural interpretation in matrix algebra:

Gesd(W )(z) = 1
d

d∑

i=1

1
z − λi(W )

= 1
d
Tr(zId −W )−1.

The matrix (zId−W )−1 appearing here is called the resolvent and has many uses in random
matrix theory.

2.7.1 Sketch of Second Proof of Semicircle Limit Theorem

Let us sketch how working with the Stieltjes transform would give an alternative proof of the
semicircle limit theorem. First, the following is a straightforward calculation of an integral.

Proposition 2.7.4. GµSC(z) = 1
2(z −

√
z2 − 4) for all z ∈ C \ [−2,2].

We will also use the following basic linear algebra fact.

Proposition 2.7.5 (Schur complement for matrix inversion). Suppose that A ∈ Rm×m, B ∈
Rm×n, C ∈ Rn×m, and D ∈ Rn×n. If D and S :=A−BD−1C are invertible, then

[
A B
C D

]−1

=
[

S−1 −S−1BD−1

−D−1CS−1 D−1 +D−1CS−1BD−1

]
.
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The same also holds for complex-valued matrices.

This scary-looking result is just keeping track of the Gaussian elimination derivation of the
matrix inverse; the matrix S is called the Schur complement of D.

Now, suppose that W (d) ∼ Wig(µ,d) for some µ of mean zero and variance 1. Write
Ŵ (d) := 1√

dW
(d). We have

Gesd(Ŵ (d))(z) =
1
d

d∑

i=1

((zId − Ŵ (d))−1)ii

and, using Proposition 2.7.5 to derive the value of the single entry (i, i) of this matrix inverse,

= 1
d

d∑

i=1

1

z − ŵ>i (zId−1 − Ŵ (d)
∼i )−1ŵi

,

where Ŵ (d)
∼i denotes the matrix with the ith row and column both removed, and ŵi is the

ith row of Ŵ (d) with the ith entry removed (leaving a (d−1)-dimensional vector). Note also
that we are using Ŵ (d)

ii = 0, though this is not an essential assumption here. The next step
is to note that, by symmetry, the terms of this sum are identically distributed. While they
are not independent, we might hope they are weakly dependent, justifying the law of large
numbers approximation (also sometimes called a “self-averaging” property in such contexts)

≈ E
1

z − ŵ>1 (zId−1 − Ŵ (d)
∼1 )−1ŵ1

Now, if we believe the random variable in the denominator is concentrated around its mean,
we should also be able to approximate

≈ 1

z − Eŵ>1 (zId−1 − Ŵ (d)
∼1 )−1ŵ1

Finally, note that ŵ1 and (zId−1 − Ŵ (d)
∼1 )−1 are independent. Thus, since ŵ1 has indepen-

dent entries that are centered and have variance 1/d, expanding this quadratic form lets us
evaluate

= 1

z − 1
d
∑d−1
i=1 E((zId−1 − Ŵ (d)

∼1 )−1)ii

= 1

z − d−1
d EGesd(Ŵ (d−1))(z)

.

We have argued both that these Stieltjes transforms, evaluated at a given z, converge to
deterministic numbers, and that those numbers should satisfy a “self-consistency” equation

as d→∞. Namely, we expect Gesd(Ŵ (d))(z)
P
------→ G(z), for G(z) a solution of

G(z) = 1
z −G(z).

Solving this quadratic equation gives precisely G(z) = GµSC(z).
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Remark 2.7.6. Actually, solving the quadratic equation would reach a juncture where we
must choose one of two signs in G(z) = 1

2(z ±
√
z2 − 4). To choose the right sign, we may

refer back to the moment generating function expression (2.7.1). This leads us to expect that,
as z → 0, G(z) should scale like 1/z (this is true for any Stieltjes transform, not just that of
the semicircle law). Above, the two choices of signs give the scalings G(z) = 1

2(z±
√
z2 − 4) =

z
2(1±

√
1− 4

z2 ) ≈ z
2(1± (1− 2

z2 )), and only choosing the minus sign gives the correct behavior.

The key to making this precise is to argue, slightly differently, that with high probability
we have ŵ>1 (zId−1− Ŵ (d)

∼1 )−1ŵ1 ≈ 1
d Tr(zId−1− Ŵ (d)

∼1 )−1, which makes rigorous the approx-
imate recursion alluded to above. In fact, it is possible to show that with high probability
ŵ>1Xŵ1 ≈ 1

d Tr(X); this is a general property of quadratic forms with well-behaved random
vectors. One strong version of such a result is the Hanson-Wright inequality; see [RV13].

2.8 Exercises

Exercise 2.8.1. Let G ∈ Rd×d have i.i.d. entries distributed as N (0,1) (with no symmetry
constraint). You will study the random variable |det(G)|, one interpretation of which is the
volume of the random parallelopiped generated by d independent standard Gaussian vectors.

1. Show that E[|det(G)|] ≤ √d! . (Do something much simpler than using Part 2 below.)

2. Let g(k) ∼ N (0,Ik) for k = 1, . . . , d, drawn independently (that is, g(k) is a standard
Gaussian vector in Rk). Show that |det(G)| has the same law as

∏d
k=1 ‖g(k)‖.

(Hint: Consider the QR decomposition of G.)

3. Show that, for a constant c > 0, E[|det(G)|] ≥ c
d

√
d! , almost matching the upper bound

of Part 1.

(Hint: Prove that
√
x ≥ 1

2(1+x−(x−1)2) for all x ≥ 0. Apply this with x := ‖g(k)‖2/k.)

4. Show that, for all square G (not random), |det(G)| = ∏d
i=1σi(G), where σi are the

singular values. By computing E|det(G)|2 (for random Gaussian G again now), make
a heuristic but intuitively justified prediction for the value of

lim
d→∞

E


1
d

d∑

i=1

log
(
λi
(

1
d
G>G

))
 . (2.8.1)

Confirm that your prediction is compatible with the Marchenko-Pastur limit theorem.

(Hint: Make a heuristic leap of the form E[log(· · · )] ≈ log(E[· · · ]). Don’t be afraid. If
you like, speculate about when you expect this to be accurate.)

Exercise 2.8.2. This exercise will concern the Gaussian orthogonal ensemble (GOE) from Def-
inition 3.2.1. Note that W ∼ GOE(n) is almost surely a symmetric matrix, and thus has real
eigenvalues λ1 ≥ · · · ≥ λn, whose distribution we will study.
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Below, we write χ2(d,σ 2) for the law of ‖g‖2 = g2
1 + · · · + g2

d for g ∼N (0, σ 2Id) (the usual
χ2 distribution, but allowing for rescaling). Similarly, we write χ(d,σ 2) for the law of ‖g‖.

1. One small theoretical task: show that the eigenvalue spacing λ1 − λ2 ≥ 0 when W ∼
GOE(2) (a 2×2 matrix) has the law χ(2, σ 2) for some σ 2 (calculate and give this value).
Look up and write down the density of this distribution—you will need it later.

2. On the computer, sample W ∼ GOE(n) for a sequence of growing n. Go at least up
to n = 1000. Plot histograms of the eigenvalues λ1 ≥ · · · ≥ λn for a few growing n
and make sure you observe convergence to a semicircle shape. Also plot λ1 and λn
versus n, taking the mean over several random trials for each value of n and including
error bars. Make a prediction about the typical scaling of λ1 and λn (each of the form
Eλi ∼ ainbi for a,b ∈ R), each supported by a convincing plot.

3. Now fix a large n, at least n = 1000 (the larger the better), and plot a histogram of
the distribution of the bulk spacing λn/2 − λn/2+1 over many independent draws of W
(at least 2000). Come up with a procedure to try to find a good σ 2 to approximate this
distribution by χ(2, σ 2) (i.e., to approximate the distribution of spacings for large n by
a rescaling of the closed form distribution of spacings you found for n = 2 in Part 1).
You can define a reasonable “loss function” of σ 2 and use any optimization library your
language has to minimize it, for instance. Draw a plot to illustrate the quality of the fit.

4. Consider another distribution of (λ1, . . . , λn) where λi are chosen uniformly at ran-
dom independently in the interval that you conjectured [λn, λ1] to scale like in Part 1
(that is, n independent draws from a distribution of the form Unif([annbn , a1nb1])).
Repeat the spacing experiment: fix the same n as in Part 3, sample n independent
numbers λ1, . . . , λn uniformly at random in the predicted interval, sort them to form
λ̃1 ≤ · · · ≤ λ̃n, and plot a histogram of the spacing λ̃n/2−λ̃n/2+1 over many independent
trials of this procedure. Comment on the differences between the distribution of actual
eigenvalue spacings and the distribution of spacings under this alternative model. What
does this say about the structure of the eigenvalues? (Focus on the behavior of these
distributions near zero.)

5. Download a list of the imaginary parts of the first 100 000 non-trivial zeros of the Rie-
mann zeta function (the famous Riemann Hypothesis conjectures that the real parts of
all such zeros are equal to 1

2 ) from this website:

https://www-users.cse.umn.edu/~odlyzko/zeta_tables/zeros1

Calculate the differences between consecutive values (the distances between consecutive
zeros along the imaginary axis.). Plot a histogram of the spacings. You should observe
similar qualitative phenomena to before. Repeat the procedure you chose before to find
σ 2 to fit the density of χ(2, σ 2) to this distribution. Find another d such that χ(d,σ 2)
for some σ 2 achieves an exceptionally good fit. Illustrate the best choice of d (and σ 2)
by plotting this density over the histogram of spacings of zeros.

Exercise 2.8.3. We have seen that, if ν has mean zero, variance 1, and all moments finite,
then W (d) ∼ Wig(d, ν) have esd( 1√

dW
(d)) converging weakly in probability to µSC. That
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is, for any f : R → R smooth and of compact support, 1
d
∑d
i=1 f(λi(

1√
dW

(d))) → ∫
fdµSC in

probability (we considered more general f , but only worry about convergence in probability
for these f for this problem). In this problem, you will probe what conditions on ν are really
necessary for what kinds of limit theorems.

1. Let A,B ∈ Rd×dsym . Show the perturbation inequality

min
π permutation of [d]

d∑

i=1

(λi(A)− λπ(i)(B))2 ≤ ‖A−B‖2
F .

You may use the Birkhoff–von Neumann theorem, which states that the set of doubly
stochastic d × d matrices (i.e., P ∈ Rd×d such that Pij ≥ 0 for all i, j ∈ [d], ∑j Pij = 1
for all i ∈ [d], and

∑
i Pij = 1 for all j ∈ [d]) is the convex hull of the set of the d × d

permutation matrices (those P with exactly one 1 in each row and each column and all
other entries 0, of which there are d!). You may also use that a linear function over a
convex polytope is maximized at one of the vertices.

(Hint: Write the spectral decomposition of A and B. Consider the matrix of 〈ui,vj〉2
for ui eigenvectors of A and vj eigenvectors of B.)

2. Prove that, for arbitrary numbers λ1 ≥ · · ·λd and ρ1 ≥ · · · ≥ ρd,

min
π permutation of [d]

d∑

i=1

(λi − ρπ(i))2 =
d∑

i=1

(λi − ρi)2.

3. Let f be a smooth and compactly supported function. Show that there is a constant
K = K(f) depending only on f such that, for any A,B ∈ Rd×dsym ,

∣∣∣∣∣∣
1
d

d∑

i=1

f(λi(A))− 1
d

d∑

i=1

f(λi(B))

∣∣∣∣∣∣ ≤
K√
d
‖A−B‖F .

4. Prove that Wigner’s semicircle limit theorem (convergence in probability of averages
of smooth and compactly supported functions, as stated above) holds only under the
assumption that ν has mean 0 and variance 1.

(Hint: Define a version ofW =W (d) where entries Wij are replaced with the centered
truncations Wij1{|Wij| ≤ C} − E[Wij1{|Wij| ≤ C}] for a large C and use the limit
theorem we have shown already, as cited above, on this matrix.)

5. Find a choice of ν that has mean 0 and variance 1 but such that, forW (d) ∼Wig(d, ν),
we have limd→∞ P[‖ 1√

dW
(d)‖ ≥ Cd] = 1 for some diverging sequence Cd → ∞. Conse-

quently, the Wigner edge or norm limit theorem (the statement that ‖ 1√
dW

(d)‖ → 2 in
probability) does require further moment assumptions on ν .

(Hint: Prove and use that ‖W ‖ ≥ maxi,j∈[d] |Wij|. As we have mentioned, it is known
that the Wigner edge limit theorem does hold provided that the fourth moment of ν is
finite, so your choice must not have that property.)
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Exercise 2.8.4. This problem is a continuation of Exercise 1.6.5. Further problems in the
sequence will have you derive powerful consequences of these ideas for random matrices. For
now, you will derive some more general tools.

1. Suppose F : Rd → R is a smooth function with max{|F(x)|,‖∇F(x)‖2
2,‖∇2F(x)‖2

F} ≤
C(1+‖x‖)K for some C,K > 0 and all x ∈ Rd, where ∇2F is the d×d Hessian matrix of
second derivatives. Let Σ,Λ ∈ Rd×dsym be positive semidefinite. Define Σ(t) := (1−t)Σ+tΛ
for t ∈ [0,1], and write

f(t) := E
g∼N (0,Σ(t))

F(g).

That is, we are considering the value of an expectation of a general function of a Gaus-
sian vector as the covariance matrix moves along a line in matrix space. Show that the
derivative of this value is

f ′(t) = 1
2

〈
Λ− Σ, E

g∼N (0,Σ(t))
∇2F(g)

〉
.

Here, 〈A,B〉 = Tr(AB) =∑i,j AijBij is the Frobenius inner product.

You may differentiate under the expectation (i.e., bring a derivative inside an expecta-
tion) without justification, but you should consider on your own time what the justifica-
tion would be.

(Hint: If g ∼ N (0,Σ) and h ∼ N (0,Λ) independently, construct a Gaussian vector
with covariance Σ(t) to make differentiating under the expectation easier. Then, use
Exercise 1.6.5.)

2. Show that, if F as above is also convex, and g ∼ N (0,Σ) and h ∼ N (0, Γ) are inde-
pendent Gaussian vectors (that is, the entries of g may be correlated with one another,
and likewise for h, but entries of g are independent of entries of h) for any Σ, Γ ∈ Rd×dsym

positive semidefinite, then
EF(g) ≤ EF(g +h).

Informally, expectations of convex functions of Gaussians are only increased by adding
noise. Show that the same also holds for F(x) = maxi∈[d]xi, though it is not smooth.

(Hint: Law(g + h) = N (0,Λ) for some Λ—write this out and use Part 1. For the last
part, consider the “soft-max” function F(x) = β−1 log(

∑d
i=1 exp(βxi)) and take β→∞.)

3. Suppose that g ∼N (0,Σ) and h ∼N (0,Λ) are arbitrary centered Gaussian vectors as
in Part 1. Suppose that, for all i, j ∈ [d], we have E(gi − gj)2 ≤ E(hi − hj)2. Show that

Emax
i∈[d]

gi ≤ Emax
i∈[d]

hi.

(Hint: Expand the condition on g and h into a condition on Σ and Λ. Again consider
the soft-max function and use Part 1, explicitly calculating the Hessian.)
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3 | Free Probability

3.1 Warmup: Central Limit Theorem by Renormalization

We suggested above a curious relationship between the CLT and the semicircle limit theorem
to do with the moments of the limiting distributions: in the former case they count all
matchings, and in the latter case only non-crossing matchings. As an entry point into free
probability, let us make our way towards a more precise analogy between the two theorems.

To do this, we sketch another approach to the CLT. Consider the operation S mapping
probability measures on R to probability measures on R where

S(µ) := Law
(
X1 +X2√

2

)
for X1, X2

iid∼ µ.

We then have that iterating this map gives

S(k)(µ) := Law
(
X1 +X2 + · · · +X2k√

2k

)
for Xi

iid∼ µ,

and thus the CLT (modulo the issue of the number of summands being restricted to powers
of 2, which we will not deal with here) amounts to the elegant statement

S(k)(µ) ----------------------------------------------------------------------------→
k→∞

N (0,1)

for any µ with mean zero and variance 1. Indeed, S(N (0,1)) =N (0,1), so this perspective
lets us view the CLT as a fixed point theorem about the operation S.

Moreover, we may use this fixed point property to derive the moments of N (0,1), if
we did not know them already. Suppose µ is some probability measure with mean zero,
variance 1, and S(µ) = µ, and write mk for the kth moment of µ. We may then derive

mk = E
X∼µ

Xk

= E
X1,X2∼µ

(
X1 +X2√

2

)k

= 1
2k/2

k∑

a=0

(
k
a

)
EXa1X

k−a
2

= 1
2k/2

k∑

a=0

(
k
a

)
mamk−a

= 2
2k/2

mk + 1
2k/2

k−1∑

a=1

(
k
a

)
mamk−a,
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whereby we may solve to find

mk = 1
2k/2 − 2

k−1∑

a=1

(
k
a

)
mamk−a (3.1.1)

for all k ≥ 3, with the “initial conditions” m0 = 1, m1 = 0, m2 = 1. You may check that,
indeed, the solution to this recursion gives the moments ofN (0,1) discussed before.

To summarize, the limiting distribution µ = N (0,1) appearing in the CLT is uniquely
determined by the following simple properties:

E
X∼µ

X = 0,

E
X∼µ

X2 = 1,

S(µ) = µ.

For more on this approach, including precise proofs of the CLT by this kind of argument
(using, curiously, the entropy of a probability measure as a “potential” or “Lyapunov func-
tion” that is monotonically increasing with respect to applications of the map S), see the
original reference [Lin59], the more recent [Bar86, Ans99, ABBN04, Ott23] or the textbook
treatment in [KS07, Section 10.3].

3.2 Tangled Joint Moments

We might wonder if we can take the same approach as above to the semicircle limit theorem
(our Theorem 2.4.3), and learn a fixed point interpretation of the limit theorem and a similar
characterization of the semicircle law. Indeed, the natural Gaussian random symmetric
matrix is also a fixed point of S, if we view S now as acting on probability measures over
random symmetric matrices.

Definition 3.2.1 (Gaussian orthogonal ensemble). The Gaussian orthogonal ensemble (GOE),
denoted GOE(d), is the law of a d× d symmetric matrix W where Wij = Wji ∼ N (0,1) and
Wii ∼N (0,2), with all entries with i ≤ j distributed independently.

The reason for the specific scaling of the diagonal of the GOE is as follows.

Proposition 3.2.2. For any Q ∈ O(n), if W ∼ GOE(d), then Law(W ) = Law(QWQ>).

On the other hand, the diagonal does not contribute materially to the limiting spectral mo-
ments, andW (d) ∼ GOE(d) still satisfy the conclusion of Theorem 2.4.3, i.e., esd( 1√

dW
(d))→

µSC. And, we indeed have S(GOE(d)) = GOE(d).
Suppose now that we have some sequence of probability measures µ(d) on Rd×dsym which

satisfy S(µ(d)) = µ(d) and which converge in expected moments after rescaling as we do for
Wigner matrices to some µ,

lim
d→∞

1
d

E
W∼µ(d)

Tr
(

1√
d
W
)k
=mk = EX∼µ[Xk].
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Can we show, without using the structure of the GOE specifically, that, if m2 = 1, then the
mk can only be the moments of µ = µSC, coinciding with the limit achieved by the sequence
µ(d) = GOE(d) (and by more general Wigner matrices)?

You might immediately notice an issue: the conditions

E
X∼µ

X = 0,

E
X∼µ

X2 = 1,

S(µ(d)) = µ(d).

in fact do not uniquely characterize the GOE or its semicircle limit. These conditions are
also satisfied by a sequence of laws µ(d) of growing diagonal matrices of i.i.d. Gaussians,
replicating in the matrix setting the scalar CLT setup. Namely, consider D(d) ∈ Rd×dsym diag-
onal with Dii ∼ N (0, d) independently. Let us write µ(d) = Diag(N (0, d)) for this model.
Then, these laws satisfy S(µ(d)) = µ(d), and the limiting distribution (in expected moments)
is µ = N (0,1). On the other hand, the µ(d) = GOE(d) also satisfy S(µ(d)) = µ(d), while the
limiting distribution is the semicircle µ = µSC. (You may check that both limiting distribu-
tions also satisfy the mean and variance conditions above.)

Thus understanding the semicircle limit theorem as a fixed point theorem will require a
different approach. It is instructive, though, to see how exactly this ambiguity arises when
we try to imitate the above derivation of a combinatorial recursion. Let W =W (d),W1 =
W (d)

1 ,W2 =W (d)
2 ∼ µ(d) independently; we leave the superscripts implicit below to lighten

the notation. As before, write

mk := lim
d→∞

E
1
d
Tr
(

1√
d
W
)k
.

Following the idea from the treatment of the CLT, we expand:

mk = lim
d→∞

E
1
d
Tr
(

1√
d
W
)k

= lim
d→∞

1
dk/2+1

ETrW k

= lim
d→∞

1
dk/2+1

ETr
(
W1 +W2√

2

)k

= 1
2k/2

∑

a1,...,ak∈{1,2}
lim
d→∞

1
dk/2+1

ETrWa1 · · ·Wak . (3.2.1)

Unlike in the scalar case, the Wi do not necessarily commute. In fact, that is the key
difference between the two cases above: the diagonal choice of Wi do commute, while the
GOE-distributed choice do not. But let us continue and see how this affects the calculation
very concretely. There are a few terms above that we can compute directly.

• Most simply, we have by definition

lim
d→∞

1
dk/2+1

ETr(W k
1 ) = lim

d→∞
1

dk/2+1
Tr(W k

2 ) =mk.
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• More generally, you may also show that, for both of the above two choices of µ(d) (GOE
and diagonal Gaussian) as well as for quite general classes of “sufficiently symmetric”
models, EW k = 1

d(ETrW
k)Id. Thus we can handle terms of the form

lim
d→∞

1
dk/2+1

ETr(W a
1 W

k−a
2 ) = lim

d→∞
1

dk/2+1
· 1
d2
· ETr(W a

1 ) · ETr(W k−a
2 ) ·Tr(Id)

= lim
d→∞

1
da/2+1

· ETr(W a
1 ) ·

1
d(k−a)/2+1

ETr(W k−a
2 )

=mamk−a. (3.2.2)

For µ(d) the diagonal Gaussian law, all terms in (3.2.1) may be treated by the above rule,
since the Wi commute and may be gathered into like terms. By applying this rule, we find
a recursion for the mk, which is just the same one as in (3.1.1), describing the moments of
N (0,1).

But when µ(d) is the GOE, this rule is not enough to recursively compute all the terms
appearing in (3.2.1). We can even throw in one more rule:

• By the cyclic property of trace, terms of the form Tr(W a
1 W

k−a−b
2 W b

1 )may be brought
into the above form as

Tr(W a
1 W

k−a−b
2 W b

1 ) = Tr(W a+b
1 W k−a−b

2 ),

and similarly with the roles of W1 and W2 reversed.

This lets us treat a few more terms, but still not all of them. Let us see that some other
reasoning specific to the GOE is necessary.

Example 3.2.3. Consider k = 4. We know already that, for the GOE, m4 = Cat2 = 2. But
let us see if we can derive this recursively from (3.2.1), supposing we know already that
m0 = 1, m1 =m3 = 0, and m2 = Cat1 = 1 (we are substituting in moments of the semicircle
distribution here). We have k/2+ 1 = 3 and 2k/2 = 4, so that equation reads

m4 = 1
4

∑

a1,a2,a3,a4∈{1,2}
lim
d→∞

1
d3
ETr(Wa1Wa2Wa3Wa4).

Note that, by symmetry, all terms where each Wi occurs an odd number of times (1 or 3,
in this case) equal zero. Our above observations give values for the limits of most of the
remaining terms, as shown in Table 3.1. The remaining two terms are

lim
d→∞

1
d3
ETr(W1W2W1W2),

and the similar term with W1 and W2 having reversed roles. In fact both are equal by the
cyclic property of the trace. Since the previous terms already contribute 2 tom4, we expect to
have

lim
d→∞

1
d3
ETr(W1W2W1W2) = 0.

This is true: you may check it by expanding this “mixed moment” in a similar fashion
to our treatment of the moments of a single Wigner matrix in Lemma 2.4.7. But it cannot
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a1 a2 a3 a4 limd→∞ ETr(Wa1Wa2Wa3Wa4)/d3

1 1 1 1 2 =m4

2 2 2 2 2 =m4

1 1 2 2 1 =m2 ·m2

2 2 1 1 1 =m2 ·m2

1 2 2 1 1 =m2 ·m2

2 1 1 2 1 =m2 ·m2

1 2 1 2 0 ?
2 1 2 1 0 ?

Table 3.1: The limiting expectations of traces of various words of length 4 in two indepen-
dent GOE matrices W1 and W2, as discussed in Example 3.2.3.

be derived without some reasoning specific to the GOE; indeed, it is not true of the diagonal
Gaussian matrix discussed above. Indeed, you may check that, if insteadWi ∼ Diag(N (0, d))
independently, then

lim
d→∞

1
d3 E

Wi∼Diag(N (0,d))
Tr(W1W2W1W2) = lim

d→∞
1
d3 E

Wi∼Diag(N (0,d))
Tr(W 2

1W
2
2 ) = 1.

That this term is negligible in the GOE case does not follow merely from the indepen-
dence of W1 and W2 and the behaviors of their individual moments—we must be using
some other relationship between these two matrices. While we only have the blunt tool
of expanding traces of products available to derive this behavior for now, you might think
that at least the overall behavior of the recursion is simple in that all “tangled” joint mo-
ments as above—those that cannot be reduced to Tr(W a

1 W
k−a
2 ) by the cyclic property of

the trace—are negligible. But that is also wrong, as the following example shows.

Example 3.2.4. Consider k = 8. The expansion of m8 as above will contain the following
term:

lim
d→∞

1
d5
ETr(W 2

1W
2
2W

2
1W

2
2 ).

This limit is non-zero for W1,W2 ∼ GOE(d), as you may verify by considering terms in the
expanded trace of the form

E(W1)ij(W1)ji(W2)ik(W2)ki(W1)i`(W1)`i(W2)im(W2)mi = 1

with i, j, k, `,m distinct, of which there are Ω(d5) in the expanded trace.

