
Assignment 2

Probability Theory II

(EN.553.721, Spring 2025)

Assigned: February 14, 2025 Due: 11:59pm EST, February 28, 2025

Solve any four out of the five problems. If you solve more, we will grade the first four
solutions you include. Each problem is worth an equal amount towards your grade.

Submit solutions in LATEX. Write in complete sentences. Include and justify all steps of your
arguments, but avoid writing excessive explanation that is not contributing to your solution.

Keep in mind the late submission policy: you may use a total of five late days for homework
submissions over the course of the semester without penalty. If you need an extension
beyond these, you must ask me 48 hours before the due date of the homework and have an
excellent reason. After you have used up these late days, further late assignments will be
penalized by 20% per day they are late.

We use the notation X ∈ Lp to denote that E|X|p <∞ below.

Problem 1 (Poisson point process). This problem elaborates on some properties of the Pois-
son point process. All processes discussed below are in continuous time.

1. Brownian motion is a continuous-time stochastic process (B(t))t≥0 with B(0) = 0 al-
most surely and with finite distributions described in terms of their increments by, for
all 0 < t1 < · · · < tk, having

Law
((
B(t1), B(t2)− B(t1), . . . , B(tk)− B(tk−1)

))
=N (0, t1)⊗N (0, t2 − t1)⊗ · · · ⊗N (0, tk − tk−1).

Take the existence of such a process for granted for this problem. Let Fλ ∼ PPP(λ)
be a sequence of Poisson processes. Prove that the sequence of processes F̂λ(t) :=
(Fλ(t)−λt)/

√
λ converges in finite distributions to the Brownian motion B(t) as λ→∞.

2. Prove the following generalized version of the Poisson limit theorem from class. Let
(Xi,n)1≤i≤n be independent random variables such that X1,n, . . . , Xn,n are i.i.d. for each
n (but not for different n). Suppose that n · P[X1,n ∉ {0,1}] → 0 as n → ∞, and that
n · P[X1,n = 1]→ λ ∈ (0,∞). Show that Sn :=

∑n
i=1Xi,n ⇒ Pois(λ).

(Hint: Argue that this may be reduced to the version from class.)
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3. Suppose that (F(t))t≥0 is a counting process satisfying the following properties:

• Initial Condition: F(0) = 0 almost surely.

• Stationarity: For any δ > 0, the law of F(t + δ)− F(t) is the same for all t ≥ 0.

• Independence: For any 0 < t1 < · · · < tk, the random variables F(t1), F(t2) −
F(t1), . . . , F(tk)− F(tk−1) are mutually independent.

• Rate of Events: limδ→0+
1
δP[F(δ) = 1] = λ ∈ (0,∞).

• Isolation of Events: limδ→0+
1
δP[F(δ) ≥ 2] = 0.

Show that F(t) has the law PPP(λ) as a stochastic process (i.e., has the same finite
distributions as PPP(λ), as discussed in lecture).

(Hint: Use Part 2.)

Problem 2 (Conditional expectation). This problem will derive some further properties of
the conditional expectation and parallels with the ordinary expectation. We always assume
G ⊆ F are σ -algebras.

1. Let X be a random variable measurable with respect to F . Write

Var[X | G] := E[(X − E[X | G])2 | G].

Note that Var[X] = Var[X | {∅,Ω}] is just the usual variance. Show that

Var[X] = E[Var[X | G]]+ Var[E[X | G]].

Make sure you are clear on why both terms on the right-hand side are well-defined
scalars.

2. For any σ -algebras G1 ⊆ G2 ⊆ F , show that

E[Var[X | G1]] ≥ E[Var[X | G2]].

3. Show that, if X ∈ L2 is an F -measurable random variable and Y ∈ L2 is any G-
measurable random variable, then

E
(
X − Y

)2 ≥ E
(
X − E[X | G]

)2.

Thus Y∗ = E[X | G] is a minimizer of the left-hand side among G-measurable random
variables Y , giving a precise sense in which the conditional expectation is an “optimal
estimator” of a random variable under a measurability constraint.

(Hint: Add and subtract E[X | G] inside the parentheses on the left-hand side.)

4. Let X be a F -measurable random variable with X ≥ 0 almost surely and Y be a G-
measurable random variable with Y > 0 almost surely. Prove that

P[X > Y | G] ≤ E[X | G]
Y

almost surely.

Recall that the left-hand side is defined to equal E[1{X > Y} | G].
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Problem 3 (Martingales). All stochastic processes referred to below are in discrete time.

1. Let (Mn)n≥0 be a martingale. Prove that Mn has uncorrelated increments: for any
0 ≤ a < b ≤ c < d,

E[(Md −Mc)(Mb −Ma)] = 0.

2. Let (Sn)n≥0 be the simple random walk on the integers Z, i.e., S0 = 0 and Sn =
∑n
i=1Xi

for Xi ∼ Unif({±1}) drawn i.i.d. Let f : Z→ R satisfy, for all k ∈ Z,

f(k) ≥ 1
2

(
f(k+ 1)+ f(k− 1)

)
.