Our plan to understand the semicircle limit theorem as a fixed point theorem seems to
have failed: the above examples are forcing us to expand traces in sums of products of
entries to understand some terms in the fixed point expansion, and of course once we are
willing to do that we might as well reproduce our original proof of convergence in expected
moments to the semicircle law. Yet, without such direct moment calculations we have no
way (yet) to determine which terms in the fixed point expansion contribute in the d→∞ limit
or how much they contribute. It seems that we need to somehow change the formulation
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of our putative fixed point theorem in a way that “picks out” the behavior of GOE matrices
rather than diagonal Gaussian matrices.

We will see below that free probability is precisely the theory of how traces of all “words”
ofW1 andW2 behave in this kind of situation of independent GOE matrices, and more gen-
erally for pairs of “very non-commuting matrices” in a suitable sense. Note that this property
(or at least just commutativity vs. non-commutativity) distinguishes a pair of independent
GOE matrices from a pair of independent diagonal Gaussian matrices. Moving in this di-
rection, below we will introduce the main definition behind free probability and see how it
recursively determines the values of expected traces of words that we ran into above.

3.3 Asymptotic Freeness

The main idea is as follows. It is easier to cross-reference to the previous discussion if we
think not of W ∼ GOE but of Ŵ := 1√

dW (and similarly defining Ŵ1,Ŵ2), whose bulk
eigenvalues scale as O(1). The below definition, which we will see momentarily is satisfied
by the Ŵi, may then be viewed as a wide-ranging generalization of our observation that
limd→∞

1
dETr(Ŵ1Ŵ2Ŵ1Ŵ2) = 0.

Definition 3.3.1. Let X =X(d) ∈ Rd×dsym and Y = Y (d) ∈ Rd×dsym be random matrices satisfying
the convergences of moments

lim
d→∞

1
d
ETrXk =mk,

lim
d→∞

1
d
ETrY k = nk.

(Note that there are no other assumptions on their joint distribution: they can be deterministic,
random but correlated, etc.) We say that the pair of sequences (X ,Y ) are asymptotically free
if, for all k1, . . . , kt ≥ 1 and `1, . . . , `t ≥ 1, we have

lim
d→∞

1
d
ETr

(
(Xk1 −mk1Id)(Y

`1 −n`1Id) · · · (Xkt −mktId)(Y
`t −n`tId)

) = 0. (3.3.1)

The point here is that each term has limiting trace zero:

lim
d→∞

1
d
ETr(Xka −mkaId) = lim

d→∞
1
d
ETr(Y `b −n`bId) = 0.

Asymptotic freeness states that you cannot interleave such factors and somehow generate
an “alignment” that makes the trace become substantial in the limit.

You should think of the typical situation where asymptotic freeness breaks down as that
where X and Y commute. In that case, we could rewrite, e.g.,

lim
d→∞

1
d
ETr

(
(Xka −mkaId)(Y

`b −n`bId)(Xka −mkaId)(Y
`b −n`bId)

)

= lim
d→∞

1
d
ETr

(
(Xka −mkaId)

2(Y `b −n`bId)2
)

= lim
d→∞

1
d
E〈(Xka −mkaId)

2, (Y `b −n`bId)2〉,
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where now the two matrices whose inner product we are taking are positive semidefinite and
typically have eigenvalues of order O(1), whereby this limit will typically be non-zero (for
instance, you could engineer a situation where both of (Xka −mkaId)2 and (Y `b −m`bId)

2

have all eigenvalues at least ε > 0). Generally, you should hold the intuition that

“ freeness is maximal non-commutativity. ”

The following (completely non-obvious and quite difficult) result captures the other side
of this intuition, guaranteeing the asymptotic freeness of very many sequences of “nice”
random matrices whose eigenvectors are randomized, including the ones we were struggling
with before.

Theorem 3.3.2 (Voiculescu). Let X = X(d),Y = Y (d) be sequences of random matrices

such that esd(X(d)) E mom.
-------------------------------------------------------------------------------------------------------------------------→ µ and esd(Y (d)) E mom.

-------------------------------------------------------------------------------------------------------------------------→ ν . Let Q = Q(d) ∼ Haar(O(d)), drawn
independently of X and Y . Then, the sequences (X ,QY Q>) are asymptotically free.

Note that indeedQY Q> has the same eigenvalues as Y , but uniformly random eigenvectors
that are independent of those eigenvalues.

Corollary 3.3.3. Let X(d)
0 ,Y (d)

0 ∼ GOE(d) be independent, and let X(d) := 1√
dX

(d)
0 , Y (d) :=

1√
dY

(d)
0 . Then, the sequences (X ,Y ) are asymptotically free, with the mk = nk the moments

of the semicircle law.

These results are extremely powerful for the kinds of calculations we were struggling
with above, allowing us to circumvent any expansions of traces in matrix entries.

Example 3.3.4. It immediately follows that limd→∞
1
dETr(Ŵ1Ŵ2Ŵ1Ŵ2) = 0, by taking t = 2

and k1 = k2 = `1 = `2 = 1, noting that m1 = 0.

Example 3.3.5. We may also rederive the factorization of traces of “separable” words

lim
d→∞

1
d
ETr(Ŵ k

1 Ŵ
`
2 ).

Indeed, expanding the associated “centered” trace that asymptotic freeness controls, we have

0 = lim
d→∞

1
d
ETr

(
(Ŵ k

1 −mk)(Ŵ `
2 −m`)

)

= lim
d→∞

1
d
ETr(Ŵ k

1 Ŵ
`
2 )−mkm` −mkm` +mkm`,

which immediately implies

lim
d→∞

1
d
ETr(Ŵ k

1 Ŵ
`
2 ) =mkm`,

as we derived earlier.
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Example 3.3.6. Finally, we may also use asymptotic freeness to treat in a simple way the ex-
ample from earlier of a non-zero tangled joint moment, C := limd→∞

1
dETr(Ŵ

2
1 Ŵ

2
2 Ŵ

2
1 Ŵ

2
2 ) ≠

0. Indeed, by fully expanding the product of sums, asymptotic freeness implies

0 = lim
d→∞

1
d
ETr((Ŵ 2

1 −m2Id)(Ŵ 2
2 −m2Id)(Ŵ 2

1 −m2Id)(Ŵ 2
2 −m2Id))

= C −m2(4m2m4)+m2
2(4m2

2 + 2m4)−m3
2(4m2)+m4

2

= C − 2m2
2m4 +m4

2,

where we have used Example 3.3.6 on the terms other than C . Thus,

C = lim
d→∞

1
d
ETr(Ŵ 2

1 Ŵ
2
2 Ŵ

2
1 Ŵ

2
2 ) = 2m2

2m4 −m4
2,

and if we know that m2 = 1 and m4 = 2, we would find that C = 3.

Much more generally, the following holds, though explicitly writing down the polynomi-
als involved is difficult without further machinery.

Proposition 3.3.7. Suppose that X ,Y are an asymptotically free sequence, as in Defini-
tion 3.3.1. Then, the value of any limiting mixed moment

lim
d→∞

1
d
ETr

(
Xk1Y `1 · · ·XktY `t

)
(3.3.2)

is a polynomial of the limiting individual moments ma, nb.

Proof. By induction on t and expanding the asymptotic freeness condition as in the exam-
ples above.

Thus we have, to some extent, redeemed our approach to the semicircle theorem: ap-
plying Proposition 3.3.7 together with Corollary 3.3.3, we get a recursion for the semicircle
moments roughly in the style of the one we derived for the Gaussian moments. Sadly, the
recursion is not in closed form, and seems hard to write down directly in closed form. We
will briefly see later other tools for actually computing with these kinds of identities.

But Proposition 3.3.7 is much deeper than just that. Think of the traces of all words as
the “spectral mixed moments” of X and Y . Then, the Proposition says that, under asymp-
totic freeness, the “spectral joint distribution” of X and Y (the spectral mixed moments) is
fully determined by the individual “spectral distributions” (the individual spectral moments)
of X and Y .

You should view this as parallel to the scalar case. If X and Y are scalar random variables,
then their individual distributions determine their joint distribution if and only if they are
independent. Thus asymptotic freeness is one version of scalar independence for the spectra
random matrices (for this reason it is also sometimes called free independence). In fact,
what we have seen is that there are two incompatible kinds of independence that random
matrices can have: the individual spectral moments will determine the joint ones if X and
Y commute and are independent as random vectors, or ifX and Y are asymptotically free,
but the resulting joint distributions will be different! We delve further into a special case of
this below.
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3.4 Free Convolutions

3.4.1 Additive Free Convolution

Let us continue to think about the consequences of asymptotic freeness at an abstract level.
The following direct consequence of Proposition 3.3.7 will be critical.

Corollary 3.4.1. Suppose thatX ,Y are an asymptotically free sequence, as in Definition 3.3.1.
Then, there is a polynomial pk (whose coefficients are universal constants not depending on
X , Y , or their momentsma and nb) such that the value of any limiting moment of X +Y is

lim
d→∞

1
d
ETr(X +Y )k = pk(m1, . . . ,mk, n1, . . . , nk). (3.4.1)

The proof is just to use the same procedure from Example 3.3.6 and underlying Proposi-
tion 3.3.7 inductively on every term formed by expanding Tr(X +Y )k.

The following is not hard to show, but requires going into some technical hinterlands
that we will not have time for.

Proposition 3.4.2. In the setting of Corollary 3.4.1, if mk are the moments of a compactly
supported measure µ and nk are the moments of a compactly supported measure ν , then
pk(m1, . . . ,mk, n1, . . . , nk) are the moments of another compactly supported measure, which
is also uniquely determined by its moments.

Definition 3.4.3 (Additive free convolution). We write µêν for the measure discussed above,
called the additive free convolution of µ and ν .

Thus what we have shown is the following remarkable fact.

Theorem 3.4.4. Suppose thatX ,Y are an asymptotically free sequence, as in Definition 3.3.1,

where esd(X) E mom.
-------------------------------------------------------------------------------------------------------------------------→ µ and esd(Y ) E mom.

-------------------------------------------------------------------------------------------------------------------------→ ν . Then, esd(X +Y ) E mom.
-------------------------------------------------------------------------------------------------------------------------→ µ ê ν .

This may seem a bit abstract, but you can check that it is really possible to compute
directly any order moment of µ ê ν that you want, though the formulas become long. Here
are the first few:

E
λ∼µêν

λ0 = p0(m,n) = 1,

E
λ∼µêν

λ1 = p1(m,n) =m1 +n1,

E
λ∼µêν

λ2 = p2(m,n) =m2 + 2m1n1 +n2,

E
λ∼µêν

λ3 = p3(m,n) =m3 + 3m2n1 + 3m1n2 +n3,

E
λ∼µêν

λ4 = p4(m,n) =m4 + 4m3n1 + 4m2n2 + 4m1n3 +n4 + 2m2n2
1 + 2m2

1n2 − 2m2
1n2

1.

It is helpful and explains the name of free convolution to contrast it with ordinary con-
volution, which should be familiar from scalar probability. We use the notation “⊕” instead
of the more conventional “∗” to emphasize the analogy.
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Theorem 3.4.5. Suppose that X = X(d), Y = Y (d) are sequences of independent scalar random

variables, where Law(X) E mom.
-------------------------------------------------------------------------------------------------------------------------→ µ and Law(Y) E mom.

-------------------------------------------------------------------------------------------------------------------------→ ν . Then, there is a probability measure

µ⊕ν such that Law(X+Y) E mom.
-------------------------------------------------------------------------------------------------------------------------→ µ⊕ν , where the moments of µ⊕ν are (different) polynomials

of the moments of µ and ν :

lim
d→∞

E(X + Y)k = qk(m1, . . . ,mk, n1, . . . , nk).

These polynomials are just given by the binomial theorem. Listing the first few, we see
that µ ê ν and µ ⊕ ν agree up to the third moment, but then start to disagree:

E
λ∼µ⊕ν

λ0 = q0(m,n) = 1,

E
λ∼µ⊕ν

λ1 = q1(m,n) =m1 +n1,

E
λ∼µ⊕ν

λ2 = q2(m,n) =m2 + 2m1n1 +n2,

E
λ∼µ⊕ν

λ3 = q3(m,n) =m3 + 3m2n1 + 3m1n2 +n3,

E
λ∼µ⊕ν

λ4 = q4(m,n) =m4 + 4m3n1 + 6m2n2 + 4m1n3 +n4.

Again, this is an indication that you should think of asymptotic freeness as a kind of
independence for the spectra of random matrices. In the same way that for random scalars
X and Y we can calculate Law(X + Y) from Law(X) and Law(Y) when X and Y are indepen-
dent, for sequences of random matrices X(d) and Y (d) we can calculate the limiting law of
esd(X(d) +Y (d)) from the individual limits of esd(X(d)) and esd(Y (d)) when X(d) and Y (d)

are asymptotically free.

3.4.2 Additive Free Limit Theorems

Definition 3.4.6. For µ a measure, we write c · µ := Law(cX) where X ∼ µ.

With the above notation, we may again revisit our renormalization formulation of the CLT.
Indeed, with this notation the renormalization map may be written in terms of operations
on measures only as

S(µ) = 1√
2
· (µ ⊕ µ),

and the CLT in its original form is just that, for µ a probability measure with mean zero and
variance one,

1√
k
· (µ ⊕ · · · ⊕ µ︸ ︷︷ ︸

k times

) ----------------------------------------------------------------------------→
k→∞

N (0,1), (3.4.2)

which also implies the renormalization form

S(k)(µ) ----------------------------------------------------------------------------→
k→∞

N (0,1),

and the fixed point condition reading

S(N (0,1)) = 1√
2
· (N (0,1)⊕N (0,1)) =N (0,1).
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To understand the semicircle limit theorem in parallel to this, the natural choice is to
consider a different renormalization map,

Sfree(µ) := 1√
2
· (µ ê µ).

This is a bit of a subtle operation: Sfree should be seen as operating on the limiting dis-
tributions of random matrices. If X = X(d) has esd(X) → µ and Y is an independent
copy of X , then Sfree(µ) is the limit of esd( 1√

2(X +QY Q>)) for Q ∼ Haar(O(d)). Since if

X ∼ 1√
d · GOE(d) then Law(X +QY Q>) = 1√

d · GOE(d) again, and esd(X) → µSC, we find
that

Sfree(µSC) = 1√
2
· (µSC ê µSC) = µSC,

so that indeed µSC is a fixed point of this “free renormalization map.”

Remark 3.4.7. In fact, note that it is possible just as well to take Y = X above: X and
QXQ> are asymptotically free by Theorem 3.3.2, even though they are not independent as
random vectors.

Moreover, via our results above, though we have not worked out the combinatorics
needed to actually write out this recursion in closed form, the fixed point condition Sfree(µ) =
µ determines the moments of µ recursively. In particular, you can show that the following
conditions uniquely describe µSC:

E
X∼µ

X = 0,

E
X∼µ

X2 = 1,

µ compactly supported,

Sfree(µ) = µ.

Finally, it is possible to show a free version of the CLT in the stronger form (3.4.2) above:

Theorem 3.4.8 (Free central limit theorem). For any compactly supported µ of mean zero
and variance 1,

1√
k
· (µ ê · · · ê µ︸ ︷︷ ︸

k times

) ----------------------------------------------------------------------------→
k→∞

µSC.

Remark 3.4.9 (Free Poisson limit theorem). You might be familiar with the following limit
theorem from classical probability, concerning the limiting distribution of a count of rare
events: as k → ∞, the sum of k i.i.d. random variables distributed as Ber(λ/k) for a fixed
λ > 0 converges weakly to Pois(λ). In our above convolution notation, this says

Ber
(
λ
k

)
⊕ · · · ⊕ Ber

(
λ
k

)

︸ ︷︷ ︸
k times

----------------------------------------------------------------------------→
k→∞

Pois(λ).
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We might ask, what happens in the case of additive free convolution rather than ordinary
convolution? It turns out that the answer is one of the distributions we have seen already, the
Marchenko-Pastur law:

Ber
(
λ
k

)
ê · · · ê Ber

(
λ
k

)

︸ ︷︷ ︸
k times

----------------------------------------------------------------------------→
k→∞

µMP(λ).

Indeed, Ber(λ/k) is the limiting e.s.d. of any projection matrix whose rank is a fraction λ/k
of the ambient dimension. Thus the left-hand side above is a sum of many free low-rank
projections, which is indeed reminiscent of (though not identical to) the original matrices
whose limiting e.s.d. gave the Marchenko-Pastur distribution, a sum of i.i.d. rank one matrices
gig

>
i for gi standard Gaussian.

3.4.3 Multiplicative Free Convolution

There is a parallel theory for studying products of random matrices as well. A bit of care is
required in the setup, since in general the product of symmetric matrices is not symmetric.
Still, we have:

Theorem 3.4.10. Suppose thatX ,Y are an asymptotically free sequence of random matrices,
as in Definition 3.3.1, such that moreoverX ,Y � 0 almost surely. Then, there is a polynomial
rk (whose coefficients are universal constants not depending on X , Y , or their moments ma

and nb) such that the value of any limiting moment of X1/2Y X1/2 is

lim
d→∞

1
d
ETr(X1/2Y X1/2)k = rk(m1, . . . ,mk, n1, . . . , nk). (3.4.3)

Further, ifmk are the moments of a compactly supported measure µ and nk are the moments
of a compactly supported measure ν , then pk(m1, . . . ,mk, n1, . . . , nk) are the moments of
another compactly supported measure, which is also uniquely determined by its moments.

Definition 3.4.11. We write µ ì ν for the measure discussed above, called the multiplicative
free convolution of µ and ν .

The argument is actually very simple with the tools we have developed already: we just
observe that these moments, after an application of the cyclic property of trace, are a special
case of the tangled joint moments that asymptotic freeness lets us derive the limiting values
of via Proposition 3.3.7:

Tr(X1/2Y X1/2)k = Tr(X1/2Y (XY )k−1X1/2)

= Tr(XY )k.

Let us give a few examples of how this can be useful to justify the perhaps unusual-
looking form of the matrices it handles.

Example 3.4.12. Consider the case of X a projection matrix. Then, X1/2 =X , so the above
reduces to describing the spectrum of XYX . Moreover, if X is a coordinate projection
to, say, a choice of αd random coordinates for some α ∈ (0,1), then its limiting empirical
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spectral distribution is Ber(α). So, for any rotationally invariant Y with limiting empirical
spectral distribution ν , we have esd(XYX) → Ber(α) ì ν . But, up to padding by zeros, the
matrixXYX is just a random αd×αd submatrix of Y . Thus multiplicative free convolution
allows us to describe the spectra of random submatrices of many matrices (including, for
instance, random subgraphs of given graphs in some cases).

Example 3.4.13. If, say, G ∼ N (0, 1
m)

⊗d×m with d/m → c, then the Marchenko-Pastur limit
theorem gives that esd(GG>) → µMP(c). Write

√µ := Law(
√
X) for X ∼ µ, when X ≥ 0 almost

surely, we also find that ed(σ(G)) → √µMP(c) for the singular values. With multiplicative
free convolution, we can treat products of rectangular matrices in a similar spirit. Suppose
that G ∼ N (0, 1

m)
⊗d×m and H ∼ N (0, 1

n)
⊗f×m, where d

m → b and f
m → c. Suppose that

0 < b < c < 1 (other cases may be handled similarly), so thatGH>, a d×f matrix, generically
has d positive singular values since d < f . Then, we have

ed(σ(GH>)) =
√
esd(GH>HG>)

=
√
esd(G(H>H)1/2(H>H)1/2G>).

This is a d × d matrix. We will convert it below to an m ×m matrix, which will introduce
m− d = (1− b)m zero eigenvalues. Thus:

(1− b)δ0 + b ed(σ(GH>)) ≈
√
esd((H>H)1/2G>G(H>H)1/2)

→
√
((1− b)δ0 + bµMP(b))ì ((1− f)δ0 + fµMP(f )),

and a limit for ed(σ(GH>)) may be calculated by first taking this multiplicative free convo-
lution and then removing the atom at zero that will result.

3.4.4 R- and S-Transforms

We have thus far only given abstract means of computing additive and multiplicative free
convolutions via moments using the implicit recursion in Proposition 3.3.7. In fact, there
are powerful tools for performing explicit computations that rely on generating functions
constructed from the Stieltjes transform from Section 2.7.

For additive free convolution, we have the following tool.

Definition 3.4.14. The R-transform of a probability measure µ is Rµ(z) = G−1
µ (z)− 1

z .

Here, G−1
µ is the functional inverse of the Stieltjes transform, viewed as an inverse of formal

power series: using the moment generating function expression from (2.7.1), we find a power
series such that G−1

µ (Gµ(z)) = z when the composition of power series is computed term by
term. The useful property of the R-transform is as follows:

Theorem 3.4.15. Rµêν(z) = Rµ(z)+ Rν(z).

Moreover, the above power series expansion of Rµ(z) leads to a series of the form

Rµ(z) =
∑

k≥1

κfree
k (µ)zk−1.
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Here the κfree
k (µ) are each polynomials of the moments of µ called the free cumulants, which

parallel the classical cumulants. If mk := EX∼µXk, then the first few free cumulants are

κfree
1 =m1,
κfree

2 =m2 −m2
1,

κfree
3 =m3 − 3m2m1 + 2m3

1,
κfree

4 =m4 − 4m3m1 − 2m2
2 + 10m2m2

1 − 5m4
1.

In contrast, the classical cumulants are

κ1 =m1,
κ2 =m2 −m2

1,
κ3 =m3 − 3m2m1 + 2m3

1,
κ4 =m4 − 4m3m1 − 3m2

2 + 12m2m2
1 − 6m4

1.

As in the case of moment formulas for additive free convolution, the first three free and
classical free cumulants are the same, while for the fourth and beyond they are different.

Example 3.4.16. One may compute RµSC(z) = z. This means that the second free cumulant
of µSC is 1, and all others are zero. This characterizes the semicircle law, and is parallel to
how the second classical cumulant of the Gaussian measure is 1 and all others are zero.

The R transform gives a fairly practical (though often algebraically involved) recipe for
calculating the free convolution, as illustrated below:

µ → Gµ → Rµ ↘
Rµ + Rν = Rµêν → Gµêν → µ ê ν.

ν → Gν → Rν
↗

There is also a similar transform and corresponding recipe for multiplicative free convo-
lution.

Definition 3.4.17. The S-transform of a probability measure µ is Sµ(z) = 1
zR

−1
µ (z).

Theorem 3.4.18. Sµìν(z) = Sµ(z)Sν(z).
Again, using this result and our tools for Stieltjes transforms, you can compute multiplica-
tive free convolutions as follows:

µ → Gµ → Rµ → Sµ ↘
SµSν = Sµìν → Rµìν → Gµìν → µ ì ν.

ν → Gν → Rν → Sν
↗

3.5 Application: Spectra of Expanders [LM23]

Let us work through an example that shows both how additive free convolution and the free
central limit theorem can be informative about concrete combinatorial objects and hints at
the underlying algebraic structure of asymptotic freeness.
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3.5.1 Cycles

We begin with a mystery. Consider on the one hand D = D(d) ∈ Rd×sym a random diag-
onal matrix with Dii ∼ Unif({±1}) i.i.d., and write X = QDQ> and Y = RDR> for
Q,R ∼ Haar(O(d)) (omitting the (d) superscripts from here on out). We may view the
individual laws of these matrices as being differences of projections: X = P1 − P2 for a
pair of projections P1,P2 having P1 + P2 = I and rank(Pi) ≈ d/2 (though with some fluc-
tuations, as really rank(Pi) is a sum of d i.i.d. Ber(1/2) random variables). In particular,
X = P1 − (I − P1) = 2P1 − I , so it may be interpreted as a reflection across the (random)
row space of P1 (and thus is an orthogonal matrix, as we can check by noting that X2 = I).
X and Y are asymptotically free by Theorem 3.3.2. They have the respective conver-

gences

esd(X) E mom.
---------------------------------------------------------------------------------------------------------------------------→ Unif({±1}),

esd(Y ) E mom.
---------------------------------------------------------------------------------------------------------------------------→ Unif({±1}).

Thus we also have
esd(X +Y ) E mom.

---------------------------------------------------------------------------------------------------------------------------→ Unif({±1})ê2.

Using the R-transform, the right-hand side may be computed to be the arcsine distribution,
having density

dµAS(x) = 1{x ∈ (−2,2)} 1

π
√

4− x2
dx.

Remark 3.5.1. By the remarks above, this also shows that a shifted and rescaled arcsine dis-
tribution is the limiting empirical spectral distribution of a sum of two independent projections
to two uniformly random subspaces of dimension d/2, i.e., Ber(1/2)ê2.

Remark 3.5.2. In either of the cases above of Unif({±1})ê2 or Ber(1/2)ê2, we see the striking
phenomenon that the additive free convolution of two discrete measures can be, and in fact
almost always is, a continuously supported measure. This is in constrast to classical convolu-
tion, where µ ⊕ µ for any µ supported on two atoms {a,b} can of course be supported only
on at most three atoms {2a,2b,a+ b}.

The arcsine distribution also appears as a limiting e.s.d. in the following, apparently
completely different, situation. Consider the cycle graph Cd on d vertices. Its adjacency
matrix is

ACd =




0 1 0 · · · 0 1
1 0 1 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
1 0 0 · · · 1 0




.

This matrix is circulant, and therefore is diagonalized by the discrete Fourier transform.
Performing this calculation, you may show that the eigenvalues are, up to reordering, of the
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Figure 3.1: Histograms of the empirical spectral distributions of the adjacency matrix of
C1000 and of D +QDQ> ∈ R1000×1000 for Dii ∼ Unif({±1}) and Q ∼ Haar(1000).

0

X X X XY Y Y Y

Figure 3.2: An illustration of the labelling of the graph on Z used in the argument of Sec-
tion 3.5.1.

form 2 cos(2πj/n) for j = 0, . . . , d−1. A bit more computation shows that these (determin-
istic!) collections of numbers again have the arcsine distribution as their empirical limiting
distribution:

esd(ACd)→ µAS = Unif({±1})ê2. (3.5.1)

See Figure 3.1 for an illustration.
Let us find an explanation of this unusual coincidence: we will see that, in fact, the com-

binatorics of moments of the cycle graph have a natural interpretation in terms of freeness.
We have the interpretation

mk := lim
d→∞

1
d
Tr(AkCd)

= lim
d→∞

1
d

#{closed walks of length k in Cd},

where a closed walk is any sequence i1, i2, . . . , ik−1, ik = i1 such that ia and ia+1 are adjacent
in Cd (or whatever graph is under discussion). Write Z for the infinite graph on the vertex set
of the integers, where each pair {i, i+ 1} are connected. Note that, in Cd, once d > k/2, the
number of closed walks starting from any given i1 is same as the number of closed walks
in Z starting from 0. That is, the neighborhood of radius k/2 around any vertex of Cd looks
just like the same neighborhood around 0 in Z. Thus,

mk = #{closed walks of length k in Z starting from 0} =
{

0 if k is odd,(
k
k/2

)
if k is even

}
.
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As an aside, comparing these moments to those of µAS is one way to prove (3.5.1) above.
Now, recall our two matrices X ,Y above. They satisfy X2 = Y 2 = Id, and, by asymp-

totic freeness,

lim
d→∞

1
d
ETr(XY · · ·XY ) = 0,

for any number of interleaved repetitions of X and Y .
Consider labelling each edge of Z with X or Y , so that the two labels alternate (see

Figure 3.2). View a walk on Z as a sequence of edge traversals, which corresponds to a se-
quence such as (X ,Y ,X ,X ,Y , . . . ). Convince yourself of the following: a walk is closed if
and only if this sequence, when written as a product XYXXY · · · , is cancellable, meaning
that it can be rewritten down to Id by only using the identities X2 = Y 2 = Id. For exam-
ple, XY Y XY Y XX = XY 2XY 2X2 = X2 = Id corresponds to a closed walk, while
Y Y XY XX = Y 2XYX2 =XY does not. Moreover, any non-cancellable sequence when
viewed as a product, can be rewritten down to a product of the form XYXY · · ·XY .

Thus by the above observations, we have

lim
d→∞

1
d
ETr(word in X ,Y ) = 1{word is cancellable}.

Therefore,

mk = #{closed walks of length k in Z starting from 0}
= #{cancellable words of length k}
=

∑

words of length k

lim
d→∞

1
d
ETr(word in X ,Y )

= lim
d→∞

1
d
ETr(X +Y )k.

Thus, even if we did not know that the limit was µAS, this argument would show us that

esd(ACd)→ Unif({±1})ê2.

3.5.2 Generalization to Higher Degree

The above argument, while nice, is perhaps not very impressive, because after all it is easy to
also do direct calculations with µAS. Let us now show how, by pushing it just a little further,
we can quickly obtain a large amount of rather more difficult information.

Definition 3.5.3 (Girth). The girth of a graph, written girth(G), is the length of the shortest
cycle in G (or +∞ if there are no cycles).

Consider a sequence of graphs G = G(d), each on d vertices, such that G is p-regular, i.e.,
such that every vertex has degree p. (There are no p-regular graphs on d vertices unless
pd is even, so we should really take only even d when p is odd, but we will not introduce
special notation to handle this caveat.) Suppose also that girth(G(d))→∞ as d→∞.

For p = 2, such a sequence of graphs is given by the cycles Cd, since of course girth(Cd) =
d. For p ≥ 3, it is not at all obvious that such graphs exist. Such graphs would be a very
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strong form of so-called expander graphs. The reason for this terminology is that, for G
p-regular, every neighborhood around every vertex of G of radius smaller than girth(G) is a
p-regular tree. In particular, the sizes of these neighborhoods grow very fast with the radius
r , roughly as pr . Such graphs therefore have many favorable properties such as fast mixing
of random walks, making them useful in computational applications; see, e.g., [HLW06] for
an introduction to this area. You should thus also think of graphs of high girth as locally
tree-like.

Theorem 3.5.4 (Erdős, Sachs [ES63]). There exists a sequence G(d) as above with girth(G(d)) ≥
cp logp−1(d) for a constant cp > 0.

The above result is based on a non-constructive argument with the probabilistic method,
but explicit constructions for various classes of special p have been found as well, like the
famous Lubotzky-Phillips-Sarnak graphs of [LPS88]. See also [LS21] for some discussion of
the history of this problem.

Remark 3.5.5. Actually, even if we choose G(d) uniformly at random from the set of all p-
regular graphs on d vertices, it will typically have a relatively small number of short cycles,
and the results we prove below also apply to these random regular graphs. This is again a
field unto itself, but see [Wor99] for an introduction.

Here we will ask: what does the empirical spectral distribution of a p-regular graph of
high girth look like? (This question is intimately related to quantifying the mixing time
and related expansion properties of such graphs as mentioned above.) One can answer
this question with combinatorics calculations of moments, of course. But, following our
argument for cycles and using our general understanding of free probability, watch how
quickly we can reason about this problem.

Write Tp for the infinite p-regular tree, and choose some vertex v0 in this tree to serve as
a root (like the role of 0 in Z before). By the same argument as for Cd and Z, by the diverging
girth of G(d), we have

mk := lim
d→∞

1
d
Tr(AkG)

= #{closed walks of length k in Tp starting from v0}.
We may again label the edges of Tp with matrices X1, . . . ,Xp, such that each vertex is
adjacent to exactly one edge having each label. Suppose that Xi = QiDQ>i for D random
diagonal as before, and Qi ∼ Haar(O(d)) i.i.d.; in particular, these Xi are asymptotically
free.1 The same exact argument as before then gives

= #{cancellable words of length k in X1, . . . ,Xp}
=

∑

words of length k in X1,...,Xp

lim
d→∞

1
d
ETr(word in X1, . . .Xp )

= lim
d→∞

1
d
ETr(X1 + · · · +Xp)k.

Thus we find a natural generalization of the arcsine limit theorem for the e.s.d. of large
cycles, namely:

esd(G(d))→ Unif({±1})êp.

79



−2 −1 0 1 2

0.0

0.2

0.4

0.6

0.8

p = 2

−3 −2 −1 0 1 2 3

0.00

0.05

0.10

0.15

0.20

0.25
p = 3

−4 −2 0 2 4

0.000

0.025

0.050

0.075

0.100

0.125

0.150

p = 4

−6 −4 −2 0 2 4 6

0.00

0.02

0.04

0.06

0.08

0.10
p = 10

Figure 3.3: Examples of densities of the Kesten-McKay laws µKM(p) for different values of the
parameter p.

By moment calculations or using the R-transform, you may compute this free convolution
to be the Kesten-McKay law, Unif({±1})êp = µKM(p), having density

dµKM(p)(x) = 1
{
x ∈

[
−2
√
p − 1,2

√
p − 1

]}
·
p
√

4(p − 1)− x2

2π(p2 − x2)
dx.

If you are familiar with Ramanujan graphs, the interval of support of the eigenvalues above,
[−2

√
p − 1,2

√
p − 1], is the same as appears in their definition. Note also that µKM(2) = µAS,

matching our previous observation.
Finally, the free central limit theorem immediately implies what these limiting distribu-

tions look like in the further limit p → ∞ (note that here we are discussing a sequence of
two limits: first d → ∞, and then the behavior of a limiting object arising there as p → ∞).
The above expression shows that 1√p · µKM(p) is supported on [−2+ o(1),2+ o(1)], and the
free CLT implies more specifically

1√p · µKM(p) = 1√p ·Unif({±1})êp ---------------------------------------------------------------------------------→
p→∞ µSC.

See Figure 3.3 for examples of the Kesten-McKay densities illustrating this convergence even
for p ≈ 10.
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3.6 Application: Neural Network Loss Landscapes [PB17]

We outline an argument making certain predictions about the structure of the landscape of
the optimization arising in training a neural network.

3.6.1 Setup and Definitions

At a high level, like our earlier example of kernel regression, this is a matter of learning a
general non-linear mapping F : Rdin → Rdout . We want to approximate this map by one of the
form

ŷ(x;V ,W ) =W (V x)+

for V ∈ Rdin×dinter and W ∈ Rdout×dinter . where (x)+ = max{0, x} and this operation applies
entrywise to vectors (this is the so-called rectified linear unit or ReLU non-linearity com-
monly used in deep learning). We also abbreviate θ = (V ,W ), and view this as a vector
θ ∈ Rdindinter+dinterdout , the vector of all parameters available for tuning in ŷ. We then also write
ŷ = ŷ(x;θ).

We are also given a training set of examples (x1,y1), . . . , (xm,ym) for xk ∈ Rd∈ and
yk ∈ Rdout , and want to learn θ such that ŷ(xk;θ) ≈ yk for each k ∈ [m].

We make the following assumptions about the dimensions d∈, dinter, dout,m involved.
The first is for simplicity:

d := d∈ = dinter = dout,

saying that our network is “square” in shape (in particular, V and W are square). Note
then that θ ∈ R2d2

. The second expresses that we are in the “big data” regime of having a
comparable amount of data to the dimensionality of the data:

d
m
→ c ∈ (0,∞),

as in the setting of the Marchenko-Pastur limit theorem.
In training our network, we seek to minimize a training loss,

L(θ) := 1
2

m∑

k=1

‖ŷ(xk;θ)− yk‖2 = 1
2

m∑

k=1

d∑

i=1

(
ŷki(θ)−yki

)2,

where we introduce new notation ŷki(θ) = (ŷ(xk;θ))i, suppressing for now the dependence
on xk. We then run some procedure like gradient descent, stochastic gradient descent,
adaptive gradient descent (Adam, AdaGrad, etc.) to attempt to minimize L(θ).

In general, in doing so we should expect to approach a critical point of L, one where
∇L(θ) = 0. Near a critical point, the landscape of L is determined by the Hessian matrix
∇2L(θ); in particular, by multivariate Taylor expansion, near a critical point θ0, L(θ) ≈
1
2(θ − θ0)>∇2L(θ0)(θ − θ0). This local landscape can have the structure of a saddle point:
along certain one-dimensional directions it can look like an upward-opening parabola, and
along others like a downward-opening parabola. The eigenvalues of ∇2L(θ0) describe how
many “principal” directions of each kind there are (for a total of the ambient dimension 2d2.
We call the fraction of negative eigenvalues the (normalized) index of a critical point.
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We then want to answer the following kind of question: as training proceeds, how does
the index of the critical points we encounter change? This (somewhat indirectly) says some-
thing about the convergence of training, since saddle points of higher index have a larger
number of favorable directions and thus are “easier to escape” and continue descending the
loss landscape, at least for noisy gradient methods like stochastic gradient descent.

3.6.2 Free Probability Heuristics for Hessian Spectrum

To understand these questions, we need to calculate the gradient and Hessian, a simple
exercise in the chain and product rules. We write α,β below for general indices of θ, corre-
sponding to an index in either V or W .

(∇L)(θ)α = ∂αL(θ)

=
m∑

k=1

d∑

i=1

(ŷki(θ)−yki)∂αŷki(θ),

(∇2L)(θ)αβ = ∂α∂βL(θ)

=
m∑

k=1

d∑

i=1

∂αŷki(θ)∂βŷki(θ)

︸ ︷︷ ︸
1

αβ

+
m∑

k=1

d∑

k=1

rki(θ)∂α∂βŷki(θ)

︸ ︷︷ ︸
2

αβ

,

where we define the residuals
rki(θ) := ŷki(θ)−yki,

the errors in approximating coordinate i of training data point k. We would like to make a
prediction about esd(∇2L(θ)) in terms of the value of L(θ). To do this, we start with the
following assumption:

Heuristic 0: 1 and 2 are freely independent.

We will not be precise with terms like asymptotic freeness here but will just proceed at an
intuitive level. If we believe Heuristic 1, it should be enough to understand the spectra of
1 and 2 individually.

For 1 , note that if we define the Jacobian of the function ŷ : R2d2 → Rdm as J(θ) ∈
R2d2×dm with entries

Jα,(k,i)(θ) = ∂αb̂yki(θ),
then we have

1 = J(θ)J(θ)>.
We make two remarks. First, 1 � 0, so this term is “fighting against” the loss landscape

having more descent directions or critical points having high index. Second, 1 does not
depend on the training outputs yk, and thus is just a function of the neural network archi-
tecture as well as the relative over- or under-parametrization, the relationship of d to m.
We have seen that the Marchenko-Pastur law is the “canonical” limiting distribution for such
matrices, which suggests that we might guess:
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Heuristic 1: 1 obeys the Marchenko-Pastur limit theorem: for some suitable scaling S(J) =
S(J)(d,m),

esd
(

1
S(J)

· 1
)
≈ µMP(2c),

where we calculate 2d2/dm = 2d/m → c by our assumption.

For 2 , we calculate in some more detail. Note that ŷki(θ) = ŷki(V ,W ), for any k ∈ [m]
and i ∈ [d], is piecewise bilinear in V and W . Thus, second derivatives with respect to
two entries both in V or both in W will always be zero, so 2 will have the block matrix
structure

2 =
[

0 R
R> 0

]

for an (asymmetric) B ∈ Rd
2×d2

, where the entries of B are

B(p,q),(s,t) = ∂2L
∂Vpq∂Wst

=
m∑

k=1

d∑

i=1

rki(V ,W )
∂2ŷki

∂Vpq∂Wst
(V ,W ).

The eigenvalues of 2 are then ±σi(B) for i = 1, . . . , d, so it suffices to compute the latter.
Expanding the expression for ŷki, we have

ŷki = (W (V xk)+)i =
d∑

t=1

Wit




d∑

q=1

Vtqxkq



+
.

Thus many of the derivatives involved above are zero; we may compute

∂2ŷki
∂Vpq∂Wst

(V ,W ) = 1{i = s} · 1{p = t} · 1{(V xk)p ≥ 0} · xkq.

The sum for an entry of B then reduces to

B(p,q),(s,t) = 1{p = t} ·
m∑

k=1

rks(V ,W ) · 1{(V xk)p ≥ 0} · xkq.

In particular, there is a B̃ that differs fromB only by a permutation of the columns (and
therefore has the same singular values) that has a block-diagonal structure because of the
1{p = t} term above:

B̃ =



B̃(1)

. . .

B̃(d)


 .

Here we have B̃(p) ∈ Rd×d, having entries

B̃(p)qs =
m∑

k=1

rks(V ,W ) · 1{(V xk)p ≥ 0} · xkq.

Another way to write this is
B̃(p) =RD(p)X ,
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where R = R(V ,W ) ∈ Rd×m has entries Rsk = rks , D(p) ∈ Rm×m is a diagonal matrix with
D(p)kk = 1{(V xk)p ≥ 0}, and X ∈ Rm×d has entries Xkq = xkq (i.e., the matrix of the training

data). The singular values of B are the disjoint union of the singular values of the B̃(p)

for p = 1, . . . , d. We now make the following (dramatic!) heuristic assumptions about this
setting:

Heuristic 2: X and R have i.i.d. Gaussian entries and D(p) has independent Unif({0,1})
diagonal entries. Specifically, Rks ∼ N (0, εS(R)) i.i.d. for a parameter ε to be fixed later and
some scaling S(R) = S(R)(d,m). Note first that this assumption fixes the scale of the loss of
θ, which will depend on ε:

L(θ) =
m∑

k=1

d∑

i=1

R2
ki ≈ ε · S(R)md =: εS(L)

for some further scaling S(L) = S(L)(d,m). Also, we then find that the singular values of B,
which are the same as those of B̃, which are the disjoint unions of those of B̃(p), have, upon
rescaling, the same empirical distribution as those of

√
εGH> for G,H ∼ N (0,1)d⊗m/2,

where we reduce m to m/2 since D(p) zeroes out about half of the initial m dimensions.
Thus, concretely we learn the following. First, for a probability measure ν , write sym(ν) :=

Law(sX) where s ∼ Unif({±1}) and X ∼ ν independently. By the case of multiplicative free
convolution discussed in Example 3.4.13, we have

ed
(
σ
(

2
m
GH>

))
→
√
µì2

MP(2c)

when d,m → ∞ with d
m → c (recall that

√µ is the law of
√
X when X ∼ µ). Note that we

normalize by 2/m above because that is the dimension of G and H . Then, we have

esd
(

1

m
√
S(R)

· 2
)
→
√
ε

2
· sym

(√
µì2

MP(2c)

)
.

Now, suppose that S :=m√S(R) = S(J) so that 1 and 2 are on the same scale. Then, com-
bining our heuristic arguments, we find that we expect the following relationship between
L(θ) and the e.s.d. of the Hessian at θ:

esd
(

1
S
· ∇2L(θ)

)
≈ µMP(2c) ê

(√
ε

2
· sym

(√
µì2

MP(2c)

))
=: ρc,ε when L(θ) ≈ ε ·mdS(R).

This is a rather involved combination of additive and multiplicative free convolution, but in
principle we have the tools to compute it using R- and S-transforms.

3.6.3 Implications

In particular, from ρc,ε we can calculate the normalized index for a given c (overparametriza-
tion) and ε (loss) as

ind(c, ε) := ρc,ε((−∞,0]) ∈ [0,1].
In [PB17], this is computed and analyzed asymptotically (the details are not included) and
the following two qualitative phenomena are extracted:
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1. For c ∈ (0, 1
2), there is an ε∗ = ε∗(c) > 0 such that, if ε < ε∗, then ind(c, ε) = 0.

That is, the theory predicts that, at a “macroscopically” large scaling of the loss value,
all critical points achieving that loss will be local minima, and thus one expects noisy
gradient descent to become stuck at roughly this level of loss.

On the other hand, ε∗ → 0 as c → 1
2 . Note that, when c = 1

2 , then m = 2d so
2d2 = md and the total number of dimensions of the training data (= md) equals
the total number of parameters (= 2d2). Thus we expect to be able to interpolate the
training data exactly once c > 1

2 , and the theory suggests that in fact gradient descent
will be able to reach such an interpolation.

2. Moreover, in the underparametrized regime c ∈ (0, 1
2), for ε slightly greater than ε∗,

we have the scaling

ind(c, ε) ∼ f(c)
(
ε− ε∗
ε∗

)3/2

for some function f(c). We may interpret this as saying that, towards the end of train-
ing, when we are approaching the best loss level that gradient descent will reach (= ε∗),
then the normalized index of the nearby critical points will decrease superlinearly with
the loss.

These findings are compatible with previous models for neural network loss landscapes
and even can be corroborated to some extent (most convincingly for small c) in numerical
experiments, including the specific exponent 3/2. See [PB17] for full details.

Remark 3.6.1. The paper also offers the simplifying heuristic of replacing sym(
√
µì2

MP(2c)) with
µSC, independent of c, which is a coarser model but one that might be sensible when we do
not assume the special structure coming from the ReLU non-linearity.

3.7 Application: Covariance Estimation [EK08]

As we have proposed before, one of the main statistical uses of free probability is to help
us understand the estimation of covariance matrices when we have inadequate data for the
sample covariance to be a consistent estimator. Consider the following setting: we have a
sequence Σ = Σ(d) ∈ Rd×dsym positive semidefinite matrices, with esd(Σ(d)) → µ. The Σ(d) are
covariances of an increasing number of features we are interested in of a population, and µ
describes the limiting correlation structure of this growing collection of features.

Suppose, though, that we only have access to a relatively small number of samples of
this population, x1, . . . ,xm ∼ N (0,Σ(d)) independently, with d

m → c as in our previous
discussions. We want to estimate the limiting spectrum µ from these observations. A natural
choice of estimator of Σ is the sample covariance

Σ̂ := 1
m

m∑

i=1

xix
>
i ,

and thus a natural choice of estimator of µ is

µ̂ := esd(Σ̂).
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Figure 3.4: An example of the performance of the algorithm presented in Section 3.7. We
take d = 500,m = 2500, and Σ to be the diagonal matrix half of whose entries are 1 and
half of whose entries are 2. Thus its true empirical spectral distribution is µ = 1

2δ1 + 1
2δ2,

shown in green. In light gray is the empirical spectral distribution of the sample covariance
Σ̂, nominally an estimate of µ but performing very poorly in this case and having output
close to (1

2δ1 + 1
2δ2)ì µMP(1/5). In black is the estimate obtained from the algorithm, with a

very conservative grid of 15 values of ta and 50 values of zb with imaginary part equal to 1.
The construction and solution of the linear program requires less than a millisecond in the
MOSEK solver accessed through cvxpy.

However, our tools show us that this estimator will be inconsistent, in the sense that it will
not converge to µ as d → ∞, and in fact we can characterize this inconsistency precisely.
Introducing gi ∼N (0,Id), we have Law(xi) = Law(Σ1/2gi), and thus

Σ̂ (law)= Σ1/2


 1
m

m∑

i=1

gig
>
i


Σ1/2.

Therefore, we have
µ̂ → µ ì µMP(c),

a kind of smoothing of µ by multiplicative free convolution.
Two extremes are instructive to consider. First, note that as c → 0 we have µMP(c) → δ1,

so indeed in this limit—which corresponds to m� d where we have much more data than
features we want to estimate—we do recover an accurate estimate of µ. Second, if Σ(d) = Id
so that µ = δ1, then this limit is just µMP(c), and the above recovers the Marchenko-Pastur
limit theorem.

Let us see now how to use our knowledge of free probability to devise a denoising pro-
cedure for this estimate. We will use the following characterization of multiplicative free
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convolution with the Marchenko-Pastur measure, which can be obtained from calculations
with the S-transform.

Proposition 3.7.1. For any compactly supported probability measure µ,

GµìµMP(c)(z) =
∫

1
z − x(1− c + czGµìµMP(c)(z))

dµ(x).

You may view this as an implicit equation for the Stieltjes transform of the multiplicative
free convolution similar to, but more complicated than, the one we derived for the Stieltjes
transform of the semicircle measure in Section 2.7. As a sanity check, note again that as
c → 0 the right-hand side tends to Gµ(z). If µ = δ1, then this gives a self-consistency
equation or implicit formula for the Marchenko-Pastur law µMP(c), again in the spirit of the
one we saw for the semicircle law.

Let us write λ := λ(Σ̂), the eigenvalues of the sample covariance. The idea of the algo-
rithm is what we believe that the process generating these eigenvalues makes it so that

ed(λ) ≈ µ ì µMP(d/m),

where we substitute the empirical quantity d/m, to which our data gives us access, for the
theoretical asymptotic quantity c. If this is true, then by Proposition 3.7.1, we should have

Ged(λ)(z) ≈
∫

1

z − x(1− d
m + d

mzGed(λ)(z))
dµ(x)

for all z.
Let us fix a grid of t1, . . . , tM ∈ R, and propose a discrete estimate for µ of the form

µ̂ :=
M∑

a=1

waδta ,

for some wa ≥ 0,
∑
wa = 1. Further, let us take a grid of z1, . . . , zN ∈ C (in practice it works

well to choose these spaced along a horizontal line slightly above the real axis). Write

Ĝb := Ged(λ)(zb) = 1
d

d∑

i=1

1
zb − λi ,

noting that we may compute these from the zb together with the λi, all quantities available
to us. The Stieltjes transform equation, evaluated at these zb, then becomes

Ĝb ≈
M∑

a=1

1

zb − xa(1− d
m + d

mzbĜb)
wa.

This is just asking that thewa approximately satisfy a linear system: separating the real and
imaginary parts, for suitable A ∈ R2N×M and b ∈ R2N , we just want

Aw ≈ b.
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Though bothA and b depend on the Ĝb, this is not a problem, since those are just numbers
now that we can compute from our data.

We may then solve any of a variety of convex optimization problems to do this, say of
the form

minimize ‖Aw − b‖p
subject to w ≥ 0,

1>w = 1.

In particular taking p = ∞ is appealing, which leads to a linear program. As illustrated in
Figure 3.4, the results are strikingly good in situations where the estimator esd(Σ̂) for µ
is completely ineffective. See also [EK08] for some theoretical results guaranteeing strong
approximations as M,N → ∞ (though note that the algorithm presented there is a small
variation on what is presented here).

3.8 Exercises

Exercise 3.8.1. Define the 2× 2 matrix

A :=
[

1 0
0 −1

]
.

Let t ∼ Unif([0, π]) and define the random rotation matrix

U :=
[

cos(t) sin(t)
− sin(t) cos(t)

]
.

Finally, define X(2d) := Id ⊗ A ∈ R2d×2d and Y (2d) := Id ⊗ (UAU>) ∈ R2d×2d random
matrices.

1. Show that the sequences X(2d) and Y (2d) have converging empirical spectral moments
(i.e., that limd→∞

1
2dETrX

(2d)k exists for all k and likewise for Y (2d)) and that the pair of
sequences is asymptotically free. (View the definition of asymptotic freeness as restricted
to a sequence of matrices in only even dimensions.)

(Hint: Boil this down to a statement about the 2× 2 matrices A and U .)

2. To what measure must the empirical spectral distribution ofX(2d)+Y (2d) then converge
in expected moments? Why?

(Hint: You do not need to calculate an additive free convolution by hand if you use a
result we have seen.)

3. Show that the empirical spectral distribution of X(2d) + Y (2d) almost surely consists of
at most two atoms. Therefore, qualitatively, it will never resemble the measure you de-
scribed in Part 2. For example, in a histogram of the eigenvalues, only at most two bins
will ever be non-empty. Explain formally and precisely why this is not a contradiction
to Part 2.
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Exercise 3.8.2. We discussed p-regular graphs of large girth the chapter. In this problem,
you will study p-regular graphs chosen uniformly at random numerically and observe that
they share some but not all of the same properties.

1. Write code to generate a p-regular graph on d vertices (pdmust be even) at random, as
follows. View the d vertices as each having p “half-edges” attached to them, for a total
of pd. A graph may be viewed as formed by gluing together half-edges in pairs to form
full edges. As we have seen from the combinatorics of Gaussian moments, there are
(pd−1)!! possible perfect matchings among pd objects. Choose such a perfect matching
uniformly at random (come up with and justify a way to perform this sampling). This
forms a random p-regular multigraph G0 on d vertices, since it is possible that you
created self-loops or parallel edges in choosing your matching. Now, perform rejection
sampling: repeat the procedure until you choose a matching that yields a simple graph
G. Include this part of your code in your homework submission.

You do not need to prove it, but the resulting G is uniformly random among simple
p-regular graphs on d vertices with labelled vertices.