Show that (f (Sn))n≥0 is a supermartingale, a submartingale if the inequality above is
reversed, and a martingale if the inequality is an equality. Describe the f for which the
inequality is an equality. Note that the directions of these inequalities match what you
would expect from the terms “sub-” and “super-” here (supermartingales are produced
by functions that are above their averages, and so forth).

3. Let (Zn)n≥0 be adapted to a filtration (Fn)n≥0 and have Zn ∈ L1. Show that there exist
(Mn)n≥0 and (Hn)n≥0 adapted to the same filtration such that Mn is a martingale (with
respect to that filtration), Hn is predictable (with respect to that filtration), and Zn =
Mn +Hn almost surely for all n ≥ 0. Further show that if Zn is a submartingale, then
we may take Hn to be almost surely non-decreasing (i.e., for any i ≥ 0, Hi+1 −Hi ≥ 0
almost surely).

4. Construct a martingale (Mn)n≥0 such that Mn → +∞ almost surely.

(Hint: Consider a sum of independent but not i.i.d. random variables.)

Problem 4 (Distributional distances). This problem will show you a few different useful
ways of measuring the distance between probability measures. In all cases, let (Ω,F) be a
measurable space and µ, ν and µm, νn for m,n ≥ 1 probability measures on it.

1. Let
d1(µ, ν) := sup

A∈F
|µ(A)− ν(A)|.

Show that d1 is a metric on the set of probability measures on the measurable space
above. Show also that if d1(µn, µ) → 0 as n → ∞ then µn → µ weakly, but that the
converse is not always true.

2. Suppose that ν � µ, so that the Radon-Nikodym derivative dν
dµ ≥ 0 is defined. Show

that

d1(µ, ν) ≤
∫ ∣∣∣∣∣dνdµ − 1

∣∣∣∣∣dµ.
3. Again supposing ν � µ, let

d2(µ, ν) :=

√√√√∫ (√dν
dµ
− 1

)2

dµ.
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Show that, for all ν � µ,

1
2
d2(µ, ν)2 ≤ d1(µ, ν) ≤ d2(µ, ν).

4. Show the following inequalities:

d1(µ1 ⊗ µ2, ν1 ⊗ ν2) ≤ d1(µ1, ν1)+ d1(µ2, ν2),
d2(µ1 ⊗ µ2, ν1 ⊗ ν2)2 ≤ d2(µ1, ν1)2 + d2(µ2, ν2)2.

(Hint: Show the second inequality first.)

Problem 5 (Gaussian vectors). A Gaussian random vector is, for Σ ∈ Rd×d a positive definite
symmetric matrix and µ ∈ Rd a vector, the random vector X = (X1, . . . , Xd) whose density
over Rd is given by

ρ(x) = 1√
det(2πΣ)

exp
(
−1

2
(x−µ)>Σ−1(x−µ)

)
.

There is also a sensible definition when Σ is only positive semidefinite and therefore not
invertible, but we will omit that case here. You may assume all covariance matrices encoun-
tered below are invertible. You should already know and can use without proof the following
properties of Gaussian random vectors:

• In the above setting, EX = µ and Cov(X) := E(X −µ)(X −µ)> = Σ.

• If X ∼ N (µ,Σ) and X ′ ∼ N (µ′,Σ′) are independent Gaussian random vectors, then
Law(X +X ′) =N (µ+µ′,Σ+ Σ′).

• If X is as above and M ∈ Rd
′×d, then Law(MX) =N (Mµ,MΣM>).

Using these results, show the following.

1. Suppose (X1, . . . , Xa, Y1, . . . , Yb) ∼ N (µ,Σ). Further, suppose that Cov(Xi, Yj) = 0 for
all i ∈ [a], j ∈ [b]. Show that (X1, . . . , Xa) and (Y1, . . . , Yb) are independent.

2. In the above setting, let X = (X1, . . . , Xa) and Y = (Y1, . . . , Yb). Suppose that, accord-
ing to this same partition, Σ has a block structure

Σ =
[
A B>

B C

]
.

Describe, in terms only ofA,B,C, a matrixR such that Z :=X−RY is independent
of Y . This Z is a Gaussian random vector; compute its mean and covariance.

3. For a bounded measurable function f : R → R, write an expression for the random
variable E[f (X) | Y ] that holds almost surely and only involves the function f , the
matrices A,B,C, the vector µ, and the vector Y .

4. Consider the two-dimensional case a = b = 1, where (X, Y) ∼ N (µ,Σ) with µ ∈ R2

and Σ ∈ R2×2 symmetric and positive definite. Show that the conditional variance
Var[X | Y] = E[(X −E[X | Y])2 | Y] is a constant (almost surely), not depending on Y .
Give a formula for this constant in terms of µ and Σ.
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