2. Write code to estimate f(p,d) := P[G0 is simple] in the above procedure. For p ∈ {3,4},
estimate f(p) := limd→∞ f(p,d) by taking d large. That is, for each p, for a sequence
of growing d, report the fraction of trials giving G0 simple out of a large total. Plot data
to illustrate the convergence of your estimate as d → ∞. (Optionally, if you are very
patient, you may try p = 5. It helps to not generate an entire perfect matching before
rejecting a G0 that is not simple.)

3. Write A for the adjacency matrix of G formed above. For p ∈ {3,4}, confirm that, for
large d, esd(A) is close to the Kesten-McKay measure with parameter 3 and 4 (respec-
tively) as predicted in this chapter for regular graphs of large girth. How large of d is
needed? Include convincing plots.

4. Let T = T(G) be the number of triangles in G. Estimate t(p,d) := ET(G) for p = 3 and
a sequence of growing d. Does our reasoning from the chapter apply to the random G?
Try to identify what Law(T) converges to as d→∞. Include numerical evidence for your
prediction of any kind you think is reasonable—histograms, experimental estimates of
moments, etc.

(Hint: Compute T(G) with matrix algebra, not for loops.)
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4 | Spiked Matrix Models

4.1 Motivation: Outliers in Real-World Spectra

In the previous section, we developed tools to understand how the “shape” or the “bulk” of
the eigenvalues of a matrix is affected by noise. For example, we can understand the weak
limit of X +W where W ∼ GOE(d), or of Σ1/2GG>Σ1/2 where G ∼ N (0,1)⊗d×m. But,
in both cases, this weak limit only describes how the shape of the spectrum of X and Σ
changes under such noising operations.

In reality, especially in statistical operations, we often are interested in understanding
not this bulk behavior of all of the eigenvalues together, but in the behavior of outlier eigen-
values, which indicate, say in the case of a sample covariance matrix, “exceptional” corre-
lations. These appear as single outliers in a histogram, or as “elbows” in the scree plot of
λi as a function of i. An example with singular values on a real-world dataset is shown in
Figure 3.4. The example shows nicely a useful intuition to have for real-world spectra of
noisy matrices that include some statistical signal. Unlike what we have been able to handle
with free probability, usually such consist of two distinct components: a bulk of mostly
meaningless eigenvalues which arise due to noise, and a few informative outliers.

To understand how we should set our expectations in working with such data, we will
take up the question of producing theoretical models that reproduce this phenomenon, and
understanding how algorithms perform on those models.

You should see immediately that the methods from the previous chapter will not be
useful. Free probability is (at the level of detail we have considered) a tool for establishing
weak convergence and convergence in expected moments. And, as we saw in Section 2.5,
that is in general not enough to get any information about individual extreme eigenvalues;
intuitively, a single outlier contributes 1

dδλ to the e.s.d. of a matrix, which cannot be “seen”
by weak convergence. However, instead of the moment methods in Section 2.5, here we will
pursue more sophisticated techniques for understanding these outliers.

4.2 Spiked Additive (Wigner) Model

The simplest model producing outlier eigenvalues is to simply add a rank-one perturbation
to a matrix. Suppose W =W (d) ∼ GOE(d), x ∈ Rd with ‖x‖ = 1, and consider

Y = Y (d,β) :=W + β
√
dxx>.
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Figure 4.1: A histogram and scree plot of the singular values of a matrix of measurements
of levels of interaction on Twitter between members of Congress (available here from the
Stanford Large Network Dataset Collection). In either plot, four outlier values are clearly
visible.

4.2.1 Basic Properties

Exercise 4.6.1 has you show that, as β grows, the top eigenvector of Y aligns more and
more with x. Further, provided x is deterministic or random independently of W , then
Law(x>Wx) =N (0,2‖xx>‖2

F) =N (0,2), with high probability, for any ε > 0, we will have

λmax(Y ) ≥ x>Y x = β
√
d−x>Wx ≥ (β− ε)

√
d

and thus once β > 2 then Y with high probability will have its largest eigenvalue signifi-
cantly larger than the typical value of 2

√
d for Y ∼ GOE(d).

Moreover, we may show that the other eigenvalues of Y are essentially the same as those
of W :

Proposition 4.2.1. For all 2 ≤ k ≤ d, λk(W ) ≤ λk(Y ) ≤ λk−1(W ).

Proof. For the first inequality, just note that Y �W by construction (i.e., the perturbation
we are adding is positive semidefinite). For the upper bound, by the Courant-Fischer min-
max theorem, we have

λk(Y ) = max
dim(V)=k

min
v∈V
‖v‖=1

v>Y v.

Any such V must contain a non-zero vector v orthogonal to x and the top k−2 eigenvectors
of W . For such v, we have v>Y v = v>Wv ≤ λk−1(W ), and the result follows.

Thus λ2(Y ), . . . , λd(Y ) are “sandwiched” among the eigenvalues of W , and in particular
with high probability lie in [−2− o(1),2+ o(1)]. A bit more thought also shows that these
eigenvalues will moreover have the same empirical distribution of the semicircle. Thus it is
only λ1(Y ) that can be an outlier: esd(Y ) will look either like the semicircle (as it does for
W , or equivalently when β = 0) or like the semicircle with a single outlier.
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Figure 4.2: An illustration of the asymptotic results describing the phase transition in the
spiked additive or Wigner model from Theorem 4.2.2.

So, our model indeed captures the behavior we wanted. Next comes the natural quanti-
tative question: how large does β have to be for an outlier to appear? We have seen above
that β > 2 suffices to create an outlier. Could it be that this is also necessary? Or perhaps
any β > 0 suffices to “nudge” one of the top eigenvalues out of the bulk of the semicircle?

4.2.2 Phase Transition of Largest Eigenvalue

Surprisingly, neither guess is correct: there is a critical β required for an outlier to appear,
but it is not 2 as the above argument suggests.

Theorem 4.2.2 ([FP07]). Consider Y = Y (d,β) as above, for fixed β > 0 and d → ∞ and any
deterministic x = x(d) a unit vector. Write v1(Y ) for the eigenvector of λ1(Y ). The following
hold, with all convergences in probability.

• If β < 1, then:

1√
d
λ1(Y )→ 2,

〈v1,x〉2 → 0.
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• If β > 1, then:

1√
d
λ1(Y )→ β+ 1

β
> 2,

〈v1,x〉2 → 1− 1
β2
> 0.

We may summarize the key features in the result as follows:

1. This model exhibits a phase transition: there is a critical value β∗ = 1 such that the
behaviors of the model and the impact of the perturbation when β < β∗ versus when
β > β∗ look completely different.

2. Our previous idea about what value of β would suffice to create an outlier eigenvalue
proposed that the mechanism for an outlier appearing was the xx> perturbation com-
pletely “overpowering” W to forcibly make x>Y x large. What actually happens is
subtler: when β = 1+ ε, x “colludes” with the eigenvectors of W to create an outlier
whose associated eigenvector is only very slightly correlated with x.

3. Even when β > 1, λ1(Y ) ≈ β + 1
β is an inconsistent estimator for the parameter β of

the model, one systematically biased to be larger than the truth.

4. Similarly, for any fixed β, v1(Y ) is an inconsistent estimator for the parameter x, in
the sense that ‖v1(Y )−x‖ 6→ 0. Indeed, if we view x as the “north pole” of Sd−1, then
v1 is concentrated around a “latitude” that moves closer to the pole as β→∞.

The inconsistency phenomena are similar to what we saw earlier in estimating d × d co-
variance matrices from O(d) samples. There, the paucity of data or “information” in the
model was captured by a small number of samples; here, it is captured by β not growing
fast enough.

We will outline an argument using the resolvent and Stieltjes transform. We write

Ŵ := 1√
d
W ,

Ŷ := 1√
d
Y = Ŵ + βxx>.

The argument will depend on the following heuristic about the Stieltjes transform of Ŵ ,
extending the ideas we encountered in Section 2.7 when sketching a proof of the semicircle
limit theorem using the Stieltjes transform. There, we used concentration properties of the
diagonal entries of (zId − Ŵ )−1, whose average is the Stieltjes transform of esd(Ŵ ). More
is true, as we will discuss in more detail below: for any z ∈ C \ [−2,2], as d→∞, this entire
matrix acts as a multiple of the identity in small numbers of deterministic directions (in a
similar fashion to the random projections we saw earlier). In particular, we expect, for fixed
vectors a,b, that

a>(zId − Ŵ )−1b ≈ a>
((

1
d
Tr(zId − Ŵ )−1

)
Id

)
b

=
(

1
d
Tr(zId − Ŵ )−1

)
〈a,b〉

≈ GµSC(z)〈a,b〉.
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We may at least verify this for the expectation: expanding the resolvent and then this
quadratic form in the eigenspaces of Ŵ =∑di=1 λi(Ŵ )wiw>i , we have

Ea>(zId − Ŵ )−1b = E
d∑

i=1

1

z − λi(Ŵ )
〈a,wi〉〈b,wi〉

and now since the eigenvectors and eigenvalues of Ŵ are independent,

=
d∑

i=1

E
1

z − λi(Ŵ )
E〈a,wi〉〈b,wi〉

and the second expectation equals E〈ab>,wiw>i 〉 = 〈ab>,Ewiw>i 〉 = 〈ab>, 1
dId〉 = 1

d〈a,b〉
since Law(wi) = Unif(Sd−1), whereby

= 〈a,b〉 · E1
d
Tr(zId − Ŵ )−1

= 〈a,b〉 · EGesd(Ŵ )(z) (4.2.1)

As d→∞, the remaining quantity converges to GµSC(z) by the argument in Section 2.7.
The rigorous version of what is alluded to above is called an isotropic local law, which

amounts to a statement about concentration of a>(zId−Ŵ )−1b around its expectation, for a
given a and b but uniformly over a large region of z ∈ C\[−2,2]. We continue the derivation
taking the above proposal for granted, and discuss it further below in Section 4.2.3.

Heuristic Proof of Theorem 4.2.2. We continue writing Ŵ := 1√
dW and Ŷ := 1√

dY . Write

λ1 := λ1(Ŷ ). Suppose that λ1 > 2 is in fact an outlier eigenvalue, with eigenvector v1. This
means

λ1v1 = Ŷ v1 = β〈v1,x〉x+ Ŵv1,

and we may reorganize to summon the resolvent of Ŵ ,

(λ1I − Ŵ )v1 = β〈v1,x〉x,

whereby
v1 = β〈v1,x〉 · (λ1I − Ŵ )−1x,

where the inversion is justified since λ1 > 2 is outside the typical support of the spectrum
of Ŵ .

We will use our above heuristic twice. First, take the inner product of either side with x:

〈v1,x〉 = β〈v1,x〉 ·x>(λ1I − Ŵ )−1x ≈ β〈v1,x〉GµSC(λ1).

Rearranging, we find

GµSC(λ1) = 1
β
.

We can check that GµSC(z) = 1
2(z −

√
z2 − 4) < 1 whenever z > 2 (consult Figure 2.6), so

we must have β > 1 for our calculation to be consistent with λ1 > 2 being an outlier. And,
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our earlier calculation RµSC(z) = G−1
µSC
(z)− 1

z = z implies that G−1
µSC
(z) = z + 1

z , and thus this
implies

λ1 = β+ 1
β
,

as claimed.
To study the top eigenvector, consider instead taking the squared norm of either side

above. Then we have
1 = ‖v1‖2 = β2〈v1,x〉2x>(λ1I − Ŵ )−2x.

We should not use our heuristic above, since (λ1I − Ŵ )−1 no longer acts as a multiple of
the identity on (λ1I −Ŵ )−1x, which depends on Ŵ . But, we may cleverly argue as follows:

d
dz
(zI − Ŵ )−1 = −(zI − Ŵ )−2.

Thus we expect

x>(zI − Ŵ )−2x = − d
dz

[
x>(zI − Ŵ )−1x

]
≈ − d

dz
GµSC(z) = −G′µSC

(z),

whereby, substituting our derivation of λ1,

1 = −β2〈v1,x〉2G′µSC
(λ1) = −β2〈v1,x〉2G′µSC

(
β+ 1

β

)
,

or

〈v1,x〉2 = − 1

β2G′µSC

(
β+ 1

β

) .

A calculation remains:

G′µSC
(z) = 1

2

(
1− z√

z2 − 4

)
,

and thus

G′µSC

(
β+ 1

β

)
= 1

2


1−

β+ 1
β√

(β+ 1
β)2 − 4




= 1
2


1−

β+ 1
β√

(β− 1
β)2




and, choosing a sign of the square root that will make the final answer positive as it must
be,

= 1
2


1−

β+ 1
β

β− 1
β




= 1
2

(
1− β

2 + 1
β2 − 1

)

= − 1
β2 − 1

,
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which gives

〈v1,x〉2 = 1

β2 · 1
β2−1

= β
2 − 1
β2

= 1− 1
β2
.

Note that, had we chosen the other sign for the square root, we would have gotten
G′µSC

(β+ 1
β) = β2

β2−1 > 0, giving a nonsense result of 〈v1,x〉2 < 0.

Remark 4.2.3 (More spikes). The same argument also works for a model of the form

Y =W +
√
d

k∑

i=1

βixix>i

for ‖xi‖ = 1. The outcome is just a superposition of k copies of the case k = 1: there
are a number of outlier eigenvalues equal to the number of βi > 1, and the corresponding
eigenvectors have the same correlations with the corresponding xi as in Theorem 4.2.2.

4.2.3 Isotropic Local Laws

To make the above argument precise requires a result called an isotropic local (semicircle, in
our case) law. This is also similar to what would be required to make rigorous the Stieltjes
transform argument for the semicircle limit theorem that we saw before in Section 2.7

An isotropic local law is just a statement of the form we alluded to in the intuition above,
that, for any deterministic a,b and any z quantitatively far from [−2,2],

∣∣∣a>(zId − Ŵ )−1b−GµSC(z)〈a,b〉
∣∣∣

is small with high probability. The results in Section 2.7 only asked for the diagonal entries
of the resolvent, which corresponds to a = b = ei, while here we want to consider arbitrary
vectors, but this can still be handled with similar methods based on Schur complement
identities.

For us it is enough to look at z > 2+ ε real, or more generally z with dist(z, [−2,2]) > ε.
However, one may also study finer-grained properties of eigenvalues by establishing these
results at distances dist(z, [−2,2]) = ε(n) = o(1) depending on n. This should be logical:
after all, if we have access to Im(Gesd(Ŵ )(z)) for all such z, we have access to the convolution

of esd(Ŵ ) with Cauchy(ε), as we observed in Section 2.7). See, e.g., [KY13] and references
therein for further information.

For our purposes, concretely it is possible to show the following: for any c, C, δ > 0, for
n sufficiently large,

P
[∣∣∣a>(zId − Ŵ )−1b−GµSC(z)〈a,b〉

∣∣∣ ≤ n−1/2+δ

for all z ∈ C with dist(z, [−2,2]) > c, |z| < C
]
≥ 1− 1

n100
.

The idea of the proof is to union bound over a grid of values of z, and for each z on the grid
to decompose
∣∣∣a>(zId − Ŵ )−1b−GµSC(z)〈a,b〉

∣∣∣
≤
∣∣∣a>(zId − Ŵ )−1b− Ea>(zId − Ŵ )−1b

∣∣∣+
∣∣∣Ea>(zId − Ŵ )−1b−GµSC(z)〈a,b〉

∣∣∣
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where the second term, by our previous calculation in (4.2.1), is

≤
∣∣∣a>(zId − Ŵ )−1b− Ea>(zId − Ŵ )−1b

∣∣∣+
∣∣∣EGesd(Ŵ )(z)−GµSC(z)

∣∣∣ · |〈a,b〉|.

The first term may be bounded by general concentration inequalities on functions of Gaus-
sian random variables, which we will see later. Bounding the second term amounts to a kind
of quantitative version of the proof of the semicircle limit theorem sketched in Section 2.7.

4.3 Spiked Covariance (Wishart) Model

Let us now consider a similar question in the more realistic setting of covariance estimation.
We consider, as before, x1, . . . ,xm ∼ N (0,Σ) for Σ = Σ(d) ∈ Rd×dsym positive semidefinite and

with d
m → c. But now, instead of Σ having eigenvalues converging to a non-trivial shape, we

give it only a single exceptional outlier eigenvalue:

Σ := Id + βxx>

for some ‖x‖ = 1 and β ∈ R≥0. We construct the sample covariance

Σ̂ := 1
m

m∑

i=1

xix
>
i ,

and, as before, seek to estimate Σ by Σ̂. We have already seen that this is not in general a
good idea: even if β = 0, we will have esd(Σ̂)→ µMP(c) ≠ δ1 = esd(Σ). But, maybe we can still
use this poor estimator to detect the outlier eigenvalue in Σ?

We therefore ask the same question from the previous section of Σ̂: when does it have
an outlier eigenvalue? And, when does its top eigenvector give a good estimate of x? In fact,
essentially the same phenomenon holds here as in the spiked additive model.

Theorem 4.3.1 ([BBAP05, Pau07]). Consider Σ̂ = Σ̂
(d,β,c)

as above, for fixed β, c > 0 and
d → ∞ and any deterministic x = x(d) a unit vector. Write v1(Σ̂) for the unit eigenvector of
λ1(Σ̂). The following hold, with all convergences in probability:

• If β <
√
c, then:

λ1(Σ̂)→ (1+
√
c)2,

〈v1(Σ̂),x〉2 → 0.

• If β >
√
c, then:

λ1(Σ̂)→ (1+ β)
(

1+ c
β

)
> (1+√c)2,

〈v1(Σ̂),x〉2 →
(

1− c
β2

)(
1+ c

β

)
> 0.

The proof is a more complicated version of the same argument using the resolvent that we
have sketched for the additive model.
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4.4 Application: Community Detection

We can use these tools to make predictions about a problems asking us to detect or estimate
community structure in graphs.

4.4.1 Two Balanced Communities

One simple example is the stochastic block model. Consider a graph on d vertices, divided
into two groups of d

2 each, say S t T = [d]. We then generate a random graph G with
independent edges where:

P[i ∼ j] =
{

1
2 + β if i, j ∈ S or i, j ∈ T ,
1
2 − β otherwise

}
.

That is, edges are more frequent within communities than between them.
One way to get a hint of the matrix structure of this problem is to introduce x ∈ {±1}d,

the indicator of membership in the two groups. In that case,

P[i ∼ j] = 1
2
+ βxixj.

Thus, writing A for the {±1}-valued adjacency matrix, we have

EAij = P[i ∼ j] · (+1)+ P[i 6∼ j] · (−1) = 2βxixj,

or equivalently
EA = 2βxx>.

(This is not correct on the diagonal, but let us omit these corrections, which do not affect
the result.)

We employ a common device of extracting this “signal” by recentering A:

A = (EA)+ (A− EA︸ ︷︷ ︸
=:W

) =W + 2βxx>.

If β = o(1), then, conditional on x, W is nearly a Wigner matrix: its entries are indepen-
dent, centered, and have variance 1 + o(1). They are not i.i.d., but it turns out that similar
arguments to the i.i.d. case can still be carried out. Since ‖x‖ = √d, we see that this model
will have the scaling of the additive spiked matrix model when we take β ∼ 1/

√
d. So, let us

set

β̂ :=
√
dβ,

x̂ := 1√
d
x = x

‖x‖ .

With these definitions, we have
A = 2β̂

√
d x̂x̂> +W .

Thus, the threshold corresponding to the spiked Wigner matrix transition is β̂∗ = 1/2. Using
a more general isotropic local law (for “nearly Wigner” matrices), you can show the following
rigorously.
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Theorem 4.4.1 (Spectral algorithm for stochastic block model). Suppose that β̂ ≥ 0 is fixed
and β := β̂/√d in the above model. Let A ∈ {0,±1}d×d be the random adjacency matrix
constructed as above. The following then hold, with all convergences in probability:

• If β̂ < 1/2 (including if β̂ = 0), then:

1√
d
λ1(A)→ 2,

1
d
〈v1(A),x〉2 → 0.

• If β̂ > 1/2, then:

1√
d
λ1(A)→ 2β̂+ 1

2β̂
> 2,

1
d
〈v1(A),x〉2 → 1− 1

4β̂2
> 0.

From the results on eigenvalues, we can make a strong claim immediately about detecting
or hypothesis testing for community structure: if β̂ > 1/2, then computing and thresholding
λ1(A) with high probability distinguishes the model above from the null model of an Erdős-
Rényi random graph, the case β̂ = 0 where each edge is just present with probability 1/2
independently.

To make a result about estimating the community assignments x, we must be a little bit
more careful. Set v := √d · v1(A), so that ‖v‖ = ‖x‖ = √d. The natural estimator of x is to
take y := ± sgn(v), the entrywise sign. Note that v itself is only determined up to a global
sign flip, so the sign ambiguity is inescapable. Indeed, x itself is only identified up to a sign
flip, since x and −x give rise to the same (in law) random A. So, let us choose this sign
arbitrarily.

We may then analyze the performance of this as follows: we know that |〈v,x〉| ≥ (1−ε)d
(here ε = ε(β̂) = 1−

√
1− 1/4β̂2 ≤ 1/4β̂2 can be computed from the result). We also know

|〈v,y〉| = |〈v, sgn(v)〉| =
d∑

i=1

|vi| = max
s∈{±1}d

|〈v,s〉| ≥ |〈v,x〉| ≥ (1− ε)d.

Since ‖v‖ = ‖y‖ = √d we may convert these bounds into

min{‖v −x‖2,‖v +x‖2} = 2d− 2〈v,x〉 ≤ 2εd,
min{‖v − y‖2,‖v + y‖2} = 2d− 2〈v,y〉 ≤ 2εd.

Thus by triangle inequality

min{‖x− y‖2,‖x+ y‖2} ≤ (2
√

2εd)2 = 8εd.

Reversing the previous manipulation,

(1− 3ε)d ≤ |〈x,y〉| = |#{i : xi = yi} − #{i : xi = −yi}|.
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and finally this implies a direct bound on our estimation error, showing that either y =
sgn(v1(A)) or −y = − sgn(v1(A)) is a good estimate of x:

max
{

#{i : xi = yi},#{i : xi = −yi}
}
≥
(

1− 3
2
ε
)
d ≥

(
1− 3

8β̂2

)
d.

This simple argument shows that, past the slightly larger threshold β̂ >
√

3/8 ≈ 0.612,
the estimator sgn(v1(A)) achieves non-trivial estimation of the community structure of the
graph. More careful analysis shows that in fact β̂ > 1/2 already suffices.

4.4.2 More Communities, Different Sizes

We may also propose a more expressive model as follows: suppose we instead have k com-
munities S1 t · · · t Sk = [d], and |Si| ≈ αid for some α1, . . . , αk ≥ 0 with

∑
αi = 1. We can

also have a matrix of interaction strengths between the communities B ∈ [0,1]k×k, such
that, if σ : [d] → [k] returns the label of the community that i belongs to, then we sample
edges independently with

P[i ∼ j] = Bσ(i)σ(j).
For this to make sense as an undirected graph, B should be symmetric. The previous case
of two balanced communities is α1 = α2 = 1

2 and

B = 1
2

[
1
1

][
1
1

]>
+ a

[
1
−1

][
1
−1

]>
.

We see that there is a matter of scaling to clarify, since previously the interesting tran-
sition occurred when a ∼ 1/

√
d. To that end, let A at first just be the {0,1}-valued adja-

cency matrix. This will not be close to a Wigner matrix; for instance, the entries will not
be centered. To figure out what to do about this, consider the statistics of an entry chosen
uniformly at random: for i, j ∼ Unif([d]), we have

EAij =
k∑

a,b=1

αaαbBab = α>Bα =: β,

VarA2
ij = EAij − (EAij)2 = b(1− b) =: σ 2.

Previously, we had β = 1
2 and σ 2 = 1

4 . A natural centered and normalized A, in particular
one that is close to a Wigner matrix, is then

Â := 1
σ
(A− β11>) = 1√

β(1− β)(A− β11
>).

You can check that, in the previous case, this is precisely the {±1}-valued adjacency matrix.
This also tells us what the natural “null model” is that we should compare against: the

model where edges are drawn i.i.d. with the same probability, i.e., where Aij
iid∼ Ber(β). This,

with the same transformation as above, would lead to Â truly being a Wigner matrix, with
i.i.d. entries of mean 0 and variance 1.
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Up to permutations, the expectation of A itself (not a random entry as above) will be a
block matrix of the form

EA =
[
Bab1αad1

>
αbd

]

a,b∈[k]
.

Thus our decomposition of Â will take the form

Â = EÂ︸︷︷︸
=:X

+(Â− EÂ︸ ︷︷ ︸
=:W

) =X +W .

Note that X is a determinstic matrix that is just a function of our parameters, in this case
α and B. In the previous case, we had

X = a
[

1
−1

][
1
−1

]>

having entries of order O(1/
√
d), and we will see that the same scaling is natural in this

more general case.
We may compute

X = EÂ =
[
Bab − β√
β(1− β)1αad1

>
αbd

]

a,b∈[k]
=:

1√
d

[
B̂ab1αad1

>
αbd

]

a,b∈[k]
,

where we write B̂ for the matrix with

B̂ab :=
√
d · Bab − β√

β(1− β),

a kind of normalization of B with respect to the αa’s. We assume that B̂ has constant
entries as d→∞.
W above will again be approximately a Wigner matrix, so the behavior of this model will

depend on the eigenvalues of X . In words, the “signal part” X of the decomposition of Â
above is a block matrix with block (a, b) having size αad×αbd, and with entries all equal to
B̂ab on this block. What are the eigenvalues of such a matrix? First, suppose B̂ =∑ki=1 ρiviv

>
i

is the spectral decomposition, with vi ∈ Rk. Then, let ṽi ∈ Rd be a vector with k blocks,
with block number a equal to via1αad, a kind of “unbalanced Kronecker product” of vi with
vectors of all ones of different sizes. We then have

X = 1√
d

k∑

i=1

λiṽiṽ>i .

On the other hand, if the αi are not constant, then this is no longer a spectral decomposition,
since the ṽi are no longer orthogonal.

The above does tell us that rank(X) ≤ k, and that the column (equivalently, row) space
of X is the space of vectors that are constant on blocks of the above sizes. Thus, consider
a general w ∈ Rk, lifted in the above fashion to w̃ ∈ Rd which has entries w1 on the first
α1d entries, entries w2 on the next α2d entries, and so forth. Xw̃ then has the same block
structure, where block a has entries 1√

d

∑k
b=1 B̂ab · αbd · wb =

√
d(B̂Dw)a for D ∈ Rk×k
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the diagonal matrix of the αa. Thus, the eigenvalues λ of X satisfy the equation, for some
w ∈ Rk, that √

dB̂Dw = λw.
Multiplying on either side by D1/2, this is equivalently

(
√
dD1/2B̂D1/2)(D1/2w) = λ(D1/2w).

Therefore,
λ(X) =

√
dλ(D1/2B̂D1/2).

There is one last wrinkle, which is that, unlike in the previous case where we assumed
a ≥ 0, in this case the eigenvalues of a general D1/2B̂D1/2 could be positive or negative.
Fortunately, the same result as Theorem 4.2.2 holds both for more spikes (Remark 4.2.3)
and for possibly negative spikes, with the same transition for negative outlier eigenvalues.
This extended theory for spiked additive models then implies the following.

Theorem 4.4.2 (Spectral algorithm for detection in generalized stochastic block model). Let
A ∈ {0,1}d×dsym be a random matrix as constructed above. That is, there is σ : [d] → [k] for
k constant as d → ∞ such that |σ−1(a)| = αad for some αa ∈ (0,1) that are constant as
d→∞, and

Aij ∼ Ber
(
β+ 1√

d
·
√
β(1− β) · B̂ab

)

for some β ∈ (0,1) and a matrix B̂ ∈ Rk×ksym that is also constant as d→∞. (These parameters
may be computed from a stochastic block model on any number of communities with any
interaction strengths, as we have done above.) Define

Â := 1√
β(1− β)(A− β11

>).

The following hold, with both convergences in probability:

• If ‖D1/2B̂D1/2‖ < 1 (including B̂ = 0), then

1√
d
‖Â‖ → 2.

• If λ := ‖D1/2B̂D1/2‖ > 1, then

1√
d
‖Â‖ → λ+ 1

λ
> 2.

Thus, the spectral algorithm of examining λ(Â) for outliers can detect the community
structure in our graph if and only if

‖D1/2B̂D1/2‖ > 1.

This elegant characterization gives us a way to take a spectral property of our finitely many
model parameters (α which determines D, and B which determines B̂) and turn it into a
characterization of when a spectral algorithm works or not as d→∞.
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4.5 Application: Non-Gaussian Noise and Non-Linear PCA

[PWBM16]

Theorem 4.2.2 holds with a noise distribution given by any Wigner matrix Wig(d, µ) with,
say, subgaussian entries, provided that µ has variance 1 to maintain the same scaling. That
is, for all such choices of additive noise distribution, computing and thresholding λ1(Y )
detects a spike if and only if β > 1.

Actually, whenever µ ≠N (0,1), it is possible to do better—in this sense, Gaussian noise
is the hardest noise distribution to handle of a given scale! This idea was proposed in the
statistical physics literature by [KXZ16, LKZ15] and proved to work by [PWBM18].

4.5.1 Power of Entrywise Non-Linearities

Consider a larger class of algorithms, where, before computing λ1(Y ), we apply an entrywise
non-linear function to Y . Say, we fix some φ : R→ R and compute

φ(Y )ij := φ(Yij).

Could it be that λ1(φ(Y )) is a more effective test statistic than λ1(Y )? And, if so, how do
we design φ?

We will make another assumption, that the entries of x are relatively “flat,” say having
|xi| Ü polylog(d)/

√
d for all i with high probability. Consider, say, x ∼ Unif(Sd−1) or x ∼

Unif({±1/
√
d}d). We have

Y =W + β
√
dxx>,

and thus the entries are
Yij = Wij + β

√
dxixj,

where the second term is much smaller than the first, of order about O(1/
√
d) under the

above models. When we apply φ, it is sensible to take a Taylor expansion. Doing this and
manipulating a bit further, we have:

φ(Y )ij = φ(Wij + β
√
dxixj)

= φ(Wij)+φ′(Wij)β
√
dxixj +∆(1)ij

= φ(Wij)+ E[φ′(Wij)]β
√
dxixj +∆(1)ij +∆(2)ij .

Here ∆(1)ij is the error in the Taylor expansion, which we expect (for most entries) to scale

as |∆(1)ij | Ü (β
√
dxixj)2 = O(1/d). Thus we will have ‖∆(1)‖ = O(1). The other error terms

are
∆(2)ij = (φ′(Wij)− E[φ′(Wij)])β

√
dxixj.

Thus ∆(2) is a random matrix with independent centered entries of order O(1/
√
d), and so

again we expect ‖∆(2)‖ = O(1).
In particular, the above expansion means

φ(Y ) = φ(W )+ (Ew∼µ[φ′(w)]β
)√
dxx> +∆(1) +∆(2),
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and the first two terms have operator norm Θ(
√
d) while the latter two have operator norm

O(1). Thus, λ1(φ(Y )) is roughly the top eigenvalue of the first two terms, which form
another spiked matrix model. In this model, the noise distribution is Law(φ(w)) for w ∼ µ,
while the effective amount of signal is

β · Ew∼µ[φ′(w)] = β
∫
φ′(w)ρ(w)dw.

Note that we should also assume Eφ(w) = 0, or else the noise will not be centered.
Actually, the real effective amount of signal needs to be normalized by the standard

deviation of the new noise distribution, which is no longer one but rather:

σ 2 := Ew∼µφ(w)2 =
∫
φ(w)2ρ(w)dw.

Thus, the “effective β” is in fact:

βeff = βeff(φ) = β · 1
σ
· E[φ′(w)] = β ·

∫
φ′(w)ρ(w)dw√∫
φ(w)2ρ(w)dw

︸ ︷︷ ︸
“gain” from φ

,

where the latter factor is the “gain” in the effective amount of signal from applying the
entrywise non-linearity φ. As a sanity check, merely scaling φ has no effect on this gain,
as we should expect. Concretely, 1

σφ(Y ) will then behave like a spiked matrix model with
noise variance 1 and signal strength βeff .

4.5.2 Optimizing the Non-Linearity

We now try to maximize βeff , and see if the result can be made greater than 1, the threshold
of detectability in a spiked Wigner model. This is a problem in the calculus of variations.
Since we must take φ such that Eφ(w) = ∫

φ(w)ρ(w)dw = 0, and we may scale φ by
any constant, let us assume that the numerator of the “gain factor” above is 1 and try to
minimize the denominator. This gives the functional optimization problem:

minimize
∫
φ(w)2ρ(w)dw

subject to
∫
φ(w)ρ(w)dw = 0,∫
φ′(w)ρ(w)dw = 1.

Suppose φ(w) is optimal for this problem. Consider adding a small δ(w) to φ(w). In order
for the resulting φ to still satisfy the constraints, we must have

∫
δ(w)ρ(w)dw =

∫
δ′(w)ρ(w)dw = 0.

The second of these constraints may also be rewritten, by integrating by parts, as

∫
δ(w)ρ′(w)dw = 0.
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For small δ(w), we may expand the objective function to leading order:

∫
(φ(w)+ δ(w))2ρ(w)dw ≈

∫
φ(w)2ρ(w)+ 2

∫
φ(w)δ(w)ρ(w)dw.

Thus the second term must be zero for all δ(w) satisfying the above two constraints. This
can only happen if (thinking in linear-algebraic terms) φ(w)ρ(w) lies in the span of the two
functions appearing in the constraints with δ,

φ(w)ρ(w) = aρ(w)+ bρ′(w)

for some a,b ∈ R. In other words, we must have

φ(w) = a+ bρ
′(w)
ρ(w)

.

Finally, to determine these constants we recall our constraints onφ, which are two equations
that require

0 =
∫
φ(w)ρ(w)dw = a

∫
ρ(w)dw + b

∫
ρ′(w)dw = a+

∫
wρ(w)dw = a,

1 =
∫
φ′(w)ρ(w)dw = −

∫
φ(w)ρ′(w)dw = −b

∫
ρ′(w)2

ρ(w)
dw.

Let us define

F = F(µ) :=
∫
ρ′(w)2

ρ(w)
dw.

Then, the above says that a = 0 and b = −1/F , so the optimal φ is

φ(w) = −1
F
ρ′(w)
ρ(w)

.

This achieves an objective function of

∫
φ(w)2ρ(w)dw = 1

F2

∫
ρ′(w)2

ρ(w)
dw = 1

F

in our minimization, and the gain it gives in the amount of signal is therefore

βeff = β · 1√
1/F

= β
√
F.

We thus reach the following elegant result.

Theorem 4.5.1 ([PWBM16]). Consider Y as in Theorem 4.2.2, but with W ∼Wig(d, µ). Sup-
pose that µ has density ρ(w) > 0, and let φ(w) = − 1

F(µ)
ρ′(w)
ρ(w) . Write β∗(µ) := 1/

√
F(µ). Then,

whenever β > β∗(µ) then thresholding λ1(φ(Y )) distinguishes this from Y ∼Wig(d, µ), and
this choice of φ leads to the optimal such threshold.
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4.5.3 Fisher Information, Fisher Score, and Denoising

A few remarks are in order. F(µ) is called the Fisher information of µ, and may be thought of
as quantifying how much information an observation y = x +w for w ∼ µ carries about x.
When F(µ) is larger, then denoising y to estimate x is easier, which causes the threshold of
detectability to decrease above. The Fisher information has the following several equivalent
forms.

Proposition 4.5.2. For any µ with a smooth density ρ that is positive everywhere,

F(µ) =
∫
ρ′(w)2

ρ(w)
dw

=
∫
((logρ)′(w))2ρ(w)dw

= E
w∼µ
((logρ)′(w))2

= −
∫
(logρ)′′(w)ρ(w)dw

= − E
w∼µ
(logρ)′′(w).

In the above denoising setup, it may be helpful to consider the function L(x | y) := ρ(y−x),
the likelihood of x given the observation y . Then `(x | y) := logρ(y−x) is the log-likelihood
often encountered in statistics, and the above expressions involving logρ may be viewed as
measuring geometric properties of the log-likelihood when x ≈ 0. This is sensible in our
setting, because we are precisely interested in denoising very small signals x = O(1/√d)
that have suffered very large amounts of additive noise w = O(1). So, for instance, one of
the forms above can be viewed as

F(µ) = E
y∼µ

(
∂
∂x
`(x | y)

∣∣∣∣
x=0

)2

.

To understand this quantity, suppose we actually want to estimate x by maximizing the
likelihood numerically. Knowing that x is small, we can start at an uninformative guess
x(0) = 0, and then take a “gradient step,” which in this simple one-dimensional setting just
boils down to following the derivative of the function; the greater the derivative, the more
we expect the log-likelihood to increase in our first step. The above then measures the
magnitude of this rate of increase, which is a proxy for how informative y is about x.

Our denoising function, φ(w) = −ρ′(w)/ρ(w) (omitting the normalizing constant for a
moment) is called the Fisher score, and is just the derivative we encountered above: φ(y) =
∂
∂x`(x | y)|x=0. Thus applying φ to Yij really is performing the naive one gradient step
approach to approximately maximize the likelihood sketched above, starting from x(0) = 0.
In fact, when we include the constant −1/F , note that the last interpretation of F above is
equivalently

F(µ) = − E
w∼µ

∂2

∂x2
`(x | y)

∣∣∣∣
x=0
,

and thus overall the function

φ(y) = −
∂
∂x`(x | y)

∣∣∣∣
x=0

Ew∼µ
∂2

∂x2`(x | y)
∣∣∣∣
x=0
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is similar to taking a Newton step to maximize the likelihood (though if we really did that
we would not take the expectation in the denominator above).

4.5.4 Gaussian Noise is Hardest

Now let us return to the special role of the standard Gaussian with regard to the Fisher
information. The following describes this, and implies, together with Theorem 4.5.1, that
λ1(φ(Y )) is a superior test statistic to λ1(Y ) for detecting a spike precisely when µ ≠
N (0,1).
Proposition 4.5.3. F(N (0,1)) = 1, while whenever µ ≠N (0,1) has mean zero and variance
one and a strictly positive smooth density, then F(µ) > 1.

Proof. For µ = N (0,1), the density is ρ(w) = 1√
2π exp(−1

2w
2), so (logρ)′′(w) = −1 and the

result follows from Proposition 4.5.2.
For the other result, one could go through a calculus of variations calculation like we did

before. But there is also a simplifying trick, as follows: consider

0 ≤
∫

1
ρ(w)

(ρ′(w)+wρ(w))2 dw

= F(µ)+ 1+ 2
∫
wρ′(w)dw

= F(µ)+ 1− 2
∫
w2ρ(w)dw

= F(µ)+ 1− 2

= F(µ)− 1.

This shows that F(µ) ≥ 1 for all µ satisfying the assumptions. Further, equality is achieved
if and only if ρ′(w)+wρ(w) = 0. We may write this as having, for all test functions f , that

0 =
∫
f(w)(ρ′(w)+wρ(w)) = −

∫
f ′(w)ρ(w)+

∫
wf(w)ρ(w),

or equivalently that
E
w∼µ

f ′(w) = E
w∼µ

wf(w),

which Exercise 1.6.6 shows uniquely characterizes µ =N (0,1).
Further, one may show the following, though we will not have time to go into the proof.

Theorem 4.5.4 ([PWBM16]). Write Pd,β := Law(W + β√dxx>) where Wij = Wji ∼ N (0,1)
for all i ≤ j (including the diagonal) and where x ∼ Unif(Sd−1). Then, for all 0 < β < 1, there
exists no sequence of functions f (d) : Rd×dsym → {0,1} such that

lim
d→∞

Pd,0[f (d)(Y ) = 0] = 1,

lim
d→∞

Pd,β[f (d)(Y ) = 1] = 1.

Such a sequence of functions is often referred to as a sequence of tests or hypothesis tests
that strongly distinguish or achieve strong detection between Pd,0 (which is just the law of a
matrix of i.i.d. random entries distributed asN (0,1)) and Pd,β.
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This result is often summarized as strong detection (in the above sense) being information-
theoretically impossible when β < 1.

We may therefore summarize our findings as follows:

1. The spiked matrix model is computationally hardest for Gaussian noise, among all
“nice” centered distributions of additive noise having a given variance.

2. For a spiked matrix model with additive non-Gaussian noise, non-linear PCA with a
suitable entrywise non-linearity (the test statistic λ1(φ(Y )) performs strictly better
than ordinary PCA (the test statistic λ1(Y )).

4.6 Exercises

Exercise 4.6.1. Write v1(X) for the unit-norm eigenvector of λ1(X) forX ∈ Rd×dsym . Whenever
this notation is used below, you may assume that λ1(X) occurs with multiplicity 1 as an
eigenvalue of X .

Suppose M ∈ Rd×dsym , and ∆ has the same dimensions as M with ‖∆‖ < λ1(M)− λ2(M)
(the matrix norm without a subscript always denotes the operator norm). You will show the
perturbation inequality

〈v1(M),v1(M +∆)〉2 ≥ 1−
( ‖∆‖
λ1(M)− λ2(M)− ‖∆‖

)2

.

Follow these steps, where we abbreviate v := v1(M) and ṽ := v1(M +∆).
1. Show that λ1(M)− λi(M +∆) ≥ λ1(M)− λ2(M)− ‖∆‖ for all i ≥ 2.

(Hint: You may use the Courant-Fischer min-max theorem. Look it up and take a
minute to internalize it if you are not familiar with this.)

2. Using Part 1, show that ‖∆v‖ ≥ (λ1(M)− λ2(M)− ‖∆‖) · ‖(I − ṽṽ>)v‖.

(Hint: Expand v in the orthonormal basis of eigenvectors of M +∆.)

3. Complete the proof.

Also show the following application:

4. Suppose that W ∼ GOE(d), and let x ∈ Rd with ‖x‖ = 1. Let λ > 0 and consider the
matrix Y = λ√dxx> +W (as in Section 4.2). Show that there is a function f(λ) ∈ R
such that f(λ)→ 1 as λ→∞ and such that, for any fixed λ > 0, we have that

lim
d→∞

P[〈v1(Y ),x〉2 ≥ f(λ)] = 1.

You may use the Wigner edge limit theorem (Theorem 2.5.2). More colloquially, this
says that the top eigenvector of Y can achieve an arbitrarily good estimate of a rank
one perturbation of W of sufficiently large magnitude λ.

108



5 | Non-Asymptotic Theory I:

Concentration of Spectral

Statistics

In the past three chapters on limit theorems, free probability, and spiked matrix models,
we have been studying asymptotics in random matrix theory. That is, we have been making
statements about the d → ∞ limit without precisely specifying rates of convergence. These
have been statements like:

esd(W )→ µ (weakly),
λ1(W )→ c (in probability).

In this chapter, we will develop some aspects of the non-asymptotic theory of random
matrices. Here, we will be more concerned with results for finite d, giving explicit bounds
on quantities like

E(d) := Eλ1(W ),
T(d, s) := P[|λ1(W )− Eλ1(W )| > s].

It is already natural and useful to ask such questions about the classical models we have
been studying, like Wigner and Wishart matrices, and we will start out with those examples.

But we will see that, once we take the non-asymptotic perspective, the range of questions
it makes sense to ask expands dramatically. When we only care about asymptotics, we must
ask questions about sequences of random matrices whose statistics of interest (empirical
spectral distribution, norm, and so on) converge in some sense. The kinds of matrices we
have been looking at have been constrained by this requirement that they must make sense
as part of a sequence of growing matrices with d→∞.

If we wanted, say, to ask about Gaussian random matrices whose entries are correlated
in some complicated way, we would then have to orchestrate a sequence of such correlated
models converging to some interesting limit. Once we only care about a single random
matrix of a single dimension d×d, we can ask about all the same questions about far more
general models that do not come from any natural such sequence. We will see a sequence
of tools for answering these questions, building up to recent developments suggesting that,
often, we can have the best of both worlds: similarly precise information to the classical
limit theorems, for almost arbitrary models of random matrices, with explicit conclusions
and error bounds for finite d.
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5.1 Generic Models of Random Matrices

5.1.1 Independent, Differently-Distributed Entries

5.1.2 Gaussian Series

Definition 5.1.1. Consider any deterministic symmetric matricesA0,A1, . . . ,AD ∈ Rd×dsym , and
let g1, . . . , gD ∼ N (0,1) independently. We call the following random matrix the Gaussian
series associated to the sequence (Ai)Di=0:

X =X(g) :=A0 +
D∑

i=1

giAi.

Clearly any such X is a symmetric random matrix with entries that have a multivariate
Gaussian joint distribution. In fact, the converse is also true, so such Gaussian series are a
way of writing the most general possible Gaussian random matrix.

Definition 5.1.2. For any matrix X , write symvec(X) ∈ Rd(d+1)/2 for the vectorization of the
entries on and above the diagonal ofX , and vec(X) ∈ Rd

2
for the vectorization of all entries

of X (which will include some repetitions because X is symmetric).

Proposition 5.1.3. Suppose thatX is a random symmetric matrix having Law(symvec(X)) =
N (µ,Σ). Then, there existA0,A1, . . . ,AD ∈ Rd×dsym such that Law(X) = Law(A0+

∑D
i=1 giAi).

Moreover, it is possible to take D ≤ d(d+1)
2 in the latter representation.

Proof. Fix D = d(d+1)
2 . Note that µ ∈ RD and Σ ∈ RD×Dsym is positive semidefinite. Consider ex-

panding Σ =∑Di=1aia
>
i (say, if (ρi, ãi) are the eigenpairs of Σ, then we can take ai = √ρiãi).

Then, we have that Law(symvec(X)) = Law(µ+∑Di=1 giai) for gi ∼ N (0,1) independently.
Undoing the symvec(·) operation (which is a bijection between symmetric matrices and D-
dimensional vectors) then gives the Gaussian series representation.

Remark 5.1.4. While it is always possible to take D = d(d+1)
2 , sometimes it is easier to write

an “overparametrized” Gaussian series with D larger than this, which we will always allow
in our future results about these models.

In particular then, all of the Gaussian models we have seen before can be written as Gaus-
sian series models. For instance, the GOE corresponds to taking d(d+1)

2 many Ai, indexed
A(ij) for 1 ≤ i ≤ j ≤ d, where Aii =

√
2eie

>
i and Aij = eie>j + eje>i . But, we can also write

dramatically more general such series. The following is an interesting class of examples.

Example 5.1.5 (Patterned Gaussian matrices). Consider a partition {(i, j) : 1 ≤ i ≤ j ≤
d} = S1 t · · · t SD. Let Ai ∈ {0,1}d×dsym have (Ai)ab = 1{(a, b) ∈ Si} for each a ≤ b, for
i = 1, . . . ,D, and set A0 = 0. Then, the associated Gaussian series is a random matrix with
each entry distributed asN (0,1), but some entries “glued” to take equal values according to
the partition of the Si. For instance, taking the partition into diagonal subsets you can write
Gaussian Toeplitz or circulant matrices.
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Remark 5.1.6 (Rectangular and asymmetric matrices). We may embed the question of the
singular values of square asymmetric or even rectangular Gaussian matrices into this same
framework: if B ∈ Ra×b has jointly Gaussian entries, then we may take

X :=
[

0 B
B> 0

]
∈ R(a+b)×(a+b),

whose eigenvalues you may check will be ±σi(B) for σi(B) the singular values (together
with some zero eigenvalues. This X is symmetric and has jointly Gaussian entries, and thus
may be written as a Gaussian series.

5.2 Principles of Concentration Inequalities

The relationship between random matrix theory and concentration inequalities has several
different sides. Recall that a classical or scalar concentration inequality for some random
variable Y gives a bound of the form

P[|Y − EY | > s] ≤ T(s) (5.2.1)

More specifically, the classical concentration inequalities you have probably seen (Chernoff,
Hoeffding, Bernstein) all concern the special case

Y =
N∑

i=1

Xi

for Xi i.i.d. or at least independent.
We have already seen in our discussion of the ε-net method for bounding random matri-

ces in Chapter 1 that this can be a useful tool for bounding the spectral norm of a random
matrix. Recall how that worked: we had

‖M‖ = max
v∈Sd−1

|v>Mv|,

ε-nets gave us a way to discretize this maximum and the union bound gave us a way to
control P[‖M‖ > s] by controlling each P[|v>Mv| > s]. Finally, if the entries of M have
lots of independence, then v>Mv can be expanded into an expression that standard scalar
concentration inequalities apply to.

While previously we looked at the case M = GG> − EGG>, let us quickly recap here
how such an argument would look in the simpler case M =W ∼ GOE(d). We may choose
an ε-net X of Sd−1 with |X| ≤ (1+ 2

ε )
d, whereby

P[‖W ‖ > s] = P[ max
v∈Sd−1

|v>Wv| > s]

≤ P[max
v∈X

|v>Wv| > (1− 2ε)s]

111



where a simple calculation shows that Law(v>Wv) =N (0,2) for all v, so

≤ |X| P
g∼N (0,2)

[|g| > (1− 2ε)s]

≤
(

1+ 2
ε

)d
exp

(
−(1− 2ε)2

4
· s2

)

= exp

(
log

(
1+ 2

ε

)
· d− (1− 2ε)2

4
· s2

)
.

Let us be very quantitative here: this will show a strong tail bound once s ≥ (C + δ)√d for
any δ > 0, where

C =
√√√√4 log(1+ 2

ε )
(1− 2ε)2

,

which, even if we minimize over ε, gives C ≈ 4.27.
Getting to the point, this approach gives us a weak kind of information: even though we

know ‖W ‖ ≈ 2
√
d with high probability, the above calculation only establishes tail decay

beyond a very large deviation to 4
√
d. One way to see what the problem is is that this

calculation conflates two matters: that of what the typical value of ‖W ‖ is, and that of
how spread out the distribution of ‖W ‖ is around that typical value. It may seem that
these two are hopelessly intertwined: for instance, when you write the formula for the
variance, a simple measure of the latter, it involves the expectation, a measure of the former,
Var[X] = E(X−EX)2. Yet we will see that in fact these two issues can be disentangled, and
that this is a much more fruitful way to understand functions of many random inputs (like
W , ‖W ‖) than the previous direct approach.

You may think of the following as the two very high-level guiding principles of concen-
tration inequalities:

• Principle 1: Separation of Location and Concentration. It is possible to understand
the behavior of the deviation probabilities P[|X − EX| > s] without understanding EX
at all.

• Principle 2: Concentration of Non-Linear Functions. A function of many random
variables f(x) = f(x1, . . . , xN) concentrates around Ef(x) provided two properties
hold:

(a) the xi are only weakly dependent, and

(b) f is only weakly sensitive to each of its N inputs.

The first principle is describing what we suggested above. The second describes when we can
hope for concentration of general functions like W , ‖W ‖. Note that, at least directly, the
Chernoff/Hoeffding/Bernstein family of inequalities you may be familiar with is not useful
here. Indeed, the ε-net approach above is essentially a device for reducing concentration of
the non-linear function ‖W ‖ ofW to concentration of the many linear functions 〈W ,vv>〉.
In our case, this was possible because the convex function ‖W ‖ is a supremum of many
linear functions. It is possible to some extent to generalize this idea, but we will instead
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examine more direct manifestations of the above for very general f , on which we place
nearly no structural assumptions.

Principle 1 above suggests that, if we want to apply the general ideas of concentration in-
equalities to random matrices, we may develop separate tools for understanding the typical
values or expectations of things like random matrix norms and the concentration of these
quantities. We will see that the latter task is in some sense easier, in that it does not really
have to do with the matrix structure of our questions. Instead we will consider x1, . . . , xN
random variables, usually independent, and f(x1, . . . , xN) ∈ R a function. If for instance we
want to discuss properties of a Wigner matrix, we would take N = d(d−1)

2 + d = d(d+1)
2 the

number of scalar degrees of freedom of a symmetric matrix.

5.3 General-Purpose Variance Bounds

The simplest kinds of concentration inequalities bound the variance of a function of many
random variables Var[f (x1, . . . , xN)]. By Chebyshev’s inequality, such bounds translate into
concentration inequalities of the form

P[|f(x)− Ef(x)| ≥ s] ≤ Var[f (x)]
s2

.

These are fundamentally limited by the rate O(1/s2) on the right-hand side: often this rate
of decay with s is simply very far from the truth, and thus variance bounds do not suffice
to characterize the actual tails of f(x). Still, they can already be very useful, and are often
easier to prove than stronger bounds, as we will see below.

It is instructive to recall what happens for f the sum function. Suppose that xi are
independent. We then have the elementary identity

Var[f (x)] = Var



N∑

i=1

xi


 =

N∑

i=1

Var[xi]. (5.3.1)

Thus the variance is controlled by a sum of scalar variances.

5.3.1 Efron-Stein and Bounded Differences

The fundamental result about concentration of measure at the level of the variance is that
a simple variant of the same is true even for non-linear f . Let us adopt the notation x∼i :=
(x1, . . . , xi−1, xi+1, . . . , xN) ∈ RN−1 for a vector with the ith coordinate removed.

The following elementary observation will be useful for interpreting our result.

Proposition 5.3.1. Let X be a random variable and Y be an independent copy of X. Then,
Var[X] = 1

2E(X − Y)2.

Proof. Expanding gives E(X − Y)2 = EX2 + EY 2 − 2EXY = 2EX2 − 2(EX)2.

Theorem 5.3.2 (Efron-Stein). For any x = (x1, . . . , xN) independent and f : RN → R,

Var[f (X1, . . . , XN)] ≤
N∑

i=1

E
x∼i

Var
xi
[f (x)],
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where, more explicitly,

E
x∼i

Var
xi
[f (x)] = E

x1,...,xi−1,xi+1,...,xN
E
xi
(f (x1, . . . , xN)− E

xi
f(x1, . . . , xN))2,

with all coordinates but xi being constant in the innermost expectation. Alternatively, by
Proposition 5.3.1, this is equivalent to

Var[f (X1, . . . , XN)]

≤ 1
2
E
x,y

N∑

i=1

(f (x1, . . . , xi−1, xi, xi+1, . . . , xN)− f(x1, . . . , xi−1, yi, xi+1, . . . , xN))2,

where x,y are independent copies.

This is similar in spirit to (5.3.1): the variance of a general non-linear function of in-
dependent random variables is controlled by a sum of variance-like quantities describing
the “variance in the ith coordinate” of f . Also, the inner terms in the second expression
above may be viewed as the effect on the value of f of resampling the ith coordinate, which
is a natural measurement of the sensitivity of f in the ith coordinate in the sense of our
Principle 2.

Proof. The proof is quite simple using some basic ideas about martingales and conditional
expectations, but let us give that proof in perhaps friendlier language. In general, for f :
RN → R, write Eif for the average over the ith coordinate with respect to the law of xi:

(Eif)(x) = Exif(x1, . . . , xi−1, xi, xi+1, . . . , xN).

This is a function only depending on the coordinates other than i of f . By Fubini’s theorem,
these operations commute with one another, and so we may also write ES := Ei1 · · ·Eik for
the operation averaging over a set of indices S = {i1, . . . , ik}.

Now, we may decompose

f = (f − E{1}f)+ (E{1}f − E{1,2}f)+ · · · + (E{1,...,N−1}f − E{1,...,N}f)+ E{1,...,N}f .

Since E{1,...,N}f = Ef(x), we have

f − Ef(x) = (f − E{1}f)+ (E{1}f − E{1,2}f)+ · · · + (E{1,...,N−1}f − E{1,...,N}f).

Note that, for instance,

E(f (x)− E{1}f(x))(E{1}f(x)− E{1,2}f(x))
= Ef(x)E{1}f(x)− Ef(x)E{1,2}f(x)

− EE{1}f(x)E{1}f(x)+ EE{1}f(x)E{1,2}f(x)
= EE{1}f(x)E{1}f(x)− EE{1,2}f(x)E{1,2}f(x)

− EE{1}f(x)E{1}f(x)+ EE{1,2}f(x)E{1,2}f(x)
= 0,
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and similarly all cross-terms like this cancel. Thus,

Var[f (x)] = E(f (x)− Ef(x))2
= E(f − E{1}f)2 + · · · + E(E{1,...,N−1}f − E{1,...,N}f)2.

Finally, considering e.g. the last term we have

E(E{1,...,N−1}f − E{1,...,N}f)2 = E(E{1,...,N−1}(f − E{N}f))2 ≤ E(f − E{N}f)2

by Jensen’s inequality, and working similarly on each term gives the result.

We derive a simple consequence, which is like a version for the variance of the bounded
differences inequality that you may have seen before.

Proposition 5.3.3. If X ∈ [a, b] almost surely, then Var[X] ≤ 1
4(b − a)2.

Proof. You may show as a simple calculus exercise that Var[X] = E(X − EX)2 = minc E(X −
c)2, with the minimum achieved at c = EX. Taking c = a+b

2 then gives the result.

Definition 5.3.4 (Maximum coordinate influences). Suppose f : ΣN → R. For a given x ∈ ΣN ,
the maximum influence of coordinate i on f at x is

Dif(x) := sup
y∈Σ

f(x1, . . . , xi−1, y,xi+1, . . . , xN)− inf
y∈Σ

f(x1, . . . , xi−1, y,xi+1, . . . , xN) ≥ 0.

We also write
∆if := sup

x∈ΣN
{Dif(x)},

and write Df(x) := (D1f(x), · · · ,DNf(x)) and ∆f := (∆1f , . . . ,∆Nf).

Corollary 5.3.5. Let f : ΣN → R. Then, in the setting of Theorem 5.3.2, we have

Var[f (x1, . . . , xN)] ≤ 1
4

N∑

i=1

E(Dif(x))2 = 1
4
E
x
‖Df(x)‖2.

In particular, if |Dif(x)| ≤ ∆i for some constant ∆i for all x ∈ RN , then

Var[f (x1, . . . , xN)] ≤ 1
4

N∑

i=1

∆2
i =

1
4
‖∆f‖2.

This is another clear manifestation of Principle 2: the variance of any, perhaps very non-
linear, function of independent random variables is controlled by the maximum that that
function may be affected by changing each coordinate.

Remark 5.3.6. In fact, all of this goes through just as well for f : Σ1 × · · · × ΣN → R for any
measurable spaces Σi, provided that xi ∈ Σi are independent.
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5.3.2 Example: Variance of the Chromatic Number

The chromatic number of a graph G, denoted χ(G), is the minimum number of colors re-
quired to color its vertices so that any two adjacent vertices have different colors. Consider
the Erdős-Rényi random graph G on d vertices, viewed as a N =

(
d
2

)
-dimensional binary ran-

dom vector. It is easy to check that Diχ(G) ≤ 1 for all G: changing any one edge changes the
number of colors needed by at most 1, since one vertex may always be given a new color to
generate a valid coloring for the new graph. Unfortunately, this only shows Var[χ(G)] Ü d2,
a poor bound since χ(G) ≤ d always anyway.

To sharpen this, we can use Remark 5.3.6 and group some of the coordinates together:
let X1 contain all d − 1 edges incident with vertex 1, X2 contain all d − 2 edges incident
with vertex 2 but not vertex 1, and so forth until Xd−1 contains just the outcome of the one
edge between vertex d− 1 and vertex d. We may view G as this (d− 1)-dimensional coarse-
grained random vector (X1, . . . , Xd−1). By the same argument as above, χ(G) changes by at
most 1 from a modification of any Xi. Thus, we immediately learn that Var[χ(G)] Ü d. Other
combinatorial reasoning shows E[χ(G)] ∼ d/ logd (though, in accordance with Principle 1,
we did not need to know this to establish our variance bound), so this indeed gives strong
concentration of order O(

√
d) around this value.

The Efron-Stein family of results is a powerful tool in general for many optimization
problems over graphs, because of this kind of limited sensitivity to individual edges or
vertex neighborhoods.

5.3.3 Variance of λ1 for Bounded Entries

Let us now see a random matrix application. We will show the following remarkable fact, in
whose setting we see the advantage of working non-asymptotically: we can treat very general
classes of random matrices that do not necessarily form a nice sequence approaching a
legible limit.

Theorem 5.3.7. Let W ∈ Rd×dsym have independent entries with arbitrary distribution, such
that |Wij| ≤ K almost surely for all 1 ≤ i ≤ j ≤ d. Then, Var[λ1(W )] ≤ 16K2.

Note the startling generality: the result implies, for instance, that the largest eigenvalue
of any random graph with independent edge values has variance at most 16; moreover, this
is an exact bound with no error term in d. Moreover, the entries need not be centered, so
we may apply this to models with a “signal” in their expectation like the stochastic block
models we saw earlier.

The proof uses a useful trick to modify Corollary 5.3.5 in a way that is often useful,
which we state separately first.

Definition 5.3.8 (Upper maximum coordinate influence). In the context of Definition 5.3.4,
we also define

D+i f(x) := sup
y∈Σ

f(x1, . . . , xi−1, y,xi+1, . . . , xN)− f(x),

and write D+f(x) := (D1f(x), . . . ,DNf(x)).
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Corollary 5.3.9. In the context of Corollary 5.3.5, we also have

Var[f (x)] ≤
N∑

i=1

E(D+i f(x))
2 = 1

2
‖D+f(x)‖2.

Proof. Using our second form of the Efron-Stein inequality, writing x(i) for the vector x with
the ith coordinate replaced by yi, we have

Var[f (x1, . . . , XN)] ≤ 1
2
E
x,y

N∑

i=1

(f (x)− f(x(i)))2,

where the laws of the random variables f(x)− f(x(i)) are symmetric, whereby

= 1
2
E
x,y

N∑

i=1

(max{0, f (x)− f(x(i))} +min{0, f (x)− f(x(i))})2

= E
x,y

N∑

i=1

(max{0, f (x)− f(x(i))})2

≤ E
N∑

i=1

(D+i f(x))
2,

giving the result.

Proof of Theorem 5.3.7. It suffices to control the D+ijλ1(W ), i.e., the upper maximum coor-
dinate influences of each entry of a matrix on the largest eigenvalue. Let W and W ′ be two
matrices that only differ in coordinate i, j and have all coordinates bounded by K, and let
v1 be the top eigenvector of W . We then have

λ1(W )− λ1(W ′) = v>1Wv1 − max
‖v‖=1

v>W ′v

≤ v>1Wv1 − v>1W ′v1

= (1+ 1{i = j})(Wij −W ′ij)v1iv1j

≤ 4K · |v1i| · |v1j|.

Thus, we have
D+ijλ1(W ) ≤ 4K · |v1i| · |v1j|.

Applying the Corollary above,

Var[λ1(W )] ≤ 16K2E
∑

1≤i≤j≤d
|v1i|2 · |v1j|2 ≤ 16K2,

since
∑d
i=1 |v1i|2 = 1.
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5.3.4 Poincaré Inequalities

One annoyance of the previous results is that they strongly depend on the boundedness of
the entries of W . The theory of Poincaré inequalities gives a vast generalization of Efron-
Stein types of results to many other distributions. Here, let us give one example that is
accessible with the tools we have seen so far, which will at least let us treat Gaussian models,
including the GOE.

Theorem 5.3.10 (Gaussian Poincaré inequality). For all C1 functions f : RN → R,

Var
x∼N (0,IN)

[f (x)] ≤ E
x∼N (0,IN)

‖∇f(x)‖2.

A few remarks are in order. Note first the similarity to the version from Corollary 5.3.5
earlier, with the somewhat “harsher” notion of gradientDf(x) that measured the maximum
possible effect on the value of f by changing each coordinate arbitrarily:

Var[f (x)] Ü E
x
‖Df(x)‖2.

In exchange for the more specific assumption of Gaussian inputs and a more delicate proof
we will see below, we gain both a “gentler” measurement of sensitivity through the gradient
and the possibility of working with unbounded distributions and values of f(x). Second,
there are many Poincaré inequalities, sometimes involving a different notion of gradient, and
also allowing for a constant on the right-hand side that is of great interest to identify. The
above result is sharp in terms of this constant, since the inequality is an equality for N = 1
and f(x) = x. This is often phrased as the Poincaré constant of the measureN (0,IN) being
equal to 1, the important qualitative aspect being that this value is independent of N .

Proof. Suppose that we could show the inequality for N = 1. Then, by Efron-Stein, we can
use that result to prove the inequality for any N :

Var
x∼N (0,IN)

[f (x)] ≤
N∑

i=1

E
x∼i

Var
xi
[f (x)] (Efron-Stein)

≤
N∑

i=1

E
x∼i

Exi(∂if(x))
2 (N = 1 case)

= E
x∼N (0,IN)

‖∇f(x)‖2.

For the case N = 1, we use a very Gaussian-specific trick to introduce an opportunity to
use Efron-Stein again. Introduce z1, . . . , zk, z′1, . . . , z′k ∼ Unif({±1}) i.i.d. random signs. We
will be a bit heuristic with the central limit theorem below, but this argument is easy to
make rigorous:

Var
x∼N (0,1)

[f (x)] ≈ Var
z


f


 1√
k

k∑

i=1

zi




 (CLT)

≤ 1
2

k∑

i=1

E
z,z′


f


 1√
k

∑

j≠i

zj + zi√
k


− f


 1√
k

∑

j≠i

zj + z′i√
k






2

(Efron-Stein)

118



Here, by just enumerating the outcomes of the pair (zi, z′i) we see that

= 1
4

k∑

i=1

E
z


f


 1√
k

∑

j≠i

zj + 1√
k


− f


 1√
k

∑

j≠i

zj − 1√
k






2

≈ 1
4

k∑

i=1

E
z


 2√
k
f ′

 1√
k

∑

j≠i

zj






2

(Taylor expansion)

= 1
k

k∑

i=1

E
z
f ′

 1√
k

∑

j≠i

zj




2

≈ E
x∼N (0,1)

f ′(x)2, (CLT)

completing the proof.

The first part of the proof is often referred to as the tensorization of the Poincaré inequality:
if it holds with the same constant over several probability measures, then it also holds with
that constant over their product.

The following minor variant is easy to derive using that Lipschitz functions are almost
everywhere differentiable.

Corollary 5.3.11. Suppose that f : RN → R is L-Lipschitz, meaning that |f(x) − f(y)| ≤
L‖x− y‖. Then,

Var
x∼N (0,IN)

[f (x)] ≤ L2.

5.3.5 Variance of λ1 for Gaussian Entries

We may now easily derive the following Gaussian-valued version of Theorem 5.3.7.

Theorem 5.3.12. Let W ∈ Rd×dsym have independent entries Wij = Wji ∼ N (µij, σ 2
ij). Then,

Var[λ1(W )] ≤ 2maxij σ 2
ij .

Again, the result is remarkably general, applying uniformly to the GOE, to spiked matrix
models, or to heterogeneous or heteroskedastic versions of those with different entry vari-
ances.

Proof. Let g ∈ Rd(d+1)/2 be a standard Gaussian vector, with entries indexed by pairs (i, j)
with 1 ≤ i ≤ d. We may view W =W (g) as having entries Wij = µij + σijgij for all i ≤ j.
We are interested in this language in concentration of the function f(g) := λ1(W (g)). This
satisfies:

|f(g)− f(h)| = |λ1(W (g))− λ1(W (h))| ≤ ‖W (g)−W (h)‖F ≤
√

2max
i,j
σij‖g −h‖,

with the
√

2 coming from each entry of g happening either once or twice in W (g). The
result then follows from Corollary 5.3.11.

The following is an simple corollary pertaining to scalar-valued probability.
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Corollary 5.3.13. Let x ∼N (0,IN). Then, Var[maxNi=1xi] ≤ 2.

Proof. Apply Theorem 5.3.12 to a diagonal matrix.

This is a non-trivial concentration result, since, as you have probably seen,

E
N

max
i=1
xi ∼

√
2 logN.

5.4 General-Purpose Subgaussian Tail Bounds

Bounding the variance, say as Var[X] ≤ σ 2, can only give us tail bounds via Chebyshev’s
inequality of the form

P[|X − EX| > s] Ü 1
s2
.

This rate of decay is often severely suboptimal; even as we saw with our epsilon net calcula-
tion earlier, what we really should hope for is subgaussian rates of the form

P[|X − EX| > s] Ü exp

(
− s2

2σ 2

)
, (5.4.1)

where the scaling with s is the same as the tails of N (0, σ 2). We will now see some ma-
chinery for proving such results, which are very common and useful in modern probability
theory, even beyond random matrices.

5.4.1 Subgaussianity via Martingales

Recall that we saw in Corollary 5.3.5 of the Efron-Stein inequality that, if the influence on
f(x) of coordinate i is bounded as |Dif(x)| ≤ ∆i then, whenever the x are independent
random variables,

Var[f (x)] ≤ 1
4

N∑

i=1

∆2
i .

In fact, it turns out that this may be directly boosted to a subgaussian rate of tail decay.

Theorem 5.4.1 (McDiarmid). Under the above assumption,

P[|f(x)− Ef(x)| > s] ≤ 2 exp


− s2

2 · 1
4

∑N
i=1∆

2
i


 ,

where we use this form to emphasize that this amounts to taking σ 2 = 1
4

∑N
i=1∆

2
i in (5.4.1),

i.e., plugging our variance bound into the role of the variance parameter in the Gaussian tail
bound.

Proof Sketch. We just give the main idea and some remarks. In fact, the idea is similar to
the proof of the Efron-Stein inequality: we decompose

f = (f − E{1}f)+ (E{1}f − E{1,2}f)+ · · · + (E{1,...,N−1}f − E{1,...,N}f)+ E{1,...,N}f ,
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and note that the sequence of partial sums starting from the end of this sum

E{1,...,N}f(x), E{1,...,N−1}f(x), · · · , E{1}f(x), f (x)
form a martingale, the so-called Doob martingale associated to the function f . One way to
think of these is as a sequence of “forecasts” of the function f(x) of unknown inputs, which
is increasingly refined as we are given the outcomes of each coordinate.

A general philosophy in working with martingales is that they resemble random walks—
many inequalities that hold for random walks also hold for martingales. The assumption
of McDiarmid’s inequality is that the increments of the martingale—analogous to the steps
of the random walk—are bounded. Thus McDiarmid’s inequality is a martingale analog of
Hoeffding’s inequality (really the general analog for arbitrary martingales is often called the
Azuma or Azuma-Hoeffding inequality, of which McDiarmid’s inequality is a consequence
when applied to the special case of a Doob martingale). The proof of such results usually
amounts to imitating the proof for random walks, with suitable adjustments. Here the proof
is by a Chernoff bound: say for the upper tail,

P[f − Ef > s] = P[exp(λ(f − Ef)) > exp(λs)]
≤ exp(−λs)E exp(λ(f − Ef))
= exp(−λs)ExN exp(λ(E≤N−1f − E≤Nf))

ExN−1 exp(λ(E≤N−2f − E≤N−1f))
...

Ex1 exp(λ(f − E≤1f)),

and now from the innermost expectation (over x1) to the outermost (over xN ) we iteratively
apply the same reasoning as in Hoeffding’s inequality.

This inequality is useful, but has a few shortcomings. First, it cannot give us an analog
of our main corollary of Efron-Stein, which was in terms of the coordinatewise influences in
Corollary 5.3.5, stating that

Var[f (x)] Ü E
x
‖Df(x)‖2.

For direct comparison, the bounded differences inequality only tells us that we may have a
subgaussian tail bound with the weaker parameter

σ 2 Ü
N∑

i=1

(
sup
x
|(Dif(x))|

)2

.

The reason that this can be less useful should be intuitive: the former inequality is capturing
how big ‖Df(x)‖2 can be at any given x (even if we ignore the expectation and take a
supremum), while the latter is capturing only how big each coordinate ofDf(x) can be, not
taking advantage of the fact that the coordinates might never all be large at once.

Recall in particular that our application of bounding the variance of λ1(W ) for W with
independent bounded entries in Section 5.3.3 crucially used the stronger variance bound, re-
lating the coordinates of Dλ1(W ) to the entries of the top eigenvector of W . Accordingly,
we will not get tight subgaussian tail bounds on random matrices from just McDiarmid’s in-
equality. And, as in our passage from the direct application of Efron-Stein in Corollary 5.3.5,
we would like to be able to work with unbounded distributions and functions as well.
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5.4.2 Non-Tensorization of Subgaussianity

Given this situation, it is natural to try to imitate the Efron-Stein inequality, but controlling
instead of the variance some quantity that corresponds to subgaussian tail bounds. The
following are important definitions related to this matter.

Definition 5.4.2. For a random variable X, we define the moment and cumulant generating
functions as

φX(λ) := E exp(λ(X − EX)),
ψX(λ) := logφX(λ).

We say that X is σ 2-subgaussian ψX(λ) ≤ 1
2σ

2λ2 for all λ ∈ R.

Proposition 5.4.3. If X is σ 2-subgaussian, then it admits the tail bound

P[|X − EX| > s] ≤ 2 exp

(
− s2

2σ 2

)
.

Proof. The same as the proof of Chernoff’s inequality.

The key use to us of the Efron-Stein inequality was that it establishes the tensoriza-
tion of variance: the variance of a non-linear function of independent random variables is
controlled by individual variances of that function in each coordinate at a time. And, the
inequality was tight for f(x) a linear function, since the variances of independent random
variables add:

Var



N∑

i=1

xi


 =

N∑

i=1

Var[xi].

Note that the cumulant generating function enjoys the same property:

ψ∑N
i=1 xi

(λ) =
N∑

i=1

ψxi(λ).

In particular, this implies that subgaussianity is linear over independent random variables: if
x1, . . . , xN are independent and xi is σ 2

i -subgaussian, then
∑N
i=1xi is (

∑N
i=1σ

2
i )-subgaussian.

It is then very tempting to try to extend this to non-linear functions as the Efron-Stein
inequality did for variances: we might expect that, for xi independent,

E log exp(λ(f(x)− Ef(x))) (?)Ü
N∑

i=1

E
x∼i

log E
xi
exp(λ(f(x)− Ef(x))).

Such an inequality would mean that, if f(x) is “subgaussian in each coordinate,” then it is
also subgaussian as a function of all of its random inputs at once. Sadly, such an inequality
cannot hold.
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Example 5.4.4. Let x1, x2, x3 ∼N (0,1) independently, and let f(x) = x1x2x3. On the right-
hand side of our putative inequality, we have terms like

E
x2,x3

log E
x1
exp(λx1x2x3) = E

x2,x3
log exp

(
1
2
λ2x2

2x2
3

)

= 1
2
λ2 E

x2,x3
x2

2x2
3

= 1
2
λ2.

Thus, f is 1-subgaussian in each coordinate, so we would expect f(x) to be 3-subgaussian, or
at least C-subgaussian for some C > 0. Yet this is not true: the left-hand side above is

log E
x1,x2,x3

exp(λx1x2x3) = log E
x2,x3

exp
(

1
2
λ2x2

2x2
3

)

= log E
x3

1√
1− λ2x2

3

= ∞,

showing that the left-hand side expectation does not converge for any λ ∈ R.

5.4.3 Logarithmic Sobolev Inequalities

For this reason, the issue of conveniently establishing subgaussian tail bounds for large
classes of functions of independent random variables in high dimension is subtler than the
same question for the variance. Fortunately, it is still possible through the technology of
logarithmic Sobolev inequalities (LSI), which we briefly sketch now.

These inequalities are based on the following substitute for the variance, called the en-
tropy (and related to some extent to the Shannon and relative entropies, at least for discrete
random variables).

Definition 5.4.5. For X > 0, define Ent[X] := E[X logX]− E[X] logE[X].

Note that Ent[X] is the “gap” in the Jensen inequality for the convex function f(x) = x logx
applied to the random variable X, just like Var[X] = E[X2] − (E[X])2 is the same kind of
gap for f(x) = x2. Thus for instance Ent[X] ≥ 0 with equality if and only if X is constant,
and Ent[X] is another way of measuring the “spreadness” of a random variable’s law.

The first key property of this quantity is that it satisfies an inequality precisely in the
style of Efron-Stein.

Lemma 5.4.6. For any x = (x1, . . . , xN) independent and f : RN → R,

Ent[f (x1, . . . , xN)] ≤
N∑

i=1

E
x∼i

Ent
xi
[f (x)].

It should not be clear what the relationship is between the entropy and subgaussianity,
since entropy is an even milder measurement of spreadness than the variance. The key
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observation is that the entropy appears naturally in the derivative of the moment generating
function:

φ′X(λ) = EX exp(λX) = 1
λ
Ent[exp(λX)]+ 1

λ
φX(λ) logφX(λ).

Since subgaussianity asks for a bound on the moment generating function, it is natural that
a bound on Ent[exp(λX)] should suffice. The following expresses what is needed.

Lemma 5.4.7 (Herbst). Suppose that, for all λ ∈ R, Ent[exp(λX)] ≤ 1
2σ

2λ2E[exp(λX)]. Then,
X is σ 2-subgaussian.

Finally, we would like some family of inequalities like the Poincaré inequalites for the
variance: inequalities that on the one hand tensorize, in the sense of generalizing easily to
product measures, and on the other hand that control the subgaussianity of a wide range of
non-linear functions of a random variable or vector.

Theorem 5.4.8 (Gaussian modified log-Sobolev inequality (MLSI)). Let f : RN → R be C1.
Then,

Ent
x∼N (0,IN)

[exp(f (x))] ≤ 1
2

E
x∼N (0,IN)

‖∇f(x)‖2 exp(f (x)).

The proof of the N = 1 case is beyond the scope of our discussion, but it is easy to show
how to generalize to larger N using Lemma 5.4.6: we simply have, using the Lemma and
then the N = 1 result,

Ent[exp(f (x))] ≤
N∑

i=1

E
x∼i

Ent
xi
[f (x)]

≤ 1
2

N∑

i=1

E(∂if(x))2 exp(f (x))

= 1
2
E‖∇f(x)‖2 exp(f (x)).

This reflects the more general phenomenon of MLSI’s tensorizing, just like Poincaré inequal-
ities.

Finally, let us see how the MLSI implies concentration inequalities. The following is a
crucially important theorem of modern probability, perhaps the most ubiquitous strong
concentration inequality you will come across.

Theorem 5.4.9 (Gaussian Lipschitz concentration). Suppose f is L-Lipschitz and x ∼N (0,IN).
Then, f(x) is L2-subgaussian, whereby

P[|f(x)− Ef(x)| > s] ≤ exp

(
− s

2

2L2

)
.

Proof. By the Gaussian MLSI applied to the function g(x) = exp(λf(x)), we have

Ent[exp(λf(x))] ≤ 1
2
E‖∇λf(x)‖2 exp(λf(x)) ≤ 1

2
λ2L2E exp(λf(x)).

But, this is precisely the inequality in the condition of Lemma 5.4.7, so we find that f(x) is
L2-subgaussian.
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5.4.4 Subgaussianity of λ1 for Gaussian Entries

Let us see some applications of Theorem 5.4.9. A simple one is that the result can recover
the concentration of the norm of a Gaussian random vector that we derived much more
painstakingly earlier:

Corollary 5.4.10 (Gaussian vector norm). Let x ∼ N (0,IN). Then, ‖x‖ is 1-subgaussian.
Consequently,

P
x∼N (0,IN)

[∣∣‖x‖ − E‖x‖∣∣ ≥ s] ≤ 2 exp

(
−s

2

2

)
.

Proof. The function f(x) = ‖x‖ is 1-Lipschitz, since |‖x‖ − ‖y‖| ≤ ‖x − y‖ by triangle
inequality, and the result follows by Theorem 5.4.9.

Note that Exercise 2.8.1 also showed that E‖x‖ = (1 + o(1))√d, making this a complete
picture of the typical value of the norm.

We may also treat arbitrary matrices with independent Gaussian entries, as we did earlier
for the variance.

Corollary 5.4.11 (λ1 of independent Gaussian matrices). Let W ∈ Rd×dsym have independent
entries Wij = Wji ∼ N (µij, σ 2

ij). Then, λ1(W ) is (2max1≤i≤j≤dσ 2
ij)-subgaussian. Conse-

quently,

P
x∼N (0,IN)

[∣∣λ1(W )− Eλ1(W )
∣∣ ≥ s] ≤ 2 exp

(
− s2

4maxσ 2
ij

)
.

Proof. From our earlier argument for Theorem 5.3.12, we may view W = W (g) for g ∼
N (0,ID) with D = d(d+1)

2 , and then f(g) := λ1(W (g)) is (
√

2max1≤i≤j≤dσij)-subgaussian.
The result then follows by Theorem 5.4.9.

Note in particular that this applies both toW ∼ GOE(d) and toW +β√dxx> for any β,x as
in the spiked matrix model, to show that the largest eigenvalues of these are 2-subgaussian,
compared to the typical values λ1 �

√
d we derived earlier.

5.4.5 Subgaussianity of λ1 for Gaussian Series

We may actually treat the concentration of the largest eigenvalue of a much more general
model of a Gaussian random matrix. These will also play a central role in the rest of our
study of matrix concentration.

The following result gives a concentration inequality for the top eigenvalue of any Gaus-
sian series, and therefore any random matrix with jointly Gaussian entries. The concentra-
tion will be governed by the following parameter.
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Definition 5.4.12. For X =A0 +
∑D
i=1 giAi a Gaussian series, we define

σ∗(X)2 := max
‖v‖=1

E
(
v>(X − EX)v

)2

:= max
‖v‖=1

D∑

i=1

(v>Aiv)2

= max
‖v‖=1

〈 D∑

i=1

A⊗2
i ,v

⊗4

〉
,

sometimes called the weak matrix variance statistic or parameter, in contrast to a similar
quantity we will see below in Definition 6.1.1.

Remark 5.4.13. From the last form, one may also write σ∗(X) = ‖T ‖inj, the injective norm of
the symmetric 4-tensor T formed by symmetrizing

∑D
i=1A

⊗2
i with respect to all permutations

of the indices.

The injective norm is difficult to compute in general [HL13], so the following upper bound
can be more convenient.

Definition 5.4.14 (Matrix covariance). We write Cov(X) := Cov(vec(X)), and

v(X)2 := ‖Cov(X)‖ =
∥∥∥∥∥∥
D∑

i=1

vec(Ai)vec(Ai)>
∥∥∥∥∥∥ .

Proposition 5.4.15. If Σ = Cov(symvec(X)) is as in Proposition 5.1.3, then

σ∗(X) ≤ v(X) ≤
√

2‖Σ‖.

Proof. For the first inequality, we have

σ∗(X)2 = max
‖v‖=1

〈 D∑

i=1

A⊗2
i ,v

⊗4

〉

= max
‖v‖=1

〈 D∑

i=1

vec(Ai)vec(Ai)>, vec(vv>)vec(vv>)>
〉

≤ max
‖v‖=1

〈 D∑

i=1

vec(Ai)vec(Ai)>,vv>
〉

= v(X)2.

For the second inequality, note that Cov(X) is a submatrix of the matrix
[
Σ Σ
Σ Σ

]
=
[

1 1
1 1

]
⊗ Σ,

whose operator norm is 2‖Σ‖.
Theorem 5.4.16. Let X be the Gaussian series of (Ai)Di=0. Then, λ1(X) and ‖X‖ are both
σ∗(X)2-subgaussian, and hence also v(X)2-subgaussian and 2‖Σ‖2-subgaussian.
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Proof. By the same bounds as we have seen before, we may bound

|λ1(X(g))− λ1(X(h))| ≤ ‖X(g)−X(h)‖

=
∥∥∥∥∥∥
D∑

i=1

(gi − hi)Ai
∥∥∥∥∥∥

= max
‖v‖=1

∣∣∣∣∣∣v
>


D∑

i=1

(gi − hi)Ai

v

∣∣∣∣∣∣

= max
‖v‖=1

∣∣∣∣∣∣
D∑

i=1

(gi − hi)(v>Aiv)
∣∣∣∣∣∣

≤ max
‖v‖=1



D∑

i=1

(v>Aiv)2



1/2

· ‖g −h‖ (Cauchy-Schwarz)

= σ∗(X) · ‖g −h‖,

which gives the result by Theorem 5.4.9. The argument for ‖X‖ is essentially the same,
except instead of the inequality |λ1(X)− λ1(Y )| ≤ ‖X − Y ‖, we use that | ‖X‖ − ‖Y ‖ | ≤
‖X −Y ‖.

Note that, using the weaker result of v(X)2-subgaussianity, the case of independent
Gaussian entries from before just corresponds to Σ = Cov(symvec(X)) being a diagonal
matrix of the σ 2

ij , so we easily recover Corollary 5.4.11. At the other extreme, we can consider
the matrix X = g1d1>d , where g ∼ N (0,1) and thus X is just a constant matrix with all
entries equal to g. We have λ1(X) = max{0, dg}, and thus is at best d2-subgaussian, since
Law(dg) = N (0, d2) (and the truncation at zero only affects the lower tail, not the upper
tail). And indeed, in this case we have Cov(X) = 1d21>d2 , so v(X)2 = d2 and the above result
is again sharp.
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6 | Non-Asymptotic Theory II: Typical

Spectral Statistics

6.1 Non-Commutative Khintchine Inequality

We now switch gears slightly and focus on matrix norms rather than maximum eigenval-
ues. Theorem 5.4.16 gives a remarkably general result showing that ‖X‖ for any Gaussian
random matrix X concentrates around its E‖X‖. The mean remains mysterious: clearly
for different choices of Ai in a Gaussian series we may engineer a great variety of matrix
structures with eigenvalues on different scales and so forth. Yet, even more surprising than
our general treatment of concentration, the following result nearly pins down the location
of the mean of any Gaussian random matrix up to constants.

Definition 6.1.1. For a random matrix X , define

σ(X)2 := ‖E(X − EX)2‖,

sometimes called the matrix variance statistic or parameter (in contrast to its relative in
Definition 6.1.1). For X the Gaussian series of A0,A1, . . . ,AD, this is equivalently

σ(X)2 = ‖
D∑

i=1

A2
i ‖.

Note that σ(X) is something that we can compute in terms of the deterministic matrices
Ai that specify the Gaussian series model of X . Thus it is supremely remarkable that this
quantity nearly captures the scaling of the expected norm of X up to constants:

Theorem 6.1.2 (Non-commutative Khintchine (NCK) inequality [LP86, LPP91]). There are ab-
solute constants c, C > 0 such that, for any centered d × d Gaussian random matrix X (i.e.,
any Gaussian series with A0 = 0), we have

c · σ(X) ≤ E‖X‖ ≤ C
√
logd · σ(X).

Concretely, one may take c = 1/
√

2 and C = √2e.

Let us first check that, unfortunately, both the upper and lower bounds can be tight in

different cases, so the
√
logd cannot be removed in general, though it can sometimes, an

issue we will revisit later.
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Example 6.1.3 (Diagonal matrix). Consider X diagonal with Xii ∼ N (0,1) i.i.d. Then, we

have EX2 = I , so σ(X) = 1. On the other hand, E‖X‖ = Emaxdi=1 |Xii| �
√
logd, so in this

case the upper bound above is tight (up to constants).

Example 6.1.4 (GOE matrix). Consider X ∼ GOE(0)(d). A simple calculation by expanding
the matrix multiplication shows that EX2 = (d − 1)Id, so σ(X) = √d− 1. And, we have
E‖X‖ = (2 + o(1))√d as we have seen, so in this case the lower bound above is tight (up to
constants).

Also, let us compare this with the concentration inequality we proved for ‖X‖. Re-
call by Theorem 5.4.16 that ‖X‖ is σ∗(X)2-subgaussian, for the parameter σ∗(X) as in
Definition 5.4.12. In fact we may show that these fluctuations at least do not swamp the
expectation:

Proposition 6.1.5. We have:

Var[‖X‖] Ü σ∗(X)2 Ü (E‖X‖)2.

Proof. The first result is immediate from Theorem 5.4.16. For the second result, we recall
the definition

σ∗(X) = max
‖v‖=1



D∑

i=1

(v>Aiv)2



1/2

.

On the other hand,

D∑

i=1

(v>Aiv)2 = Var



D∑

i=1

v>(giAi)v


 = Var[v>Xv],

for any fixed v. In particular then, we have



D∑

i=1

(v>Aiv)2



1/2

=
√
π
2
· E∣∣v>Xv∣∣ ,

since
√

2/π = Eg∼N (0,1)|g|. Thus, by Jensen’s inequality over the maximum,

σ∗(X) ≤ max
‖v‖=1

√
π
2
· E∣∣v>Xv∣∣ ≤

√
π
2
· E max

‖v‖=1

∣∣v>Xv
∣∣ =

√
π
2
· E‖X‖,

completing the proof.

Let us prove Theorem 6.2.4. We will consider the upper and lower bounds separately.
The lower bound is much simpler using our above observation.

Proof of Theorem 6.2.4: Lower Bound. First, note that by Jensen’s inequality we have

E‖X‖2 = E‖X2‖ ≥ ‖EX2‖ = σ(X)2.

On the other hand, using Proposition 6.1.5 above,

E‖X‖2 = (E‖X‖)2 + Var[‖X‖] Ü (E‖X‖)2.
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Putting the two inequalities together,

(E‖X‖)2 Ý σ(X),

and the result follows.

The real content of the result is in the upper bound. For that, we will follow the “trace
method” as we have discussed in Section 2.5. This prescribes that we estimate the expecta-
tions of traces of high powers of X , which is achieved by the following.

Lemma 6.1.6 (Non-commutative Khintchine trace estimate).

(
ETrX2k

) 1
2k ≤

√
2k− 1 · (Tr(EX2)k)

1
2k .

The following is a simple but important preliminary, whose short proof we omit. See [Tro18,
vH17] for the details.

Proposition 6.1.7. Let A,B ∈ Rd×dsym and 0 ≤ k ≤ `. Then, Tr(AB`AB2k−`) ≤ Tr(A2B2k).

Proof of Lemma 6.1.6. We expand the moments we are interested in as follows:

M2k := ETrX2k

= ETr



D∑

i=1

giAi




2k

=
D∑

i=1

EgiTr


Ai



D∑

i=1

giAi




2k−1



Now, using Gaussian integration by parts on each term gives

=
D∑

i=1

2k−2∑

`=0

ETr


Ai



D∑

i=1

giAi



`

Ai



D∑

i=1

giAi




2k−2−`


to which we may apply Proposition 6.1.7,

≤
D∑

i=1

2k−2∑

`=0

ETr


A2

i



D∑

i=1

giAi




2k−2



= (2k− 1)ETr





D∑

i=1

A2
i





D∑

i=1

giAi




2k−2



= (2k− 1)E
〈 D∑

i=1

A2
i ,X

2k−2

〉
.

Let us define

V :=
D∑

i=1

A2
i .
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By von Neumann’s trace inequality followed by Hölder’s inequality, we may continue

M2k ≤ (2k− 1)E〈λ(V ),λ(X2k−2)〉 (von Neumann)

≤ (2k− 1)‖λ(V )‖kE‖λ(X2k−2)‖ k
k−1

(Hölder)

= (2k− 1)Tr(V k)1/kETr(X(2k−2)· k
k−1 )

k−1
k

= (2k− 1)Tr(V k)1/kETr(X2k)1−
1
k

≤ (2k− 1)Tr(V k)1/k(ETrX2k)1−
1
k (Jensen)

= (2k− 1)Tr(V k)1/kM
1− 1

k
2k .

Finally we have reached a closed inequality for M2k, which, upon rearranging, reads

M
1

2k
2k ≤

√
2k− 1Tr(V k)

1
2k ,

completing the proof.

With the Lemma proved, we can give the proof of the upper bound of Theorem 6.2.4 easily.

Proof of Theorem 6.2.4: Upper Bound. We have

E‖X‖ ≤ E(TrX2k)
1

2k

≤ (ETrX2k)
1

2k (Jensen)

≤
√

2k · (Tr(EX2)k)
1

2k (Lemma 6.1.6)

≤
√

2k · (d · σ 2k)
1

2k

= d 1
2k
√

2k · σ.

Optimizing over k gives that the best choice is k � logd, and plugging this in gives the
result.

6.2 Sums of Independent Random Matrices

We will next see how it is possible to derive very general matrix concentration inequalities
for sums of arbitrary independent random matrices,

X =
∑

i

Hi for Hi random and independent,

starting from the NCK inequality. This should be surprising: an entire random matrix Hi

seems to allow for much more general structure than the giAi for deterministic Ai that
appear in NCK. Yet, these extensions actually follow from NCK by two elementary tricks.
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6.2.1 Trick 1: Gaussian to Rademacher

The first trick is truly trivial-looking: the NCK inequality with Gaussian random variables
implies the same, with a slightly larger constant, for Rademacher random variables having
distribution Unif({±1}).
Lemma 6.2.1. Suppose Ai ∈ Rd×dsym are deterministic. We have

E
zi∼Unif({±1})

∥∥∥∥∥∥
∑

i

ziAi

∥∥∥∥∥∥ ≤
√
π
2

E
gi∼N (0,1)

∥∥∥∥∥∥
∑

i

giAi

∥∥∥∥∥∥ .

Proof. Introduce gi ∼ N (0,1) and zi ∼ Unif({±1}) all independent of one another. Since
Law(gi) = Law(zi|gi|), we may rewrite and use Jensen’s inequality:

E
gi

∥∥∥∥∥∥
∑

i

giAi

∥∥∥∥∥∥ = E
zi,gi

∥∥∥∥∥∥
∑

i

zi|gi|Ai
∥∥∥∥∥∥

≥ E
zi

∥∥∥∥∥∥
∑

i

E[|gi|] · ziAi
∥∥∥∥∥∥

=
√

2
π

E
zi∼Unif({±1})

∥∥∥∥∥∥
∑

i

ziAi

∥∥∥∥∥∥ ,

and the result follows by rearranging. We have used the elementary integral calculation
E[|gi|] =

√
2/π .

We call a random matrix of the form
∑
i ziAi a Rademacher series. As a consequence,

a version of the NCK inequality holds for Rademacher series. In fact, this was the original
form of the NCK inequality studied in [LP86, LPP91]; the conveniences of the Gaussian form
were only realized later.

Corollary 6.2.2 (Rademacher NCK inequality). There are absolute constants c, C > 0 such
that, for any centered d × d Rademacher series X = ∑D

i=1 ziAi with zi ∼ Unif({±1}), we
have

c · σ(X) ≤ E‖X‖ ≤ C
√
logd · σ(X).

6.2.2 Trick 2: Symmetrization

It seems like we have not made much progress. The next trick is really the key: any sum of
independent random matrices, merely so long as they are centered, can be controlled by a
random Rademacher series:

∑
i ziAi where theAi are random but independent of zi. As we

will see, we may then apply NCK conditionally on the Ai and obtain non-trivial bounds.

Lemma 6.2.3. Suppose Hi ∈ Rd×dsym are arbitrary independent random matrices. Introduce
zi ∼ Unif({±1}) independent of one another and of the Hi. Then,

E

∥∥∥∥∥∥
∑

i

(Hi − EHi)

∥∥∥∥∥∥ ≤ 2E

∥∥∥∥∥∥
∑

i

ziHi

∥∥∥∥∥∥ .
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Proof. Introduce (H ′
i) an independent copy of the collection (Hi). We then have

E

∥∥∥∥∥∥
∑

i

(Hi − EHi)

∥∥∥∥∥∥ = E
Hi

∥∥∥∥∥∥ EH′
i

∑

i

(Hi −H ′
i)

∥∥∥∥∥∥

≤ E

∥∥∥∥∥∥
∑

i

(Hi −H ′
i)

∥∥∥∥∥∥ (Jensen)

and now, since Hi −H ′
i has a symmetric law, we have

= E

∥∥∥∥∥∥
∑

i

zi(Hi −H ′
i)

∥∥∥∥∥∥

≤ E

∥∥∥∥∥∥
∑

i

ziHi

∥∥∥∥∥∥+ E
∥∥∥∥∥∥
∑

i

ziH ′
i

∥∥∥∥∥∥

= 2E

∥∥∥∥∥∥
∑

i

ziHi

∥∥∥∥∥∥ ,

giving the result.

As a corollary, we can derive the following inequality, which we may view as a version of
the NCK inequality for general sums of independent random matrices.

Corollary 6.2.4 (Independent sum NCK). There is an absolute constant C > 0 such that, for
any independent random Hi ∈ Rd×dsym ,

E

∥∥∥∥∥∥
∑

i

(Hi − EHi)

∥∥∥∥∥∥ ≤ C
√
logdE

∥∥∥∥∥∥
∑

i

H2
i

∥∥∥∥∥∥

1/2

.

6.2.3 Matrix Chernoff Bound

Theorem 6.2.5 (Matrix Chernoff). There are absolute constants C1, C2 > 0 such that, for any
Hi ∈ Rd×dsym random and satisfying Hi � 0 almost surely, and for any ε > 0, we have

E

∥∥∥∥∥∥
∑

i

Hi

∥∥∥∥∥∥ ≤


∥∥∥∥∥∥
∑

i

EHi

∥∥∥∥∥∥

1/2

+ C1

√
logd

(
Emax

i
‖Hi‖

)1/2



2

≤ (1+ ε)
∥∥∥∥∥∥
∑

i

EHi

∥∥∥∥∥∥+
(

1+ 1
ε

)
C2 logdEmax

i
‖Hi‖.

Often in applications, ‖Hi‖ is uniformly bounded almost surely, in which case the second
term above is just O(logd). In that case, the inequality is usually effective just once there are
sufficiently many of the Hi that the first term overwhelms this error term. Also, sometimes
it is fine to take ε = 1 and just use a bound ignoring constant factors,

E

∥∥∥∥∥∥
∑

i

Hi

∥∥∥∥∥∥ Ü
∥∥∥∥∥∥
∑

i

EHi

∥∥∥∥∥∥+ logdEmax
i
‖Hi‖,
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but sometimes, especially when the number of terms in the sum is large, it can be useful to
take ε small in which case the above can become a quite sharp estimate.

Proof. First, note that we may bound by triangle inequality

E

∥∥∥∥∥
∑

i

Hi

∥∥∥∥∥ ≤
∥∥∥∥∥
∑

i

EHi

∥∥∥∥∥+ E
∥∥∥∥∥
∑

i

(Hi − EHi)

∥∥∥∥∥.

On the second term, we use the independent sum NCK:

E

∥∥∥∥∥
∑

i

(Hi − EHi)

∥∥∥∥∥ Ü
√
logdE

∥∥∥∥∥
∑

i

H2
i

∥∥∥∥∥
1/2

(independent sum NCK)

≤
√
logdE



(
max
i
‖Hi‖

)1/2
∥∥∥∥∥
∑

i

Hi

∥∥∥∥∥
1/2



≤
√
logd

(
Emax

i
‖Hi‖

)1/2

E
∥∥∥∥∥
∑

i

Hi

∥∥∥∥∥




1/2

. (Cauchy-Schwarz)

Thus we find that, for some absolute C > 0,

E

∥∥∥∥∥
∑

i

Hi

∥∥∥∥∥ ≤
∥∥∥∥∥
∑

i

EHi

∥∥∥∥∥+ C
√
logd

(
Emax

i
‖Hi‖

)1/2

E
∥∥∥∥∥
∑

i

Hi

∥∥∥∥∥




1/2

.

But now, this is a quadratic inequality for the norm we are interested in. Solving it gives
that, for another constant C′,

E

∥∥∥∥∥
∑

i

Hi

∥∥∥∥∥ ≤


∥∥∥∥∥
∑

i

EHi

∥∥∥∥∥
1/2

+ C′
√
logd

(
Emax

i
‖Hi‖

)1/2

E
∥∥∥∥∥
∑

i

Hi

∥∥∥∥∥




1/2



2

,

which is the first form of the result. The second follows from using a weighted arithmetic-
geometric mean inequality, a simple but handy scalar bound:

(x +y)2 = x2 +y2 + 2xy

= x2 +y2 + 2
(√
εx
)( y√

ε

)

≤ x2 +y2 + (√εx)2 +
(
y√
ε

)2

= (1+ ε)x2 +
(

1+ 1
ε

)
y2,

completing the proof.

6.2.4 Matrix Bernstein Bound

Theorem 6.2.6 (Matrix Bernstein). There are absolute constants C1, C2 > 0 such that, for any
Hi ∈ Rd×dsym random with EHi = 0,

E

∥∥∥∥∥∥
∑

i

Hi

∥∥∥∥∥∥ ≤ C1

√
logd

∥∥∥∥∥∥
∑

i

EH2
i

∥∥∥∥∥∥

1/2

+ C2 logd
(
Emax

i
‖Hi‖2

)1/2
.
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If we writeX :=∑iHi and ‖Hi‖ ≤ K almost surely for all i, then we may write the above
in a form similar to the upper bound of the NCK inequality, with an extra error term:

E

∥∥∥∥∥∥
∑

i

Hi

∥∥∥∥∥∥ Ü
√
logd · σ(X)+ logd ·K.

In this sense, which we will discuss further a little bit later, a fruitful way to view the matrix
Bernstein inequality is as a universal NCK inequality, extending the Gaussian NCK setting to
general independent sums.

As with matrix Chernoff, quite often in applications we have ‖Hi‖ uniformly bounded al-
most surely, in which case the second term is just O(logd).

Note also that, if we write X := ∑
iHi, then σ(X) = ‖EX2‖1/2 = ‖∑i EH2

i ‖1/2 is pre-

cisely what appears in the first term above, and the entire first term is
√
logdσ(X), just

as in the NCK inequality. Thus the matrix Bernstein inequality is a sort of “universal NCK”
inequality for sums of independent random matrices.

Proof. The result follows directly by composing the independent sum NCK with the matrix
Chernoff bound, as follows:

E

∥∥∥∥∥
∑

i

Hi

∥∥∥∥∥ Ü
√
logdE

∥∥∥∥∥
∑

i

H2
i

∥∥∥∥∥
1/2

(independent sum NCK)

Ü
√
logd


E
∥∥∥∥∥
∑

i

H2
i

∥∥∥∥∥




1/2

(Jensen)

Ü
√
logd



∥∥∥∥∥∥
∑

i

EH2
i

∥∥∥∥∥∥

1/2

+
√
logdEmax

i
‖Hi‖


 (matrix Chernoff)

which gives the result.

6.3 Application: Covariance Estimation Revisited

Consider the matter of estimating the covariance of a probability distribution from samples
that we have seen several times before. Consider, though, a much more general model than
the Gaussian one that we discussed: suppose v1, . . . ,vm ∈ Rd are i.i.d. random vectors, with
Evi = 0 and Cov[vi] = Eviv>i = Σ. We consider the sample covariance,

Σ̂ := 1
m

m∑

i=1

viv
>
i .

How well does Σ̂ approximate Σ? We will study this general question under just the general
condition that the vi are bounded: for some K > 0, almost surely we have

‖vi‖ ≤ K.
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We will study the norm of the difference,

Σ̂− Σ =
m∑

i=1

1
m
(viv>i − Σ)

︸ ︷︷ ︸
Hi

,

which the above shows may be written as a sum of independent (indeed, in this case, i.i.d.)
centered matrices Hi = 1

m(viv
>
i − Σ) = 1

m(viv
>
i − Eviv>i ). Let us gather the information

needed to apply matrix Bernstein, namely a uniform bound on the norms of the Hi and the
first two moments of Hi:

‖Hi‖ ≤ 1
m
(‖vi‖2 + E‖vi‖2)

≤ 2K
m

almost surely,

EHi = 0,

EH2
i =

1
m2

E(viv>i − Eviv>i )2

= 1
m2

E(viv>i )
2 − (Eviv>i )2

� 1
m2

E‖vi‖2viv
>
i

� K
2

m2
Σ.

Plugging this information into matrix Bernstein, we find

E‖Σ̂− Σ‖ = E

∥∥∥∥∥∥
∑

i

Hi

∥∥∥∥∥∥

Ü
√
logd

∥∥∥∥∥∥
∑

i

EH2
i

∥∥∥∥∥∥

1/2

+ logd
(
Emax

i
‖Hi‖2

)1/2

Ü
√
logd ·

√
m · K

2

m2
· ‖Σ‖ + logd · K

2

m
.

A more natural quantity is the relative error in our estimate, which then takes the form

E‖Σ̂− Σ‖
‖Σ‖ Ü ·

√
K2 logd
m‖Σ‖ + ·

K2 logd
m‖Σ‖ .

Thus Σ̂ will be a good estimate (with shrinking relative error) provided that

m� K2 logd
‖Σ‖ .

If we scale the vi such that K = O(1), then the typical scaling to expect from vi that are not
exceptionally constrained is that ‖Σ‖ = Θ(1/d). For instance, if vi ∼ Unif(Sd−1(1)), then
K = 1, while Σ = Eviv>i = 1

dId. Thus the result says that, generically, we expect the sample
complexity of estimating the sample covariance of a “nice” bounded distribution of random
vectors to be roughly d logd.
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6.4 Application: Randomized Numerical Linear Algebra

6.4.1 Randomized Sparse Matrix Approximation

We next consider a more sophisticated use of matrix Bernstein appearing in computational
applications. Suppose that we have a matrix Y ∈ Rd×dsym , and we want to approximate Y by

some Ŷ which satisfies (1) that ‖Ŷ −Y ‖ is small, but also (2) that Ŷ is sparse (in its entries).
We propose the following general class of methods to produce such an estimate, within

which we will then try to find the best choice. Define

Eij :=
{
eie

>
i if i = j,

eie
>
j + eje>i if i ≠ j

}
.

We may expand Y in terms of these matrices and its entries as

Y =
∑

1≤i≤j≤d
yijEij.

Now, we will design a very sparse estimator of Y , indeed, a matrix with just one or
two non-zero entries. Suppose that (pij)1≤i≤j≤d is a probability distribution: pij ≥ 0 and∑
pij = 1. We define a random matrix G1 by enumerating the values it takes and specifying

their probabilities:

G1 = 1
pij
yijEij with probability pij.

We have engineered things such that

EG1 =
∑

1≤i≤j≤d
pij · 1

pij
yijEij = Y .

Thus G1 is a very sparse and unbiased estimator of Y . Of course, its variance will be huge,
and ‖G1 −Y ‖ will be very large with high probability for most choices of Y .

Still, we have made progress: given an unbiased randomized estimator, we may perform
a simple form of variance reduction by averaging together several runs of the estimator.
That is, let G1, . . . ,Gm be i.i.d. copies of G1, and set

Ŷ := 1
m

m∑

a=1

Ga.

Again, we have EŶ = Y , and indeed asm →∞ by the law of large numbers Ŷ will converge
to Y . The question is: quantitatively and non-asymptotically, what governs how large we
must take m for this strategy to work well?

Proceeding as in the case of covariance estimation, we have

Ŷ −Y =
m∑

a=1

1
m
(Ga −Y ) =

m∑

a=1

1
m
(Ga − EGa)

︸ ︷︷ ︸
Ha

.
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We may now proceed just as before in computing the basic quantities concerning Ha that
we need in order to apply matrix Bernstein. We need two things: a uniform bound on ‖Ha‖
(which will control the Emax‖Ha‖2 term sufficiently for our purposes, as in our analysis of
covariance estimation) and control of EH2

a. We have:

‖Ha‖ ≤ 1
m
(‖Ga‖ + ‖EGa‖)

≤ 1
m
(‖Ga‖ + E‖Ga‖) (Jensen)

≤ 4
m

max
i,j

|yij|
pij

,

using that ‖Eij‖ ≤ 2. And,

EH2
a =

1
m2

E(Ga − EGa)2

= 1
m2
(EG2

a − (EGa)2)

� 1
m2

EG2
a

= 1
m2

∑

1≤i≤j≤d
pij · 1

p2
ij
y2
ijE

2
ij

and now, since E2
ii = Eii while E2

ij = Eii +Ejj , the resulting matrix is diagonal,

= 1
m2
D,

where

Dii =
d∑

j=1

y2
ij

pij
.

Thus, for the actual parameter appearing in matrix Bernstein, as the above does not depend
on a, ∥∥∥∥∥∥

m∑

a=1

EH2
a

∥∥∥∥∥∥ ≤
∥∥∥∥m ·

1
m2
D
∥∥∥∥ =

1
m

d
max
i=1

d∑

j=1

y2
ij

pij
.

Putting the pieces together, matrix Bernstein then implies

E‖Ŷ −Y ‖ = E

∥∥∥∥∥∥
m∑

a=1

Ha

∥∥∥∥∥∥

Ü
√
logd

∥∥∥∥∥∥
m∑

a=1

EH2
a

∥∥∥∥∥∥

1/2

+ logd
(
E

m
max
a=1
‖Ha‖2

)1/2

=
(
logd
m

d
max
i=1

d∑

j=1

y2
ij

pij
︸ ︷︷ ︸

1

)1/2
+ logd
m

max
i,j

|yij|
pij︸ ︷︷ ︸

2

.
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We now have a concrete bound on the error in our sparse approximation in terms of the pij ,
which we can try to optimize over this choice. The second expression 2 in pij above is
clearly minimized when we set

pij := p(2)ij =
|yij|
‖Y ‖`1

,

where the denominator is
‖Y ‖`1 :=

∑

k,`

|yk,`|.

Note that we have the general inequality

‖Y ‖`1 ≤ d‖Y ‖F . (6.4.1)

So, when we choose pij := p(2)ij , we have

2 = max
i,j

|yij|
p(1)ij

= ‖Y ‖`1 ≤ d‖Y ‖F .

To make the two terms comparable, let us consider how to make ‖Y ‖F also appear in the
first expression. We could do this by setting

pij := p(1)ij =
y2
ij

‖Y ‖2
F
.

Indeed, this achieves

1 = d
max
i=1

d∑

j=1

y2
ij

p(1)ij
= d‖Y ‖2

F .

To compromise between these choices, what we will actually do is to take

pij := p
(1)
ij

2
+ p

(2)
ij

2
= 1

2

y2
ij

‖Y ‖2
F
+ 1

2

|yij|
‖Y ‖`1

.

In particular, note that up to a constant (of 2) we have

pij Ý p(1)ij ,
pij Ý p(2)ij .

Since pij always occurs in the denominator of our bound, this means we can have, up to a
constant, the best behavior in each term. We find, also using the general inequality (6.4.1),

E‖Ŷ −Y ‖ Ü
(
logd
m

d
max
i=1

d∑

j=1

y2
ij

p(1)ij

)1/2
+ logd
m

max
i,j

|yij|
p(2)ij

=
(
d logd
m

‖Y ‖2
F

)1/2
+ logd
m

max
i,j
‖Y ‖`1

≤


√
d logd
m

+ d logd
m


‖Y ‖F
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and, provided we choice m ≥ d logd, we will then have

Ü
√
d logd
m

‖Y ‖2
F .

Now, as for covariance estimation, let us consider the relative error to ‖Y ‖. The follow-
ing quantity will arise.

Definition 6.4.1 (Stable rank). The stable rank of Y is

srank(Y ) := ‖Y ‖
2
F

‖Y ‖2
=

d∑

i=1

λi(Y )2

maxdj=1 λj(Y )2
.

The above expression makes the name intuitive: we always have

1 ≤ srank(Y ) ≤ rank(Y ),

and the stable rank is like a weighted rank that gives smaller weight to small non-zero
eigenvalues. We then have

E‖Ŷ −Y ‖
‖Y ‖ Ü

√
d logd · srank(Y )

m
.

In particular, we may obtain a very sparse approximation (m � d2) with low relative error
(the above being� 1) once

srank(Y )� d
logd

.

Thus we have found an expression of the general principle that matrices of low (stable)
rank admit good sparse approximations.

6.4.2 Sketch of Randomized Matrix Multiplication

We briefly mention how essentially the same ideas allow for a randomized approximation
to matrix multiplication, whose practical relevance might be clearer. Given matrices Y ∈
Rm×d,Z ∈ Rd×n whose product Y Z we want to compute, consider expanding

Y =


| | |
y1 y2 · · · yd
| | |


 ,

Z =




− z1 −
− z2 −

...
− zd −



.

Then, we have

Y Z =
d∑

i=1

yiz
>
i .
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This suggests a similar “empirical” approach: introduce a discrete probability distribution
(pi)di=1, and define G1, . . . ,Gm i.i.d. random matrices taking values

1
pi
yiz

>
i with probability pi.

We may again consider an estimator 1
m
∑m
a=1Ga, and a direct analog of the above analysis

goes through. See [Tro15] for details.

6.5 Application: Connectivity of Random Graphs

We next give two applications with a quite different flavor, involving graphs and combina-
torial optimization. As a warmup, we consider the question: how dense does a random
graph have to be in order to be connected with high probability? We specifically consider
the following very simple distribution of random graph:

Definition 6.5.1 (Erdős-Rényi graph). We write G ∼ G(d,p) for the graph on vertex set [d]
where i ∼ j independently with probability p ∈ (0,1) for each i < j.

Over this class of graphs, we ask: how large does p have to be in order for G to typically be
connected?

It is at first unclear what this has to do with random matrix theory. While we have seen
before that there is a bridge between random matrices and random graphs through the
adjacency matrix, it is still not obvious how to relate spectral properties of the adjacency
matrix to connectedness of the associated graph. In fact, a different matrix is more useful
for this purpose.

Definition 6.5.2 (Graph Laplacian). Given a graph G, we write A = AG for its adjacency
matrix, D =DG for the diagonal matrix with Dii = deg(i) (the degree of i, or the number of
neighbors it has in G), and define the graph Laplacian as

L = LG :=AG −DG.

The following is the key observation to understanding many properties of the graph Lapla-
cian:

Proposition 6.5.3. L satisfies the following properties:

L =
∑

i∼j
(ei − ej)(ei − ej)>,

and, for all x ∈ Rd,
x>Lx =

∑

i∼j
(xi − xj)2.

You may check that the classical Laplacian ∆f of a smooth function f : Rd → Rd likewise
satisfies: ∫

Rd
f(x)(∆f)(x)dx = −

∫

Rd
‖∇f(x)‖2 dx
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by integrating by parts. Thus, x>Lx plays the role of the “average norm-squared of the
gradient” in discrete settings over graphs (for instance in the Poincaré inequalities we saw
earlier when considered for measures over graphs).

Note that, in particular, we have L � 0, and x>Lx = 0 only if whenever xi ≠ xj , then i
and j are not connected in G. The next result then follows immediately.

Corollary 6.5.4. Let S1, . . . , Sk be the connected components of G, and 1Si the associated indi-
cator vectors of their vertices in [d]. Then, the kernel of L is precisely the span of 1S1 , . . . ,1Sk .
In particular, we have

0 = λd(L) = · · · = λd−k+1(L) < λd−k(L).

Thus λd(L) = 0 for all graph Laplacians L, and λd−1(L) > 0 if and only if G is connected. In
this case, the eigenvector of λd(L) is the all-ones vector 1.

This gives us a way to show that a graph is connected using only linear algebra (and
thus random matrix theory for random graphs), by showing that λd−1(L) > 0. Further, note
that if G ∼ G(d,p), then LG is precisely a sum of independent random matrices of the
kind that our tools let us handle. Indeed, it is actually quite similar to the matrix series
treated in the NCK inequality and its ilk, though with coefficients that are neither Gaussian
nor Rademacher. Rather, for bij ∼ Ber(p) (i.e., equal to 1 with probability p and 0 with
probability 1− p) independent over all 1 ≤ i < j ≤ d, we have

LG
(law)=

∑

1≤i<j≤d
bij(ei − ej)(ei − ej)>.

This is just a way of expressing that every edge is present independent with probability p
via the Laplacian matrix. Now it is clear that we can use the matrix Bernstein inequality
and learn something about connectedness. Implementing this strategy, we will show the
following.

Theorem 6.5.5. There is a constant C > 0 such that, if p = p(d) ≥ C logd
d and G ∼ G(d,p(d)),

then P[Gis connected]→ 1.

In fact, this result is sharp up to the value of the constant C : combinatorial analysis
implies the following sharper result.

Theorem 6.5.6. In the setting of Theorem 6.5.5, the following hold for any ε > 0:

1. If p(d) ≥ (1+ ε) logd
d , then P[Gis connected]→ 1.

2. If p(d) ≤ (1− ε) logd
d , then P[Gis connected]→ 0.

The idea of this proof does not have to do with random matrix theory, but let us mention
the main idea: it turns out that whether G is connected or not is determined by whether
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G has any isolated vertices or not. At a heuristic level, calculating the expected number of
these vertices gives, for small p,

E#{isolated vertices} = E
d∑

i=1

1{i is isolated}

=
d∑

i=1

P[i is isolated]

= d · (1− p)d−1

≈ exp
(
logd− p(d− 1)

)
,

which suggests that the transition in whether these vertices appear or not indeed occurs
around p ≈ logd

d .

Proof of Theorem 6.5.5. Let us abbreviate vij := ei − bej . Note that LG is not centered, so
we will not be able to use the matrix Bernstein inequality until we address this. We compute

ELG =
∑

1≤i<j≤d
E[bij]vijv>ij

= p
∑

1≤i<j≤d
vijv

>
ij

= pLKd
= p(Id − 11>),

where we have identified the Laplacian of the complete graph LKd as appearing in this
calculation. In particular, we have λd(ELG) = 0 while λi(ELG) = pd for all 1 ≤ i ≤ d − 1.
Now, the Courant-Fischer min-max theorem implies that

λd−1(LG) ≥ λd−1(ELG)− ‖LG − ELG‖ = pd− ‖LG − ELG‖.

So, it suffices to establish that ‖LG − ELG‖ < pd with high probability under our assump-
tion. We consider just the expectation here, and leave the small remaining concentration
argument as an exercise.

We have
LG − ELG =

∑

1≤i<j≤d
(bij − E[bij])vijv>ij︸ ︷︷ ︸

Hij

.

As before, we gather the two pieces of information about the Hij that matrix Bernstein
demands:

‖Hij‖ ≤ ‖vij‖2 = 2,
EH2

ij = Var[bij]‖vij‖2vijv
>
ij = 2p(1− p)vijv>ij,∥∥∥∥∥∥

∑

i<j

EH2
ij

∥∥∥∥∥∥

1/2

= ‖2p(1− p)LKd‖1/2 Ü
√
pd.
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Thus, by matrix Bernstein, for some C > 0,

E‖LG − ELG‖ ≤ C(
√
logd ·

√
pd+ logd)

and if p ≥ C′ logd
d , then

≤ (C
√
C′ + C) logd,

which for sufficiently large C′ will indeed be smaller than pd ≥ C′ logd (since the above
scales as

√
C′).

6.6 Application: Spectral Sparsification [SS11]

We now consider a similar application to sparsifying matrices from before, but for graphs.
Given G, we want to construct Ĝ which is “close to” G (in a sense we will clarify below), while
having a small number of edges.

What properties of G we want Ĝ to share depends on applications, but they will usually
be some sort of combinatorial graph-theoretic notions. Many computations with graphs, for
instance, depend on the sizes of cuts in G: we define for any S ⊆ V(G)

cutG(S) := #{i, j ∈ V(G) : i ∼ j, i ∈ S, j ∉ S}.

Thus cutG(S) is the number of edges that cross the partition of the vertices of G into S and
its complement. So, cuts are important for solving problems like community detection that
we saw before: one may formulate a version of that as, for instance, the minimum bisection
problem:

minize cutG(S)
subject to |S| = |V(G)|/2.

Note that we must constrain the size of S, since the minimum cut over all S is of course
trivially cutG(∅) = 0.

Once again, it seems that this is not a linear algebra problem at all, so it is unclear how
our study of sparsifying matrices can help us. Fortunately, the sizes of cuts are captured by
the graph Laplacian: if we associate to S an indicator vector x ∈ {±1}d with

xi =
{
+1 if i ∈ S
−1 if i ∉ S

}
,

then we have

x>LGx =
∑

i∼j
(xi − xj)2 =

∑

i∼j

{
0 if i, j ∈ S or i, j ∉ S,
4 otherwise

}
= 4 · cutG(S).

In this sense, sparsifying G while preserving the sizes of cuts amounts to sparsifying the
Laplacian matrix LG.

There are a few wrinkles we must address. Firstly, clearly we cannot simply remove edges
from G to obtain Ĝ, since then all cuts will get uniformly smaller. Instead, we must consider
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Ĝ a weighted graph, with associated notions of weighted cuts and weighted Laplacians. In
general, suppose Ĝ is a weighted graph with an associated weight function w : [d]2 → R≥0.
We make the convention that if {i, j} is not an edge in Ĝ, then we set w(i, j) = 0. The
natural definition of the Laplacian is then

(LĜ)ij :=
{ ∑

j∼iw(i, j) if i = j,
−w(i, j) if i ≠ j

}
,

which is the same as
LĜ =

∑

i,j

w(i, j)vijv>ij.

Correspondingly, if we define weighted cuts in Ĝ as

cutĜ(S) :=
∑

i∈S,j∉S
w(i, j),

then we still have

cutĜ(S) =
1
4
x>LĜx.

More important, we cannot just use our previous approach to sparsify LG. That would
give us a sparsified LĜ satisfying a guarantee of the form

‖LG −LĜ‖
‖LG‖ ≤ ε.

What does such a guarantee tell us about the approximation of cut sizes? We may infer

|cutĜ(S)− cutG(S)| = 1
4

∣∣∣x>LĜx−x>Lx
∣∣∣

≤ 1
4
‖LĜ −LG‖ · ‖x‖2

≤ d
4
ε‖LG‖.

But on the other hand, we have

‖LG‖ ≥ max
x∈{±1/

√
d}d
x>LGx = 4

d
maxcut(G),

where we define
maxcut(G) = max

S⊆V(G)
cutG(S).

So, the above guarantee is no better than

|cutĜ(S)− cutG(S)| ≤ ε ·maxcut(G).

This might be fine if we only care about querying the sizes of large cuts in G and receiving
good estimates. However, as mentioned above in the context of community detection, in
some important situations it is actually the small cuts in G that we care about.
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The above calculations suggest that we should instead aim for a guarantee of the form

|cutĜ(S)− cutG(S)| ≤ ε · cutG(S),

or equivalently
(1− ε)cutG(S) ≤ cutĜ(S) ≤ (1+ ε)cutG(S),

for all S ⊆ V(G). By our observations about quadratic forms, this would be implied by the
following form of spectral approximation of the Laplacian:

(1− ε)LG � LĜ � (1+ ε)LG. (6.6.1)

(Indeed, this is a stronger guarantee, ensuring that any quadratic form with the Laplacian,
or from our previous intuition any “squared gradient norm” query, is preserved to within a
factor 1± ε.)

We will show the following remarkable result:

Theorem 6.6.1 ([SS11]). For any graph G and any ε > 0, there is a weighted Ĝ with at
most O(d logd/ε2) edges such that (6.6.1), which may be found efficiently by a randomized
algorithm.

Proof. For the sake of brevity, we will avoid dealing carefully with the issue that graph Lapla-
cians are not invertible. Really, whenever we write L−1 below, this should be replaced with
the Moore-Penrose pseudoinverse, and this will cause some minor changes in the calcula-
tions as well. However, the main ideas are precisely as we outline below.

The first issue to address is that (6.6.1) is not a statement about operator norm bounds,
whereby matrix Bernstein is not directly helpful. We may remedy this by rewriting it as

(1− ε)Id � L−1/2
G LĜL

−1/2
G � (1+ ε)Id,

or equivalently ∥∥L−1/2
G (LĜ −LG)L−1/2

G
∥∥ = ∥∥L−1/2

G LĜL
−1/2
G − Id

∥∥ ≤ ε.
This is the kind of result matrix Bernstein can show, provided that LĜ is a sum of indepen-
dent random matrices with ELĜ = LG.

We proceed as we did for sparsifying matrices (or, more precisely, as we proposed for
randomized matrix multiplication). We have

LG =
∑

i∼j
vijv

>
ij.

So, let us choose a probability distribution pij on the edges of G (i.e., on pairs with i ∼ j),
and define F1, . . . ,Fm i.i.d. random matrices taking value 1

pij
vijv

>
ij with probability pij . We

then have EFa = LG, and so we may set

LĜ := 1
m

m∑

a=1

Fa.

Note that this indeed gives the Laplacian of a weighted graph, whose weights we may cal-
culate by grouping the Fa that take each value vij and adding together their contributions
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1
pijm

to the total weight of that edge. And, this underlying weighted graph Ĝ has at most m
edges.

Thus, we may write

E
∥∥L−1/2

G (LĜ −LG)L−1/2
G

∥∥ = E
∥∥∥∥
m∑

a=1

1
m
L−1/2
G (Fa − EFa)L−1/2

G
︸ ︷︷ ︸

Ha

∥∥∥∥.

It will be helpful to define

F̂a := L−1/2
G FaL

−1/2
G ,

so that

Ha = 1
m
(F̂a − EF̂a) = 1

m
(F̂a − Id).

These matrices take the values 1
pij
(L−1/2

G vij)(L
−1/2
G vij)> with probability pij . Let us also

define
wij := L−1/2

G vij.

The elegant choice of the weights pij is just to make ‖F̂a‖ = 1
pij
‖wij‖2 always take the

same value. This amounts to taking

pij ∝ ‖wij‖2 = v>ijL−1
G vij.

Further, the normalizing constant is very simple: the sum of these weights is

∑

i∼j
‖wij‖2 =

∑

i∼j
v>ijL

−1
G vij

=
∑

i∼j
〈L−1

G ,vijv
>
ij〉

=
〈
L−1
G ,

∑

i∼j
vijv

>
ij

〉

= 〈L−1
G ,LG〉

= Tr(L−1
G LG)

= Tr(Id)
= d.

(Note that this calculation will change a little bit and depend on the number of connected
components in G if we try to be more careful about inverting Laplacians.) Thus we simply
have pij = ‖wij‖2/d, and ‖F̂a‖ = d always. In particular, if we define the unit vectors

ŵij := wij
‖wij‖ ,

then we will have F̂a = dŵijŵ>ij with probability ‖w‖2
ij/d. It is then clear that F̂ 2

a = dF̂a,

since F̂a equals d times a (rank one) projection matrix.
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With this choice made, we prepare to apply matrix Bernstein with the same calculations
as always:

‖Ha‖ = 1
m
‖F̂a − EF̂a‖

≤ 2d
m
,

EH2
a �

1
m2

EF̂ 2
a

= d
m2

EF̂a

= d
m2
Id,

∥∥∥∥∥∥
m∑

a=1

EH2
a

∥∥∥∥∥∥

1/2

=
√
d
m
.

Thus, matrix Bernstein implies

E
∥∥L−1/2

G (LĜ −LG)L−1/2
G

∥∥ Ü
√
logd ·

√
d
m
+ logd · d

m

=
√
d logd
m

+ d logd
m

and if m Ý d logd/ε2, we can ensure

Ü ε+ ε2,

and choosing the constants appropriately gives the result.

6.6.1 Effective Resistance Interpretation

The choice of weights

pij ∝ ‖wij‖2 = (ei − ej)>L−1
G (ei − ej) =: Rij

works beautifully with the algebraic details of matrix Bernstein in the above proof. But what
is its intuitive meaning? In what sense are the edges with larger pij that our sparsification is
more likely to include and weigh highly in Ĝ the ones that are “important” to the structure
of G?

This question has an even more beautiful answer: the number Rij is the effective resis-
tance between i and j in G. Consider a physical network of resistors, each with one unit of
resistance (say one Ohm), built according to G. Put a voltage difference of one unit (one volt)
across i and j: set an electric potential to equal V(i) = 1 and V(j) = 0 (say by attaching
the poles of a one-volt battery to i and j). This will cause some amount of current I (in
amperes) to flow out of i and into j. At every other vertex, by Kirchoff’s current rule the
total amount of current entering will equal the total amount exiting, but i will be a source
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of an amount I of current, and j will be a sink of the same amount. Now, view the entire
circuit as a black-box apparatus between i and j. This object has an “effective resistance”
describing the amount of resistance it “looks like” it has, which is just:

Rij := V(i)− V(j)
I

= 1
I

by Ohm’s rule (“V = IR”).
How does this quantity behave? If the only path between i and j is across the edge that

joins them, then all current from i to j must flow along that edge, and you may calculate
that in fact Rij = 1: the effective resistance is just the resistance of the single resistor
joining i and j. However, if there are more paths from i to j, then the above black-box
apparatus essentially behaves as several resistors in parallel. As you likely know (and as is
intuitive since current has several “choices” of how to flow), resistors placed in parallel have
lower resistance than any individual one of the resistors, and thus Rij < 1. So, the choice
of weights proportional to effective resistance precisely makes it more likely to include the
“bottlenecks” of G in Ĝ while ignoring the edges {i, j} for which there are many redundant
paths connecting i and j.

Let us briefly sketch the simple argument that this definition in fact coincides with our
definition of the pij , which is not algebraically obvious. We will still use a bit of physical
reasoning.

Theorem 6.6.2. The effective resistance Rij described above equals (ei − ej)>L−1
G (ei − ej).

Proof. The setup above implicitly assigns a potential V(x) to every x ∈ [d] a vertex of G.
These satisfy V(i) = 1 and V(j) = 0 by our choice. For every adjacent pair {x,y}, there
is also an amount of current I(x,y) flowing along the resistor between x and y . This is a
directed quantity, so that I(y,x) = −I(x,y).

Kirchoff’s rule implies that every vertex other than i and j is neither a source or a sink
of current: if x ∉ {i, j}, then ∑

y∼x
I(x,y) = 0.

On the other hand, by Ohm’s rule, since the resistor between x and y has resistance of one
unit, I(x,y) = V(y)− V(x). Thus,

∑
y∼x
(V(y)− V(x)) = 0,

which we may rewrite as

V(x) = 1
deg(x)

∑
y∼x

V(y).

In words, at every vertex x other than i and j, the potential at x is the average of the
potentials of the neighbors of x. This is called V being a harmonic function on all vertices
other than i and j.

Let us write v ∈ Rd for the vector of potentials at each vertex. The above may be written
as (Dv)x = (Av)x for all x ∉ {i, j} for D the diagonal matrix of degrees in G and A the
adjacency matrix. In other words, (Lv)x = 0 for all x ∉ {i, j} for L the Laplacian. (This is
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parallel to the definition of harmonic functions you might have seen in analysis as functions
whose Laplacian is zero aside from some boundary conditions.)

On the other hand, letting R = Rij be the effective resistance, then the amount of current
flowing out of i or into j is 1/R. Rewriting this similarly to the above gives that (Lv)i = 1/R
and (Lv)j = −1/R. In summary then,

Lv = 1
R
(ei − ej),

or

v = 1
R
L−1(ei − ej).

Finally, we have

1 = vi − vj = 1
R
(ei − ej)>L−1(ei − ej),

and rearranging gives the result.

This is only the beginning of a deep theory relating electrical networks to properties of
graphs and random walks on graphs. A good place to learn more about this is Chapter 2 of
the textbook [LP17].
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